Exploiter le potentiel des espèces à croissance rapide d'Indonésie : durabilité et sorption

Auteurs

University of Natural Resources and Life Sciences Institute of Wood Technology and Renewable Materials Vienna, Konrad Lorenz-Straße 24, 3430, Tulln an der Donau Austria
University of Natural Resources and Life Sciences Institute of Wood Technology and Renewable Materials Vienna, Konrad Lorenz-Straße 24, 3430, Tulln an der Donau Austria
Erhard HALMSCHLAGER
University of Natural Resources and Life Sciences Institute of Forest Entomology, Forest Pathology and Forest Protection (IFFF) Department of Forest and Soil Sciences Vienna, PeterJordanStraße 82, 1190 Vienna Austria
Thünen Institute of Wood Research Leuschnerstraße 91D D-21031 Hamburg Germany

DOI :

https://doi.org/10.19182/bft2023.358.a37275

Mots-clés


basidiomycetes, durabilité inhérente, résistance à l’humidité, analyse immédiate, bois dur tropical, Asie du Sud-Est

Résumé

La foresterie sociale ou communautaire a été promue comme une piste intégratrice pour atténuer le changement climatique, dans le cadre du programme REDD+ de la CCNUCC (Réduction des émissions dues à la déforestation et à la dégradation des forêts). Les essences à croissance rapide sont peu exploitées en foresterie communautaire en Asie du Sud-Est, alors que leur potentiel pourrait contribuer à satisfaire la demande de bois de sciage en forte croissance. En 2016, le gouvernement indonésien s'est fixé pour objectif de céder des concessions totalisant 12,7 millions d'hectares à la foresterie communautaire, objectif qui reste fortement soutenu au niveau national. Si les essences commerciales de plantation, principalement le sengon (Paraserianthes falcataria L. Nielsen) et le jabon (Anthocephalus cadamba Roxb.), sont en forte demande, le potentiel d'autres essences, telles que l'acacia (Acacia mangium Willd.), mérite d'être exploré. Le paulownia (Paulownia tomentosa (Thunb.) Steud.) a également été utilisé dans cette étude. Physiologiquement, les essences à croissance rapide diffèrent des bois durs à longue rotation par leur qualité, c'est-à-dire leur résistance à la biodétérioration. Dans cette étude, la durabilité naturelle des espèces à croissance rapide susmentionnées a été étudiée en laboratoire, en utilisant des monocultures de basidiomycètes. Des échantillons de bois ont été exposés à la pourriture brune (Coniophora puteana) et blanche (Trametes versicolor) pendant 16 semaines. Des paramètres tels que la perte de masse, la dureté de la surface, les propriétés de sorption et les caractéristiques anatomiques après exposition aux champignons ont été déterminés. Les temps de mesure de la sorption à haute température étaient plus rapides et l'hystérésis plus faible. Différents niveaux d'humidité relative ont affecté les modifications de la surface totale des vaisseaux. Parmi les essences à croissance rapide, A. cadamba, P. falcataria et P. tomentosa ont été classées comme peu durables à non durables, tandis que A. mangium a été classé comme durable. Les données concernant les échantillons exposés à C. puteana se sont avérées très variables. La dureté axiale restante des échantillons de bois incubés avec T. versicolor était inférieure à celle de C. Putanea. L'observation EDX (spectroscopie de rayons X à dispersion d’énergie) a montré que K était le cation principal dans les échantillons atteints de pourriture.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Adi D. S., Risanto L., Damayanti R., Rullyati S., Dewi L. M., Susanti R., et al., 2014. Exploration of Unutilized Fast Growing Wood Species from Secondary Forest in Central Kalimantan: Study on the Fiber Characteristic and Wood Density. Procedia Environmental Sciences, 20: 321–327.

