Chaînes d'approvisionnement en biomasse pour les essences forestières exotiques envahissantes
DOI :
https://doi.org/10.19182/bft2025.362.a37616Mots-clés
bioénergie, biomasse, espèces exotiques envahissantes, logistique, chaîne d'approvisionnement, Afrique du Sud.Résumé
Le défrichage et la restauration des terres envahies par des essences exotiques en Afrique du Sud sont stratégiques pour s'adapter au changement climatique. Les financements devenant insuffisants et les opérations de défrichage des essences exotiques ayant une efficacité limitée, les arbres étant laissé ou brulés généralement sur place, il y a lieu de privilégier les chaînes de valeur basées sur la biomasse. Cependant, la faisabilité financière des principaux produits d'intérêt (bioénergie et biochar) est contestée en raison d’une sous-optimisation des chaînes d'approvisionnement. Elles doivent être adaptées à une ressource dispersée, hétérogène et mal cartographiée. À cette fin, nous avons interrogé les principales catégories de parties prenantes sur la base d'un cadre analytique dérivé de la littérature. Nous avons validé nos résultats lors d'un atelier avec les parties prenantes. Il s'agit d'une première tentative d'étude et d'amélioration des chaînes d'approvisionnement basées sur les arbres envahissants, avec des résultats transposables à d’autres contextes. Nous constatons une gouvernance complexe des chaînes d'approvisionnement, sans coordination avec les programmes de défrichage des espèces exotiques, une diversité de modèles et des rapports mitigés sur la fluidité des interactions avec les propriétaires fonciers. Nous concluons par six recommandations : (i) création d'une association d'utilisateurs de biomasse (diffusion d'information et liens avec les acteurs publics) ; (ii) soutien aux grands utilisateurs de biomasse (potentiel d'innovation, certification de durabilité) ; (iii) financement centralisé (planification cohérente du défrichage des espèces exotiques) ; (iv) généralisation des plateformes collaboratives de paysage (amélioration de l'accès aux sites, soutien ciblé aux chaînes de valeur) ; (v) renforcement de l'application de la loi (réduction des coûts de transaction et renforcement du pouvoir de négociation des fournisseurs de biomasse) ; (vi) amélioration de la coordination entre les parties prenantes (articulation avec le défrichage des espèces exotiques, intégration accrue).
Téléchargements
Références
Casau, M., Dias, M. F., Teixeira, L., Matias, J. C. O., & Nunes, L. J. R. (2022). Reducing Rural Fire Risk through the Development of a Sustainable Supply Chain Model for Residual Agroforestry Biomass Supported in a Web Platform: A Case Study in Portugal Central Region with the Project BioAgroFloRes. Fire, 5(3), 61.
https://doi.org/10.3390/fire5030061
Castillo-Villar, K. K., Eksioglu, S., Taherkhorsandi, M. (2017). Integrating biomass quality variability in stochastic supply chain modelling and optimization for large-scale biofuel production. Journal of Cleaner Production, 149, 904-918. https://doi.org/10.1016/j.jclepro.2017.02.123
DFFE (Department: Environment, Forestry and Fischeries of Republic of South Africa) (2019). National Climate Change Adaptation Strategy. Version UE10, 13 November 2019. Pretoria, Department: Environment, Forestry & Fisheries Department, 83 p. https://www.dffe.gov.za/sites/default/files/docs/nationalclimatechange_adaptationstrategy_ue10november2019.pdf
Everson, C. S., Clulow, A. D., Becker, M., Watson, A., Ngubo, C., et al. (2014). The long term impact of Acacia mearnsii trees on evaporation, streamflow, low flows and ground water resources. Phase II: Understanding the controlling environmental variables and soil water processes over a full crop rotation. Centre for Water Resources Research (CWRR), School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, 182 p. https://www.researchgate.net/publication/292139696
