Plantations forestières de Toona ciliata : impacts de la gestion flexible sur leur viabilité économique

Auteurs

Rafaele Almeida MUNIS
São Paulo State University (UNESP) School of Agriculture Department of Forest Science, Soils and Environment Botucatu, 18610-034 Brazil
Diego Aparecido CAMARGO
São Paulo State University (UNESP) School of Agriculture Department of Forest Science, Soils and Environment Botucatu, 18610-034 Brazil
São Paulo State University (UNESP) School of Agriculture Department of Forest Science, Soils and Environment Botucatu, 18610-034 Brazil

DOI :

https://doi.org/10.19182/bft2022.353.a36818

Mots-clés


cèdre rouge d'Australie, arbre binomial, actif biologique, modélisation dynamique, investissement forestier, valeur nette actualisée, méthode des options réelles, volatilité.

Résumé

Les plantations forestières à Toona ciliata sont annoncées comme économiquement viables grâce à leur bois qui convient bien aux produits de niche de haute qualité. Cependant, cette étude vérifie si les projets d'investissement dans T. ciliata sont économiquement viables en y intégrant une gestion flexible. Nous avons appliqué les coefficients technico-économiques des plantations de T. ciliata sur un horizon de planification à 15 ans, en considérant le projet d'investissement comme un actif sous-jacent et le prix du bois comme la seule source d'incertitude. En utilisant la méthode de Monte-Carlo, nous avons modélisé l'incertitude pour obtenir la volatilité du projet, de sorte que, en appliquant la méthode des options réelles, la flexibilité de gestion pour le report, l'expansion et l'abandon s'ajoute aux actifs sous-jacents. En se basant sur la méthodologie traditionnelle d'évaluation économique, nous avons obtenu une valeur actuelle nette statique de 5 075 USD, ce qui indique la viabilité économique du projet d'investissement dans des plantations forestières à T. ciliata. En raison de l'incertitude liée aux prix du bois, la volatilité du projet s'établit à 131,7 %. Ensuite, il a été constaté que l'intégration des options de report et d'abandon ajoute une prime de 2 147 USD à la valeur du projet, le redirigeant vers une valeur nette actualisée accrue de 7 223 USD. L'intégration des options réelles de report et d'abandon apporte de la souplesse et une aide à la décision pour la gestion des plantations forestières à T. ciliata, ce qui se traduit par une augmentation de 42,3 % de la valeur du projet d'investissement.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Biographies des auteurs

Rafaele Almeida MUNIS

Identifiant ORCID: https://orcid.org/ 0000-0002-8508-5386

Diego Aparecido CAMARGO

Identifiant ORCID: https://orcid.org/ 0000-0002-7944-833

Danilo SIMÕES

Identifiant ORCID: https://orcid.org/0000-0001-8009-2598

Références

Brasil, 1996. Constitution. Law N° 9.430, of December 27, 1996. Lex: Federal Tax Legislation. Brasília, Presidência da República, Casa Civil, Subchefia para Assuntos Jurídicos.

http://www.planalto.gov.br/ccivil_03/LEIS/L9430.htm

B3 S.A. - Brasil Bolsa Balcão, 2021. Cotações históricas. [B3 S.A.]

Black F., Scholes M., 1973. The pricing of options and corporate liabilities. Chicago Journals, 81: 637-654. [JSTOR]

Brandão L. E., Dyer J. S., 2005. Decision Analysis and Real Options: A Discrete Time Approach to Real Option Valuation. Annals of Operations Research, 135: 21-39. [Crossref]

Brandão L. E., Dyer J. S., Hahn W. J., 2012. Volatility estimation for stochastic project value models. European Journal of Operational Research, 220: 642-648. [Crossref]

Briggs A. H., Weinstein M. C., Fenwick E. A. L., Karnon J., Sculpher M. J., Paltiel D., 2012. Model Parameter Estimation and Uncertainty: A Report of the ISPOR-SMDM Modeling Good Research Practices Task Force-6. Value in Health, 15: 835-842. [Crossref]

Brigham E. F., Houston J. F., 2018. Fundamentals of Financial Management. Boston, MA, USA, Cengage Learning, 832 p.

