Dynamique du prix des bois de Pinus selon différents assortiments d'essences : comparaison entre processus stochastiques
DOI :
https://doi.org/10.19182/bft2022.351.a36392Résumé
La compréhension de la dynamique des prix du marché pour le bois de Pinus est une condition préalable aux décisions stratégiques concernant les plans d'investissement forestier puisque, du point de vue du marché, le risque exogène d'un projet dépend des assortiments d'essences forestières. Il faut donc connaître le processus stochastique qui représente la meilleure façon d'évaluer l'actif sous-jacent. A l'aide de tests économétriques, la présente étude vise à comparer le mouvement brownien fractionnaire et le mouvement brownien géométrique pour déterminer le modèle stochastique qui représente le mieux le comportement du prix du bois de Pinus provenant de forêts plantées dans l'État de Santa Catarina, au Brésil, afin d'évaluer l'actif sous-jacent et les options réelles intrinsèques aux projets d'investissement forestier. Les séries chronologiques de prix, pour la période allant de juin 2017 à juillet 2019, concernent trois assortiments de bois de Pinus utilisés pour de multiples produits. Les tests économétriques recommandés pour analyser les séries chronologiques portaient sur la normalité des données, la tendance, l'autocorrélation, la stationnarité et l'estimation différentielle fractionnelle. Les séries chronologiques ont ensuite été modélisées au moyen de processus stochastiques conformément aux tests économétriques. Les séries chronologiques ont indiqué un comportement normal, la présence d'une tendance positive et la non-stationnarité des données. En outre, une mémoire longue a été trouvée dans toutes les séries. Le mouvement brownien fractionnaire s'est avéré être le processus stochastique le plus approprié pour modéliser les prix de trois assortiments de bois forestiers, étant donné les caractéristiques non stationnaires et la mémoire longue des séries chronologiques pour les prix du bois de Pinus.
Téléchargements
Références
Addison P. S., Qu B., Nisbet A., Pender G, 1998. A non-Fickian, particle tracking diffusion model based on fractional Brownian motion. International Journal for Numerical Methods in Fluids, 25: 1373-1384.
https://doi.org/10.1002/(SICI)1097-0363(19971230)25:12%3C1373::AID-FLD620%3E3.0.CO;2-6
Angstmann C. N., Henry B. I., Mcgann A. V., 2019. Time-fractional geometric Brownian motion from continuous time random walks. Physica A: Statistical Mechanics and its Applications, 526: 02-13. https://doi.org/10.1016/j.physa.2019.04.238
Antunes J. L. F., Cardoso M. R. A., 2015. Uso da análise de séries temporais em estudos epidemiológicos. Epidemiologia e Serviços de Saúde, 24: 565-576. https://www.scielo.br/j/ress/a/zzG7bfRbP7xSmqgWX7FfGZL/abstract/?lang=pt
Ardian A., Kumral M., 2020. Incorporating stochastic correlations into mining project evaluation using the Jacobi process. Resources Policy, 65: 1-9. https://doi.org/10.1016/j.resourpol.2019.101558
Berk A. S., Podhraski D., 2018. Superiority of Monte Carlo simulation in valuing real options within public–private partnerships. Risk Management, 20: 1-28. https://doi.org/10.1057/s41283-017-0025-9
Cai Z., 2007. Trending time-varying coefficient time series models with serially correlated errors. Journal of Econometrics, 136: 163-188. https://doi.org/10.1016/j.jeconom.2005.08.004
Centre for Socioeconomics and Agricultural Planning, 2019. Mercado Agrícola. CEPA, EPAGRI, website. https://cepa.epagri.sc.gov.br/index.php/precos-agricolas-mensais-indice/
Chen H., Cheng Y., 2007. Non-normality effects on the economic–statistical design of charts with Weibull in-control time. European Journal of Operational Research, 176: 986-998. https://doi.org/10.1016/j.ejor.2005.08.022
Cordeiro S. A., Soares N. S., Braga M. J., Silva M. L., 2010. Previsões do preço de exportação da madeira serrada de Pinus no Brasil. Scientia Forestalis, 38: 205-214. http://www.bibliotecaflorestal.ufv.br/handle/123456789/16452
Cox D. R., Stuart A., 1955. Some quick sign tests for trend in location and dispersion. Biometrika, 42: 80-95. https://doi.org/10.1093/biomet/42.1-2.80
Dickey D. A., Fuller W. A., 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74: 427-431. https://doi.org/10.2307/2286348
Figueiredo Filho A., Retslaff F. A. S., Kohler S. V., Becker M., Brandes D., 2015. Efeito da idade no afilamento e sortimento em povoamentos de Araucaria angustifolia. Floresta e Ambiente, 22: 50-59. https://doi.org/10.1590/2179-8087.080114
Gajda J., Wyłomańska A., 2014. Fokker–Planck type equations associated with fractional Brownian motion controlled by infinitely divisible processes. Physica A: Statistical Mechanics and its Applications, 405: 104-113. https://doi.org/10.1016/j.physa.2014.03.016
Geweke J., Porter-Hudak S., 1983. The estimation and application of long memory time series models. Journal of Time Series Analysis, 4: 221-238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x
Gu H., Liang J. R., Zhang Y. X., 2012. Time-changed geometric fractional Brownian motion and option pricing with transaction costs. Physica A: Statistical Mechanics and its Applications, 391: 3971-3977. https://doi.org/10.1016/j.physa.2012.03.020
