Cadenas de suministro de biomasa para árboles exóticos invasores
DOI:
https://doi.org/10.19182/bft2025.362.a37616Palabras clave
bioenergía, biomasa, especies exóticas invasoras, logística, cadena de suministro, Sudáfrica.Resumen
El desbroce y la restauración de tierras invadidas por especies exóticas en Sudáfrica son estratégicos para adaptarse al cambio climático. La financiación es insuficiente y las operaciones de desbroce de especies exóticas tienen una eficacia limitada, ya que los árboles suelen dejarse o quemarse in situ, es necesario dar prioridad a las cadenas de valor basadas en la biomasa. Sin embargo, la viabilidad financiera de los principales productos de interés (bioenergía y biocarbón) es cuestionable debido a la suboptimización de las cadenas de suministro. Estas deben adaptarse a un recurso disperso, heterogéneo y mal cartografiado. Con este fin, hemos encuestado a las principales categorías de partes interesadas basándonos en un marco analítico derivado de la bibliografía. Hemos validado nuestros resultados en un taller con las partes interesadas. Se trata de un primer intento de estudiar y mejorar las cadenas de suministro basadas en árboles invasores, con resultados transferibles a otros contextos. Observamos una gobernanza compleja de las cadenas de suministro, sin coordinación con los programas de desbroce de especies exóticas, una diversidad de modelos y resultados dispares sobre la fluidez de las interacciones con los propietarios de las tierras. Concluimos con seis recomendaciones: (i) creación de una asociación de usuarios de biomasa (difusión de información y vínculos con los actores públicos); (ii) apoyo a los grandes usuarios de biomasa (potencial de innovación, certificación de sostenibilidad); (iii) financiación centralizada (planificación coherente de la eliminación de especies exóticas); (iv) generalización de las plataformas colaborativas de paisaje (mejora del acceso a los sitios, apoyo específico a las cadenas de valor); (v) refuerzo de la aplicación de la ley (reducción de los costes de transacción y refuerzo del poder de negociación de los proveedores de biomasa); (vi) mejora de la coordinación entre las partes interesadas (articulación con la eliminación de especies exóticas, mayor integración).
Descargas
Citas
Casau, M., Dias, M. F., Teixeira, L., Matias, J. C. O., & Nunes, L. J. R. (2022). Reducing Rural Fire Risk through the Development of a Sustainable Supply Chain Model for Residual Agroforestry Biomass Supported in a Web Platform: A Case Study in Portugal Central Region with the Project BioAgroFloRes. Fire, 5(3), 61.
https://doi.org/10.3390/fire5030061
Castillo-Villar, K. K., Eksioglu, S., Taherkhorsandi, M. (2017). Integrating biomass quality variability in stochastic supply chain modelling and optimization for large-scale biofuel production. Journal of Cleaner Production, 149, 904-918. https://doi.org/10.1016/j.jclepro.2017.02.123
DFFE (Department: Environment, Forestry and Fischeries of Republic of South Africa) (2019). National Climate Change Adaptation Strategy. Version UE10, 13 November 2019. Pretoria, Department: Environment, Forestry & Fisheries Department, 83 p. https://www.dffe.gov.za/sites/default/files/docs/nationalclimatechange_adaptationstrategy_ue10november2019.pdf
Everson, C. S., Clulow, A. D., Becker, M., Watson, A., Ngubo, C., et al. (2014). The long term impact of Acacia mearnsii trees on evaporation, streamflow, low flows and ground water resources. Phase II: Understanding the controlling environmental variables and soil water processes over a full crop rotation. Centre for Water Resources Research (CWRR), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, 182 p. https://www.researchgate.net/publication/292139696