Caporin M., Rossi E., Magistris P. S., 2017. Chasing volatility: A persistent multiplicative error model with jumps. Journal of Econometrics, 198: 122-145. [Crossref]

Castro C. A. O., Resende R. T., Bhering L. L., Cruz C. D., 2016. Brief history of Eucalyptus breeding in Brazil under perspective of biometric advances. Ciência Rural, 46: 1585-1593. [Crossref]

Cox J. C., Ross S. A., Rubinstein M., 1979. Option pricing: a simplified approach. Journal of Financial Economics, 7: 229-263. [Crossref]

Cui X., Shibata T., 2017. Investment strategies, reversibility, and asymmetric information. European Journal of Operational Research, 263: 1109-1122. [Crossref]

Dejene T., Rueda J. A. O., Pinto P. M., 2017. Fungal diversity and succession under Eucalyptus grandis plantations in Ethiopia. Forest Ecology and Management, 405: 179-187. [Crossref]

Dordel J., Simard S. W., Bauhus J., Seely B., Pozas L. J., Prescott C., et al., 2010. Trade-offs among establishment success, stem morphology and productivity of underplanted Toona ciliata: Effects of nurse-species and thinning density. Forest Ecology and Management, 259: 1846-1855. [Crossref]

España M. D., Arboleda J. W., Ribeiro J. A., Abdelnur P. V., Guzman J. D., 2017. Eucalyptus leaf byproduct inhibits the anthracnose-causing fungus Colletotrichum gloeosporioides. Industrial Crops & Products, 108: 793-797. [Crossref]

Favato G., Vecchiato R., 2017. Embedding real options in scenario planning: A new methodological approach. Technological Forecasting & Social Change, 124: 135-149. [Crossref]

Forrester D. I., 2013. Growth responses to thinning, pruning and fertiliser application in Eucalyptus plantations: A review of their production ecology and interactions. Forest Ecology and Management, 310: 336-347. [Crossref]

Hastings W. K., 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57: 97-109. [Crossref]

Holland S. B., 2017. Firm investment in human health capital. Journal of Corporate Finance, 46: 374-390. [Crossref]

Jongrungrot V., Thungwa S., Snoeck D., 2014. Tree-crop diversification in rubber plantations to diversify sources of income for small-scale rubber farmers in Southern Thailand. Bois et Forêts des Tropiques, 321 (3): 21-32. [Crossref]

Khadka C., Vacik H., 2012. Use of multi-criteria analysis (MCA) for supporting community forest management. iForest - Biogeosciences and Forestry, 5: 60-71. [Crossref]

Kozlova M., 2017. Real option valuation in renewable energy literature: Research focus, trends and design. Renewable and Sustainable Energy Reviews, 80: 180-196. [Crossref]

Lajbcygier P. R., Connor J. T., 1997. Improved Option Pricing Using. International Journal of Neural Systems, 8: 457-471. [Crossref]

Leal J., Wordsworth S., Legood R., Blair E., 2007. Eliciting expert opinion for economic Models: An applied example. Value in Health, 10: 195-203. [Crossref]

Lee H., Park T., Kim B., Kim K., Kim H., 2013. A real option-based model for promoting sustainable energy projects under the clean development mechanism. Energy Policy, 54: 360-368. [Crossref]

Li P., Zhan X., Que Q., Qu W., Liu M., Ouyang K., et al., 2015. Genetic Diversity and Population Structure of Toona Ciliata Roem. Based on Sequence-Related Amplified Polymorphism (SRAP) Markers. Forests, 6 (4): 1094-1106. [Crossref]

Liu X., Ronn E. I., 2020. Using the Binomial Model for the Valuation of Real Options in Computing Optimal Subsidies for Chinese Renewable Energy Investments. Energy Economics, 87. [Crossref]

Luan S., Chen X., Su, Y., Dong Z., Ma X., 2019. Modeling travel time volatility using copula-based Monte Carlo simulation method for probabilistic traffic prediction. Transportmetrica A: Transport Science, 18: 54-77. [Crossref]

Mao W., Song H., Li Y., Wang Y., Lin H., Yao C., et al., 2021. Efficient plant regeneration and genetic transformation system of the precious fast-growing tree Toona ciliata. Industrial Crops and Products, 172: 114015. [Crossref]

Miranda O. R., Brandão L. E., Lazo J. G. L., 2017. A dynamic model for valuing flexible mining exploration projects under uncertainty. Resources Policy, 52: 393-404. [Crossref]

Monjas-Barroso M., Balibrea-Iniesta J., 2013. Valuation of projects for power generation with renewable energy: A comparative study based on real regulatory options. Energy Policy, 55: 335-352. [Crossref]