Fan, K., Li, X., Wang, L., & Wang, M. (2019). Two-stage supply chain contract coordination of solid biomass fuel involving multiple suppliers. Computers & Industrial Engineering, 135, 1167-1174. https://doi.org/10.1016/j.cie.2019.01.016
Holden, P. B., Rebelo, A. J., Wolski, P., Odoulami, R. C., Lawal, K. A., et al. (2022). Nature-based solutions in mountain catchments reduce impact of anthropogenic climate change on drought streamflow. Communications Earth & Environment, 3(1). https://doi.org/10.1038/s43247-022-00379-9
Holden, P. B., Rebelo, A. J., & New, M. G. (2020). Mapping invasive alien trees in water towers: A combined approach using satellite data fusion, drone technology and expert engagement. Remote Sensing Applications Society and Environment, 21, 100448. https://doi.org/10.1016/j.rsase.2020.100448
IPBES (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services) (2023). Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Roy H. E., Pauchard A., Stoett P., Renard Truong T. (eds.). Bonn, IPBES secretariat, 952 p. https://doi.org/10.5281/zenodo.7430682
IPCC (Intergovernmental Panel on Climate Change) (2022). Working Group II contribution to the IPCC Sixth Assessment Report of the Intergovernmental Panel on Climate Change. UK and USA, Cambridge University Press, 3056 p. https://doi.org/10.1017/9781009325844
Kotzé, J. D. F., Beukes, H., van den Berg, E., & Newby, T. (2010). National Invasive Alien Plant Survey. Agricultural Research Council. Institute for Soil, Climate and Water. GW/A/2010/21. https://www.researchgate.net/publication/343267750
Le Maitre, D. C., van Wilgen, B. W., Gerlderblom, C. M., Bailey, C., Chapman, R. A., et al. (2002). Invasive alien trees and water resources in South Africa: case studies of the costs and benefits of management. Forest Ecology and Management, 160, 143-159. https://doi.org/10.1016/S0378-1127(01)00474-1
Mansuy, N., Barrette, J., Laganière, J., Mabee, W., Paré, D., et al. (2018). Salvage harvesting for bioenergy in Canada: From sustainable and integrated supply chain to climate change mitigation. WIREs Energy Environ, 7:e298. https://doi.org/10.1002/wene.298
Mansuy, N., Thiffault, E., Lemieux, S., Manka, F., Paré, D., et al. (2015). Sustainable biomass supply chains from salvage logging of fire-killed stands: A case study for wood pellet production in eastern Canada. Applied Energy, 154, 62-73. https://doi.org/10.1016/j.apenergy.2015.04.048
Mushakhian, S., Ouhimmou, M., & Rönnqvist, M. (2020). Salvage harvest planning for spruce budworm outbreak using multistage stochastic programming. Canadian Journal of Forestry Research, 50, 953-965. https://doi.org/10.1139/cjfr-2019-0283
Ndhlovu, T., Milton-Dean, S. J., & Esler, K. J. (2011). Impact of Prosopis (mesquite) invasion and clearing on the grazing capacity of semiarid Nama Karoo rangeland, South Africa. African Journal of Range & Forage Science, 28(3), 129-137. https://doi.org/10.2989/10220119.2011.642095
Nunes, L. J. R., Causer, T. P., & Ciolkosz, D. (2020). Biomass for energy: A review on supply chain management models. Renewable and Sustainable Energy Reviews, 120, 109658. https://doi.org/10.1016/j.rser.2019.109658
O’Connor, T. G., & van Wilgen, B. W. (2020). Chapter 16: The impact of invasive alien plants on rangelands in South Africa. In: Biological invasions in South Africa, Invading Nature, van Wilgen, B. W., et al. (eds). Springer Series in Invasion Ecology, 14, 459-487. https://doi.org/10.1007/978-3-030-32394-3_16
Pirard, R. (2023). Rethinking the role of value-added industries for invasive trees in South Africa. The International Forestry Review, 25(2), 223 243. https://doi.org/10.1505/146554823837244428