Fan, K., Li, X., Wang, L., & Wang, M. (2019). Two-stage supply chain contract coordination of solid biomass fuel involving multiple suppliers. Computers & Industrial Engineering, 135, 1167-1174. https://doi.org/10.1016/j.cie.2019.01.016
Holden, P. B., Rebelo, A. J., Wolski, P., Odoulami, R. C., Lawal, K. A., et al. (2022). Nature-based solutions in mountain catchments reduce impact of anthropogenic climate change on drought streamflow. Communications Earth & Environment, 3(1). https://doi.org/10.1038/s43247-022-00379-9
Holden, P. B., Rebelo, A. J., & New, M. G. (2020). Mapping invasive alien trees in water towers: A combined approach using satellite data fusion, drone technology and expert engagement. Remote Sensing Applications Society and Environment, 21, 100448. https://doi.org/10.1016/j.rsase.2020.100448
IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services) (2023). Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Roy H. E., Pauchard A., Stoett P., Renard Truong T. (eds.). Bonn, IPBES secretariat, 952 p. https://doi.org/10.5281/zenodo.7430682
IPCC (Intergovernmental Panel on Climate Change) (2022). Working Group II contribution to the IPCC Sixth Assessment Report of the Intergovernmental Panel on Climate Change. UK and USA, Cambridge University Press, 3056 p. https://doi.org/10.1017/9781009325844
Kotzé, J. D. F., Beukes, H., van den Berg, E., & Newby, T. (2010). National Invasive Alien Plant Survey. Agricultural Research Council. Institute for Soil, Climate and Water. GW/A/2010/21. https://www.researchgate.net/publication/343267750
Le Maitre, D. C., van Wilgen, B. W., Gerlderblom, C. M., Bailey, C., Chapman, R. A., et al. (2002). Invasive alien trees and water resources in South Africa: case studies of the costs and benefits of management. Forest Ecology and Management, 160, 143-159. https://doi.org/10.1016/S0378-1127(01)00474-1
Mansuy, N., Barrette, J., Laganière, J., Mabee, W., Paré, D., et al. (2018). Salvage harvesting for bioenergy in Canada: From sustainable and integrated supply chain to climate change mitigation. WIREs Energy Environ, 7:e298. https://doi.org/10.1002/wene.298
Mansuy, N., Thiffault, E., Lemieux, S., Manka, F., Paré, D., et al. (2015). Sustainable biomass supply chains from salvage logging of fire-killed stands: A case study for wood pellet production in eastern Canada. Applied Energy, 154, 62-73. https://doi.org/10.1016/j.apenergy.2015.04.048
Mushakhian, S., Ouhimmou, M., & Rönnqvist, M. (2020). Salvage harvest planning for spruce budworm outbreak using multistage stochastic programming. Canadian Journal of Forestry Research, 50, 953-965. https://doi.org/10.1139/cjfr-2019-0283
Ndhlovu, T., Milton-Dean, S. J., & Esler, K. J. (2011). Impact of Prosopis (mesquite) invasion and clearing on the grazing capacity of semiarid Nama Karoo rangeland, South Africa. African Journal of Range & Forage Science, 28(3), 129-137. https://doi.org/10.2989/10220119.2011.642095
Nunes, L. J. R., Causer, T. P., & Ciolkosz, D. (2020). Biomass for energy: A review on supply chain management models. Renewable and Sustainable Energy Reviews, 120, 109658. https://doi.org/10.1016/j.rser.2019.109658
O’Connor, T. G., & van Wilgen, B. W. (2020). Chapter 16: The impact of invasive alien plants on rangelands in South Africa. In: Biological invasions in South Africa, Invading Nature, van Wilgen, B. W., et al. (eds). Springer Series in Invasion Ecology, 14, 459-487. https://doi.org/10.1007/978-3-030-32394-3_16
Pirard, R. (2023). Rethinking the role of value-added industries for invasive trees in South Africa. The International Forestry Review, 25(2), 223 243. https://doi.org/10.1505/146554823837244428