Herrmann M., Otesteanu M., 2016. A MAP estimator based on geometric Brownian motion for sample distances of laser triangulation data. Optics and Lasers in Engineering, 86: 98-105. https://doi.org/10.1016/j.optlaseng.2016.05.009
Insley M., 2002. A Real Options approach to the valuation of a forestry investment. Journal of Environmental Economics and Management, 44: 471-492. https://doi.org/10.1006/jeem.2001.1209
Jarque C. M., Bera A. K., 1980. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters, 6: 255-259. https://doi.org/10.1016/0165-1765(80)90024-5
Kohler S. V., Koehler H. S., Figueiredo Filho A., Arce J. E., Machado S. A., 2015. Evolução do sortimento em povoamentos de Pinus taeda nos estados do Paraná e Santa Catarina. Floresta, 45: 545-554. https://doi.org/10.5380/rf.v45i3.35746
Kozachenko Y., Melnikov A., Mishura Y., 2015. On drift parameter estimation in models with fractional Brownian motion. Statistics: a journal of theoretical and applied statistics, 49: 35-62. https://doi.org/10.1080/02331888.2014.907294
Kwiatkowski D., Phillips P. C. B., Schmidt P., Shin Y., 1992. Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54: 159-178. https://doi.org/10.1016/0304-4076(92)90104-Y
Le Breton A., 1998. Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion. Statistics & Probability Letters, 38: 263-274. https://doi.org/10.1016/S0167-7152(98)00029-7
Maeda M., Watts D., 2019. The unnoticed impact of long-term cost information on wind farms’ economic value in the USA – a real option analysis. Applied Energy, 241: 540-547. https://doi.org/10.1016/j.apenergy.2018.11.065
Mandelbrot B., Ness V., 1968. Fractional Brownian motions, fractional noises and applications. SIAM Review, 10: 422-437. https://www.jstor.org/stable/2027184
Manley B., Niquidet K., 2017. How does real option value compare with Faustmann value when log prices follow fractional Brownian motion? Forest Policy and Economics, 85: 76-84. https://doi.org/10.1016/j.forpol.2017.08.017
Manley B., Niquidet K., 2010. What is the relevance of option pricing for forest valuation in New Zealand? Forest Policy and Economics, 12: 299-307. https://doi.org/10.1016/j.forpol.2009.11.002
Matias M. A., Silva C. A. T., Vieira L., 2005. Analysis of price behaviour patterns for revenue projections: statistical tests of a copper price time series. Brazilian Business Review, 2: 108-123. https://doi.org/10.15728/bbr.2005.2.2.2
Niquidet K., Manley B., 2007. Price dynamics in the New Zealand log market. New Zealand Journal of Forestry, 52: 4-9. https://www.semanticscholar.org/paper/Price-dynamics-in-the-New-Zealand-log-market-Niquidet-Manley/2737d0ad12774546b953722311533624819547a4
Niquidet K., Sun L., 2012. Do forest products prices display long memory? Canadian Journal of Agricultural Economics, 60: 239-261. https://doi.org/10.1111/j.1744-7976.2012.01244.x
Ossenbruggen P. J., Laflamme E. M., 2019. Explaining freeway breakdown with geometric Brownian motion model. Journal of Transportation Engineering, Part A: Systems, 145: 1-9. https://doi.org/10.1061/JTEPBS.0000255
Olsson O., Hillring B., Vinterbäck J., 2011. European wood pellet market integration – A study of the residential sector. Biomass and Bioenergy, 35: 153-160. https://doi.org/10.1016/j.biombioe.2010.08.020
Plantinga A. J., 1998. The optimal timber rotation: an option value approach. Forest Science, 44: 192-202. https://academic.oup.com/forestscience/article/44/2/192/4627423
Silva C. A., Klauberg C., Hudak A. T., Vierling L. A., Jaafar W. S. W. M., Mohan M., et al., 2017. Predicting stem total and assortment volumes in an industrial Pinus taeda L. forest plantation using airborne laser scanning data and random forest. Forests, 8: 1-17. https://doi.org/10.3390/f8070254
Varnosfaderani P. E., Verly J. G., 2017. Geometric Brownian motion (GBM) random process model appears to be an excellent choice for modeling realizations of perclos signals. Sleep Medicine, 40: 86. https://doi.org/10.1016/j.sleep.2017.11.246
Wang L., Zhang R., Yang L., Su Y., Ma F., 2018. Pricing geometric Asian rainbow options under fractional Brownian motion. Physica A: Statistical Mechanics and its Applications, 494: 8-16. https://doi.org/10.1016/j.physa.2017.11.055
Xu P., Huang J., Zang C., 2019. Ergodicity of stochastic Rabinovich systems driven by fractional Brownian motion. Physica A: Statistical Mechanics and its Applications, 546: 122955. https://doi.org/10.1016/j.physa.2019.122955
Zhang D., Stenger A., Harou P. A., 2015. Policy instruments for developing planted forests: theory and practices in China, the U.S., Brazil, and France. Journal of Forest Economics, 21: 223-237. https://doi.org/10.1016/j.jfe.2015.09.004
Téléchargements
Numéro
Rubrique
-
Résumé841
-
PDF-Open access 411
Reçu
Publié
Comment citer
Licence
(c) Tous droits réservés CIRAD - Bois et Forêts des Tropiques 2022
Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
Les articles sont publiés en Accès libre. Ils sont régis par le Droit d'auteur et par les licenses créative commons. La license utilisée est Attribution (CC BY 4.0).