Pirard, R., Petersen, A., Grobler, A., & Tuchten, O. (2025). Carbon markets can support invasive trees’ control with biomass-based value chains. International Forestry Review, 27(1), 17 p. https://bioone.org/journals/international-forestry-review/volume-27/issue-1/146554825839764896/Carbon-Markets-Can-Support-Invasive-Trees-Control-with-Biomass-Based/10.1505/146554825839764896.full
Potgieter, L. J., Gaertner, M., O’Farrell, P. J., & Richardson, D. M. (2019). Perceptions of impact: Invasive alien plants in the urban environment. Journal of Environmental Management, 229, 76-87. https://doi.org/10.1016/j.jenvman.2018.05.080
Rebelo, A. J., Holden, P. B., Esler, K. J., & New, M. G. (2022). Removing alien plants can save water: we measured how much. The Conversation (May). https://theconversation.com/removing-alien-plants-can-save-water-we-measured-how-much-181811
Rebelo, A. J., Esler, K. J., & Le Maitre, D. (2023). Invasive alien Plants. The Water Wheel, 21(6), 26-28. https://www.arc.agric.za/arc-iscw/News%20Articles%20Library/The%20Water%20Wheel.pdf
SER (Society for Ecological Restoration) (2020). The Blaauwberg large-scale Sand Fynbos restoration project. https://www.ser.org/news/519601/The-Blaauwberg-Large-scale-Sand-Fynbos-Restoration-Project.htm (accessed 20 March 2024).
SGS 2020. Ecosystem Services Certification Document AD 36-E-01. SGS Qualifor.
Shabani, N., Akhtari, S., & Sowlati, T. (2013). Value chain optimization of forest biomass for bioenergy production: A review. Renewable and Sustainable Energy Reviews, 23, 299-311. https://doi.org/10.1016/j.rser.2013.03.005
Shahi, S., Pulkki, R., Leitch, M., Gaston, C. (2018). Integrating operational planning decisions throughout the forest products industry supply chain under supply and demand uncertainty. International Journal of Forest Engineering, 29(1), 1-11. https://doi.org/10.1080/14942119.2017.1371544
She, J., Chung, W., Han, H. (2019). Economic and Environmental Optimization of the Forest Supply Chain for Timber and Bioenergy Production from Beetle-Killed Forests in Northern Colorado. Forests, 10, 689. https://doi.org/10.3390/f10080689
Shuttleworth, B., & Ackerman, P. (2009). Flower Valley: Alien invasive weed harvesting and chipping evaluation. Industrial Engineering & Work Study Consulting, South Africa.
Vera, I., Goosen, N., Batidzirai, B., Hoefnagels, R., & van der Hilst, F. (2022). Bioenergy potential from invasive alien plants: Environmental and socio-economic impacts in Eastern Cape, South Africa. Biomass and Bioenergy, 158:106340. https://doi.org/10.1016/j.biombioe.2022.106340
van Wilgen, B. W., Fill, J. M., Baard, J., Cheney, C., Forsyth, A. T., & Kraaij, T. (2016). Historical costs and projected future scenarios for the management of invasive alien plants in protected areas in the Cape Floristic Region. Biological Conservation, 200, 168-177. https://doi.org/10.1016/j.biocon.2016.06.008
van Wilgen, B. W., Wannenburgh, A., & Wilson, J. R. U. (2022). A review of two decades of government support for managing alien plant invasions in South Africa. Biological Conservation, 274:109741. https://doi.org/10.1016/j.biocon.2022.109741
Ward, M., McClean, D., Kraak, A., Jenkin, N., & Mushangai, D. (2017). The eco-furniture programme: An evaluative review (Unpublished report). Pretoria, South Africa, Department of Environmental Affairs, 132 p.

Téléchargements
Numéro
Rubrique
-
Résumé246
-
ARTICLE SCIENTIFQUE – VERSION FRANÇAISE – PDF 579
Reçu
Accepté
Publié
Comment citer
Licence
© CIRAD - Bois et Forêts des Tropiques 2025

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
Les articles sont publiés en Accès libre. Ils sont régis par le Droit d'auteur et par les licenses créative commons. La license utilisée est Attribution (CC BY 4.0).