Pirard, R., Petersen, A., Grobler, A., & Tuchten, O. (2025). Carbon markets can support invasive trees’ control with biomass-based value chains. International Forestry Review, 27(1), 17 p. https://bioone.org/journals/international-forestry-review/volume-27/issue-1/146554825839764896/Carbon-Markets-Can-Support-Invasive-Trees-Control-with-Biomass-Based/10.1505/146554825839764896.full
Potgieter, L. J., Gaertner, M., O’Farrell, P. J., & Richardson, D. M. (2019). Perceptions of impact: Invasive alien plants in the urban environment. Journal of Environmental Management, 229, 76-87. https://doi.org/10.1016/j.jenvman.2018.05.080
Rebelo, A. J., Holden, P. B., Esler, K. J., & New, M. G. (2022). Removing alien plants can save water: we measured how much. The Conversation (May). https://theconversation.com/removing-alien-plants-can-save-water-we-measured-how-much-181811
Rebelo, A. J., Esler, K. J., & Le Maitre, D. (2023). Invasive alien Plants. The Water Wheel, 21(6), 26-28. https://www.arc.agric.za/arc-iscw/News%20Articles%20Library/The%20Water%20Wheel.pdf
SER (Society for Ecological Restoration) (2020). The Blaauwberg large-scale Sand Fynbos restoration project. https://www.ser.org/news/519601/The-Blaauwberg-Large-scale-Sand-Fynbos-Restoration-Project.htm (accessed 20 March 2024).
SGS 2020. Ecosystem Services Certification Document AD 36-E-01. SGS Qualifor.
Shabani, N., Akhtari, S., & Sowlati, T. (2013). Value chain optimization of forest biomass for bioenergy production: A review. Renewable and Sustainable Energy Reviews, 23, 299-311. https://doi.org/10.1016/j.rser.2013.03.005
Shahi, S., Pulkki, R., Leitch, M., Gaston, C. (2018). Integrating operational planning decisions throughout the forest products industry supply chain under supply and demand uncertainty. International Journal of Forest Engineering, 29(1), 1-11. https://doi.org/10.1080/14942119.2017.1371544
She, J., Chung, W., Han, H. (2019). Economic and Environmental Optimization of the Forest Supply Chain for Timber and Bioenergy Production from Beetle-Killed Forests in Northern Colorado. Forests, 10, 689. https://doi.org/10.3390/f10080689
Shuttleworth, B., & Ackerman, P. (2009). Flower Valley: Alien invasive weed harvesting and chipping evaluation. Industrial Engineering & Work Study Consulting, South Africa.
Vera, I., Goosen, N., Batidzirai, B., Hoefnagels, R., & van der Hilst, F. (2022). Bioenergy potential from invasive alien plants: Environmental and socio-economic impacts in Eastern Cape, South Africa. Biomass and Bioenergy, 158:106340. https://doi.org/10.1016/j.biombioe.2022.106340
van Wilgen, B. W., Fill, J. M., Baard, J., Cheney, C., Forsyth, A. T., & Kraaij, T. (2016). Historical costs and projected future scenarios for the management of invasive alien plants in protected areas in the Cape Floristic Region. Biological Conservation, 200, 168-177. https://doi.org/10.1016/j.biocon.2016.06.008
van Wilgen, B. W., Wannenburgh, A., & Wilson, J. R. U. (2022). A review of two decades of government support for managing alien plant invasions in South Africa. Biological Conservation, 274:109741. https://doi.org/10.1016/j.biocon.2022.109741
Ward, M., McClean, D., Kraak, A., Jenkin, N., & Mushangai, D. (2017). The eco-furniture programme: An evaluative review (Unpublished report). Pretoria, South Africa, Department of Environmental Affairs, 132 p.

Número
Sección
-
Resumen246
-
ARTICLE SCIENTIFQUE – VERSION FRANÇAISE – PDF 579
Recibido
Aceptado
Publicado
Cómo citar
Licencia
Derechos de autor 2025 CIRAD - Bois et Frêts des Tropiques

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Los artículos se publican en Acceso Abierto. Se rigen por los derechos de autor y por las licencias creativas de Commons. La licencia utilizada es Atribución (CC BY 4.0).