https://doi.org/10.1016/j.proenv.2014.03.040

Arantes V., Milagres A. M., Filley T. R., Goodell B., 2011. Lignocellulosic polysaccharides and lignin degradation by wood decay fungi: The relevance of nonenzymatic Fenton-based reactions. Journal of Industrial Microbiology and Biotechnology, 38 (4): 541–555. https://doi.org/10.1007/s10295-010-0798-2

Barbu M. C., Buresova K., Tudor E. M., Petutschnigg A., 2022. Physical and Mechanical Properties of Paulownia tomentosa x elongata Sawn Wood from Spanish, Bulgarian and Serbian Plantations. Forests, 13 (10): 1543. https://doi.org/10.3390/f13101543

Bari E., Taghiyari H. R., Mohebby B., Clausen C. A., Schmidt O., Tajick Ghanbary M. A., et al., 2015. Mechanical properties and chemical composition of beech wood exposed for 30 and 120 days to white-rot fungi. Holzforschung, 69 (5): 587–593. https://doi.org/10.1515/hf-2014-0057

Baskara M. I. A., Hapsoro D., Maulana M. I., Marwanto Prasetia D., Hidayat W., Lubis M. A. R., et al., 2022. Physical and Mechanical Properties of Oriented Strand Board from Three Species of Plantation Forests at Various Resin Contents. Jurnal Sylva Lestari, 10 (1): 49–62. https://doi.org/10.23960/jsl.v10i1.519

Bouslimi B., Koubaa A., Bergeron Y., 2014. Effects of biodegradation by brown-rot decay on selected wood properties in eastern white cedar (Thuja occidentalis L.). International Biodeterioration & Biodegradation, 87: 87–98. https://doi.org/10.1016/j.ibiod.2013.11.006

Brischke C., Behnen C. J., Lenz M.-T., et al., 2012. Durability of oak timber bridges – Impact of inherent wood resistance and environmental conditions. International Biodeterioration & Biodegradation, 75: 115–123. https://doi.org/10.1016/j.ibiod.2012.09.010

Broda M., Curling S. F., Frankowski M., 2021. The effect of the drying method on the cell wall structure and sorption properties of waterlogged archaeological wood. Wood Science and Technology, 55 (4), 971–989. https://doi.org/10.1007/s00226-021-01294-6

Cao H., Lyu J., Zhou Y., Gao X., 2021. The Study of Bound Water Status and Pore Size Distribution of Chinese Fir and Poplar Cell Wall by Low-Field NMR. International Journal of Polymer Science, ID 4954837, 11 p. https://doi.org/10.1155/2021/4954837

Darmawan W., Nandika D., Rahayu I., Fournier M., Marchal R., 2013. Determination of juvenile and mature transition ring for fast growing sengon and jabon wood. Journal of the Indian Academy of Wood Science, 10 (1): 39–47. https://doi.org/10.1007/s13196-013-0091-x

Dumitrascu A.-E., Lunguleasa A., Salca E.-A., Ciobanu V. D., 2020. Evaluation of Selected Properties of Oriented Strand Boards Made from Fast Growing Wood Species. BioResources, 15 (1): 199–210. https://bioresources.cnr.ncsu.edu/resources/evaluation-of-selected-properties-of-oriented-strand-boards-made-from-fast-growing-wood-species/

Enters T., Durst P. B., 2004. What does it take? The role of incentives in forest plantation development in Asia and the Pacific. Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific, 49 p. https://www.fao.org/forestry/25832-06edd80e364fc2d50727ea35bf552e2fa.pdf

Forest Products Laboratory, 2010. Wood Handbook, Wood as an Engineering Material. USA, USDA, 509 p. https://www.precisebits.com/PDF/fpl_gtr190.pdf

Gao S., Yue X., Wang L., 2019. Effect of the degree of decay on the electrical resistance of wood degraded by brown-rot fungi. Canadian Journal of Forest Research, 49 (2): 145–153. https://doi.org/10.1139/cjfr-2018-0282

Gril J., Jullien D., Bardet S., Yamamoto H., 2017. Tree growth stress and related problems. Journal of Wood Science, 63 (5): 411–432. https://doi.org/10.1007/s10086-017-1639-y