Moon Y., Baran M., 2018. Economic analysis of a residential PV system from the timing perspective: A real option model. Renewable Energy, 125: 783-795. [Crossref]

Nicholls G. M., Lewis N. A., Zhang L., Jiang Z., 2015. Breakeven Volatility for Real Option Valuation. Engineering Management Journal, 26: 49-61. [Crossref]

Nohro S., Jayakumar S., 2020. Tree species diversity and composition of the Pala Wetland Reserve Forest, Mizoram, Indo-Burma hotspot, India. Biocatalysis and Agricultural Biotechnology, 23. [Crossref]

O'Hagan A., Buck C. E., Daneshkhah A., Eiser J. R., Garthwaite P. H., Jenkinson D. J., et al., 2006. Uncertain Judgements: Eliciting Experts' Probabilities. Wiley, 340 p. [Crossref]

Oh H., Yoon C., 2020. Time to build and the real-options channel of residential investment. Journal of Financial Economics, 135: 255-269. [Crossref]

Palisade Corporation, 2021. @Risk. Newfield: Palisade Corporation. version 7.5. Palisade, website. [Palisade]

Phillips P. A., Wright C., 2009. E-business's impact on organizational flexibility. Journal of Business Research, 62: 1071-1080. [Crossref]

Pirovani D. B., Pezzopane J. E. M., Xavier A. C., Pezzopane J. R. M., Jesus Júnior W. C., Machuca M. A. H., et al., 2018. Climate change impacts on the aptitude area of forest species. Ecological Indicators, 95: 405-416. [Crossref]

Rodrigues L. C. A., Castro E. M., Pereira F. J., Maluleque I. F., Barbosa J. P. R. A. D., Rosado S. C. S., 2016. Effects of paclobutrazol on leaf anatomy and gas exchange of Toona ciliata clones. Australian Forestry, 79: 241-247. [Crossref]

Runsheng Y., 2001. Combining Forest-Level Analysis with Options Valuation Approach: A New Perspective for Forestry Investment Assessment. Forest Science, 47, 4: 475-483. [ResearchGate]

Runsheng Y., Newman D. H. 1996. A Timber Producer’s Entry, Exit, and Other Decisions under Market Uncertainty. Journal of Forest Economics, 5 (2): 305-320.

Simões D., Dinardi A. J., Silva M. R., 2018. Investment Uncertainty Analysis in Eucalyptus Bole Biomass Production in Brazil. Forests, 9: 384-397. [Crossref]

S&P Dow Jones indices, 2021. S&P Global Timber & Forestry Index – Overview. S&P Dow Jones indices, website. [S&P Dow Jones indices]

Smith J. E., 2005. Alternative approaches for solving real-options problems. Decision Analysis, 2 (2), 89-102. [Crossref]

Soda G., Furlotti M., 2017. Bringing Tasks Back In: An Organizational Theory of Resource Complementarity and Partner Selection. Journal of Management, 43: 348-375. [Crossref]

Syncopation software, 2021. DPL – Decision Programming Language. Syncopation Software. Version 9.00. [Syncoptation]

Tang B. J., Zhou H. L., Chen H., Wang K., Cao H., 2017. Investment opportunity in China's overseas oil project: An empirical analysis based on real option approach. Energy Policy, 105: 17-26. [Crossref]

Tiwana A., Wang J., Keil M., Ahluwalia P., 2007. The bounded rationality bias in managerial valuation of real options: Theory and evidence from IT projects. Decision Sciences, 38: 157-181. [Crossref]

Torres I. L., Fullana C. B., 2019. Dimensionless numbers for the net present value and the perpetual value of sustainable timber harvests from a monospecific uneven-aged forest. iForest - Biogeosciences and Forestry, 12: 35-42. [Crossref]

Téléchargements

Numéro

Rubrique

ARTICLES SCIENTIFIQUES
Métriques
Vues/Téléchargements
  • Résumé
    124
  • PDF-Open access
    321

Reçu

2021-11-21

Publié

2022-10-01

Comment citer

MUNIS, R. A., CAMARGO, D. A., & SIMÕES, D. (2022). Plantations forestières de Toona ciliata : impacts de la gestion flexible sur leur viabilité économique. BOIS & FORETS DES TROPIQUES, 353, 31–41. https://doi.org/10.19182/bft2022.353.a36818

Articles les plus lus par le même auteur ou la même autrice