Hadi Y. S., Hermawan D., Sulastiningsih I. M., Basri E., Pari G., Pari R., et al., 2021. Color Change and Physical-Mechanical Properties of Polystyrene-Impregnated Glulam from Three Tropical Fast-Growing Wood Species. Forests, 12 (10): 1420. https://doi.org/10.3390/f12101420

Hadi Y. S., Massijaya M. Y., Hermawan D., Arinana, A., 2015. Feeding rate of termites in wood treated with borax, acetylation, polystyrene, and smoke. Journal of the Indian Academy of Wood Science, 12 (1): 74–80. https://doi.org/10.1007/s13196-015-0146-2

Hadi Y. S., Massijaya M. Y., Nandika D., Arsyad W. O. M., Abdillah I. B., Setiono L., et al., 2020. Color change and termite resistance of fast-growing tropical woods treated with kesambi (Schleichera oleosa) smoke. Journal of Wood Science, 66 (1): 61. https://doi.org/10.1186/s10086-020-01906-y

Irbe I., Andersons B., Chirkova J., Kallavus U., Andersone I., Faix O., 2006. On the changes of pinewood (Pinus sylvestris L.) Chemical composition and ultrastructure during the attack by brown-rot fungi Postia placenta and Coniophora puteana. International Biodeterioration & Biodegradation, 57 (2): 99–106. https://doi.org/10.1016/j.ibiod.2005.12.002

Jellison J., Smith K. C., Shortle W. T., 1992. Cation analysis of wood degraded by white-and brown-rot fungi. International Research Group on Wood Preservation (IRGWP), Sweden, No. 1552. https://www.irg-wp.com/irgdocs/details.php?b93718a5-9e5e-43b7-8cd5-e747133efc9c

Jusoh I., Zaharin F. A., Adam N. S., 2014. Wood Quality of Acacia Hybrid and Second-Generation Acacia mangium. BioResources, 9 (1): 150–160. https://bioresources.cnr.ncsu.edu/resources/wood-quality-of-acacia-hybrid-and-second-generation-acacia-mangium/

Kirker G., Zelinka S., Gleber S.-C., Vine D., Finney L., Chen S., et al., 2017. Synchrotron-based X-ray fluorescence microscopy enables multiscale spatial visualization of ions involved in fungal lignocellulose deconstruction. Scientific Reports, 7: 41798. https://doi.org/10.1038/srep41798

Kojima M., Yamamoto H., Yoshida M., Ojio Y., Okumura K., 2009. Maturation property of fast-growing hardwood plantation species: A view of fiber length. Forest Ecology and Management, 257 (1): 15–22. https://doi.org/10.1016/j.foreco.2008.08.012

Krisnawati H., Kallio M., Kanninen M., 2011. Acacia mangium Willd. Ecology, silviculture and productivity. Indonesia, CIFOR, 26 p. https://www.cifor.org/publications/pdf_files/Books/BKrisnawati1101.pdf

Krupińska B., Strømmen I., Pakowski Z., Eikevik T. M., 2007. Modeling of Sorption Isotherms of Various Kinds of Wood at Different Temperature Conditions. Drying Technology, 25 (9): 1463–1470. https://doi.org/10.1080/07373930701537062

Lasserre J.-P., Mason E. G., Watt M. S., Moore J. R., 2009. Influence of initial planting spacing and genotype on microfibril angle, wood density, fibre properties and modulus of elasticity in Pinus radiata D. Don corewood. Forest Ecology and Management, 258 (9): 1924–1931. https://doi.org/10.1016/j.foreco.2009.07.028

Lee J. S., Sokhansanj S., Lau A. K., Lim J., Bi X. T., 2021. Moisture adsorption rate and durability of commercial softwood pellets in a humid environment. Biosystems Engineering, 203: 1–8. https://doi.org/10.1016/j.biosystemseng.2020.12.011

Martawijaya A., 2004. Atlas kayu Indonesia. Indonesia, Departemen Kehutanan, Badan Penelitian dan Pengembangan Kehutanan, 179 p. https://fr.scribd.com/document/365016738/330645805-Atlas-Kayu-Indonesia-Jilid-1-pdf-pdf

MeOF (Ministry of Environment and Forestry), 2017. Third National Communication: Under the United Nations Framework Convention on Climate Change. Republic of Indonesia, Minister of Environment and Forestry, Directorate General of Climate Change, 270 p. https://unfccc.int/sites/default/files/resource/8360571_Indonesia-NC3-2-Third%20National%20Communication%20-%20Indonesia%20-%20editorial%20refinement%2013022018.pdf

MoEF (Ministry of Environment and Forestry), 2022. The State of Indonesia’s Forests 2022 Towards FOLU Net Sink 2030. Republic of Indonesia, Ministry of Environment and Forestry, 62 p. https://backpanel.kemlu.go.id/Shared%20Documents/The%20State%20of%20Indonesias%20Forest%202022.pdf

Missio A. L., Cademartori P. H. G. D., Mattos B. D., Santini E. J., Haselein C. R., Gatto, D. A., 2016. Physical and Mechanical Properties of Fast-Growing Wood Subjected to Freeze-Heat Treatments. BioResources, 11 (4): 10378–10390. https://doi.org/10.15376/biores.11.4.10378-10390

Moskal-del Hoyo M., Wachowiak M., Blanchette R. A., 2010. Preservation of fungi in archaeological charcoal. Journal of Archaeological Science, 37 (9): 2106–2116. https://doi.org/10.1016/j.jas.2010.02.007

Nopens M., Wadsö L., Ortmann C., Fröba M., Krause A., 2019. Measuring the Heat of Interaction between Lignocellulosic Materials and Water. Forests, 10 (8): 674. https://doi.org/10.3390/f10080674

Ostrofsky A., Jellison J., Smith K. T., Shortle W. C., 1997. Changes in cation concentrations in red spruce wood decayed by brown rot and white rot fungi. Canadian Journal of Forest Research, 27 (4): 567–571. https://doi.org/10.1139/x96-188

Panchariya P. C., Popovic D., Sharma A. L., 2001. Modeling of Desorption Isotherm of Black Tea. Drying Technology, 19 (6): 1177–1188. https://doi.org/10.1081/DRT-100104813

Pandey K. K., Pitman A. J., 2004. Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and Fourier transform infrared spectroscopy. Journal of Polymer Science Part A: Polymer Chemistry, 42 (10): 2340–2346. https://doi.org/10.1002/pola.20071

Pratiwi A., Lee G., Suzuki A., 2021. Company–Community Partnership and Climate Change Adaptation Practices: The Case of Smallholders Coffee Farmers in Lampung, Indonesia. In: Climate Change Research, Policy and Actions in Indonesia: Science, Adaptation and Mitigation, Djalante R., Jupesta J., Aldrian E. (eds). Springer International Publishing, Cham, 79–98. https://link.springer.com/chapter/10.1007/978-3-030-55536-8_5

Priadi T., 2011. Analisis bahaya pelapukan kayu pada perumahan di Pulau Jawa. Bogor, Indonesia, Institut Pertanian, IPB Press, 191 p. https://docplayer.info/36287170-Analisis-bahaya-pelapukan-kayu-pada-perumahan-di-pulau-jawa.html

Qi J., Jia L., Liang Y., Luo B., Zhao R., Zhang C., et al., 2022. Fungi’s selectivity in the biodegradation of Dendrocalamus sinicus decayed by white and brown rot fungi. Industrial Crops and Products, 188: 115726. https://doi.org/10.1016/j.indcrop.2022.115726

Rautkari L., Laine K., Kutnar A., Medved S., Hughes M., 2013. Hardness and density profile of surface densified and thermally modified Scots pine in relation to degree of densification. Journal of Materials Science, 48 (6): 2370–2375. https://doi.org/10.1007/s10853-012-7019-5

Rahayu I., Darmawan W., Nugroho N., et al. 2014. Demarcation Point Between Juvenile and Mature Wood in Sengon (Falcataria moluccana): and Jabon (Antocephalus cadamba). Journal of Tropical Forest Science, 26: 331–339. https://www.jstor.org/stable/43150914

Scheffer T. C., 1971. A Climate Index for Estimating Potential for Decay in Wood Structures Above Ground. Forest product journal. https://www.semanticscholar.org/paper/A-climate-index-for-estimating-potential-for-decay-Scheffer/b1fabcabd1dfa84f8b525452eb55dfdcbd43300b

Schmidt O., 2006. Wood and Tree Fungi, Biology, Damage, Protection, and Use. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-32139-X

Schneider C. A., Rasband W. S., Eliceiri K. W., 2012. NIH Image to Image J: 25 years of image analysis. Nature Methods, 9 (7): 671–675. https://doi.org/10.1038/nmeth.2089

Schwarze F. W. M. R., 2007. Wood decay under the microscope. Fungal Biology Reviews, 21 (4): 133–170. https://doi.org/10.1016/j.fbr.2007.09.001

Sharapov E., Brischke C., Militz H., Smirnova E., 2018. Effects of white rot and brown rot decay on the drilling resistance measurements in wood. Holzforschung, 72 (10): 905–913. https://doi.org/10.1515/hf-2017-0204

Soge A. O., Popoola O. I., Adetoyinbo A. A., 2021. Detection of wood decay and cavities in living trees: A review. Canadian Journal of Forest Research, 51 (7): 937–947. https://doi.org/10.1139/cjfr-2020-0340

Soerianegara I., Prosea Foundation B., Lemmens R. H. M. J., 1993. Plant resources of South-East Asia. No. 5 (1): Timber trees: major commercial timbers. Wageningen, Netherlands, Pudoc Scientific Publishers, 611 p. https://edepot.wur.nl/411143

Wahab R., Ahmad Mazalan I. N. S., Mustafa M. T., Mojiol A. R., Rasat M. S., 2017. Improvement in Durability of Oil Heat Treated 16-Year-Old Acacia mangium in Laboratory Tests. Journal of Agricultural Science, 9 (6): 251–259. https://doi.org/10.5539/jas.v9n6p251

Wegner T., 2010. Uses and Desirable Properties of Wood in the 21st Century. Journal of Forestry, 108 (4): 165–173. https://www.fs.usda.gov/research/treesearch/37439

Whetten R., Sederoff, R., 1995. Lignin Biosynthesis. The Plant Cell, 7 (7): 1001–1013. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC160901/pdf/071001.pdf

Wool R. P., 2005. 16 - Lignin Polymers and Composites. Bio-Based Polymers and Composites, 551–598. https://doi.org/10.1016/B978-012763952-9/50017-4

Zabel R. A., Morrell J. J., 2012. Wood Microbiology: Decay and Its Prevention – 1st edition. Academic Press, 476 p. https://shop.elsevier.com/books/wood-microbiology/zabel/978-0-12-775210-5

Zhang K., Richman R., 2021. Wood sheathing durability from moisture sorption isotherm variability due to age and temperature. Construction and Building Materials, 273: 121672. https://doi.org/10.1016/j.conbuildmat.2020.121672

Numéro

Rubrique

ARTICLES SCIENTIFIQUES
Métriques
Vues/Téléchargements
  • Résumé
    147
  • Scientific article - PDF
    480

Reçu

2023-11-30

Accepté

2023-12-13

Publié

2023-12-25

Comment citer

FAUZIYYAH, S. ., WIMMER, R., HALMSCHLAGER, E. ., & BRISCHKE, C. (2023). Exploiter le potentiel des espèces à croissance rapide d’Indonésie : durabilité et sorption. BOIS & FORETS DES TROPIQUES, 358, 39–52. https://doi.org/10.19182/bft2023.358.a37275