Effets de la maturité des graines et des caractéristiques du morphotype sur la germination des graines de Lannea microcarpa dans la région soudanienne sèche du Bénin
Résumé
Comprendre l'effet de la taille et du niveau de maturité des graines sur leur capacité de germination est essentiel pour la propagation efficace d'une essence. La présente étude a évalué la variabilité de la germination de graines de l'essence fruitière indigène Lannea microcarpa en fonction des niveaux de maturité des graines et des caractéristiques du morphotype. Trois niveaux de maturité des fruits (fruits verts, vert-rouge et rouge-pourpre) et quatre morphotypes, déterminés selon les caractéristiques morphologiques des fruits et des graines (diamètre des fruits, masse des fruits, épaisseur des graines, largeur des graines et poids des graines) ont été considérés. Le protocole expérimental prévoyait un bloc complet randomisé avec trois répétitions. Le taux de germination et le temps jusqu'à la première germination ont été calculés et analysés à l'aide de modèles linéaires généralisés à effet mixte et quasi-Poisson, respectivement. Les résultats ont donné le meilleur taux de germination (82,78 ± 5,2 %, 45 jours après le semis) pour le morphotype 2 (graine de taille moyenne) et le plus faible (33,90 ± 1,49 %, 45 jours après le semis) pour le morphotype 3 (graine de plus grande taille). Le temps le plus court pour la première germination a été enregistré pour le morphotype 2 (6,89 ± 1,08 jours après le semis) et le plus long (9,96 ± 3,2 jours après le semis) pour le morphotype 1 (graines plus petites). Les graines des fruits verts avaient un meilleur taux de germination que les graines des fruits vert-rouge et rouge-pourpre. Des variations considérables ont également été observées d'un arbre à l'autre, ce qui suggère un rôle moteur potentiel du génotype dans la capacité de germination des graines. Nos résultats suggèrent que les graines de taille intermédiaire prélevées sur des fruits verts présentent les meilleures performances en matière de germination.
Téléchargements
Références
Achigan-Dako E. G., Tchokponhoué D. A., N’Danikou S., Gebauer J., Vodoyhè R., 2015. Current knowledge and breeding perspectives for the miracle plant Synsepalum dulcificum (Schum. et Thonn.) Daniell. Genetics Resources and Crops Evolution. 62: 465-476.
https://doi.org/10.1007/s10722-015-0225-7
Adebisi M. A., Adekunle M. F., Odebiyi O. A., 2011. Effects of fruit maturity and pre-sowing water treatment on germinative performance of Gmelina arborea seeds. Journal of Tropical Forest Science, 23 (4): 371-378. https://www.jstor.org/stable/23617048
Adjanohoun E. J., Ahyi M. R. A., Aké Assi L., Dan Dicko L., Daouda H., Delmas M., et al., 1980. Médecine traditionnelle et pharmacopée : contribution aux études ethnobotaniques et floristiques au Niger. Paris, France, Agence de coopération culturelle et technique (ACCT), 250 p.
Adomou A. C., Sinsin B., van der Maesen L. J. G., 2006. Notulae Florae Beninsis 12: Phytosociological and chorological approaches to phytogeography: a meso-scale study in Benin. Systematics and Geography of Plants, 76: 155-178. https://www.jstor.org/stable/20649708
Agbogan A., Tozo K., Wala K., Bellefontaine R., Dourma R., Akpavi S., et al., 2015. Structure des populations de Sclerocarya birrea, Lannea microcarpa et Haematostaphis barteri au nord du Togo. Journal of Animal and Plant Sciences, 25 : 3871-3886. http://www.m.elewa.org/JAPS/2015/25%282%29-June.html
Arbonnier M., 2000. Arbres, arbustes et lianes des zones sèches d'Afrique de l'Ouest. Montpellier, France, Cirad, 541 p.
Assogbadjo A. E., Glèlè Kakaï R., Edon S., Kyndt T., Sinsin B., 2011. Natural variation in fruit characteristics, seed germination and seedling growth of Adansonia digitata L. in Benin. New Forests, 41: 113-125. https://doi.org/10.1007/s11056-010-9214-z
Baskin C. C., Baskin J. M., 2014. Seeds, Ecology, Biogeography, and Evolution of Dormancy and Germination. Second Edition. USA, Academic Press Inc, 1589 p.
Bationo J. H., Hilou A., Savadogo P. W., Nacoulma O. G., 2012. Content of polyphenolics constituents and the antioxidant and antimicrobial activities of extracts from leaves and fruits of Lannea microcarpa Engl. & K. Krause (Anacardiaceae). Current Research Journal of Biological Sciences, 4 (3): 290-296. https://www.semanticscholar.org/paper/Content-of-Polyphenolics-Constituents-and-the-and-%26-Hilou-Faso/5f8cce19dc18d9daaf45f28e5880e866a2776ede
Bazongo P., Bassolé I. H. N., Nielsen S., Hilou A., Dicko M. H., Shukla V. K. S., 2014. Characteristics, composition and oxydative stability of Lannea microcarpa seed and seed oil. Molecules, 19: 2684-2693. https://doi.org/10.3390/molecules19022684
Beninger C. W., Hosfield G. L., Nair M. G., 1998. Physical characteristics of dry beans in relation to seed coat color genotype. HortScience, 33 (2): 328-329. https://agris.fao.org/agris-search/search.do?recordID=US1997089866
Chao C. T., Krueger R. R., 2007. The date palm (Phoenix dactylifera L.): Overview of biology, uses, and cultivation. HortScience, 42 (2): 1077-1082. https://doi.org/10.21273/HORTSCI.42.5.1077
Daws M. I., Gaméné C. S., Sacande M., Pritchard H. W., Groot S. P. C., Hoekstra F. A., 2004. Desiccation and storage of Lannea macrocarpa seeds from Burkina Faso. In: Sacande M., Jøker D., Dulloo M. E., Thomsen K. A. (eds). Comparative storage biology of tropical tree seeds. Rome, Italy, International Plant Genetic Resources Institute, 32-39. https://www.bioversityinternational.org/e-library/publications/detail/comparative-storage-biology-of-tropical-tree-seeds/
Foley M. E., Fennimore S. A., 1998. Genetic basis for seed dormancy. Seed Science Research, 8 (2): 173-182. https://doi.org/10.1017/S0960258500004086
Garba H. D., Sanusi M., Adamu A. A., Habiba M. M., 2015. Antimicrobial activity of Anogeissus leiocarpus and Lannea microcarpa on some microbes isolated from vegetables in Sokoto. International Conference on Chemical, Environmental and Biological Sciences, 124-128. https://iicbe.org/upload/4284C0315096.pdf
Goudégnon E. O. A., 2018. Uses, potential for domestication and conservation of the indigenous fruit tree Lannea microcarpa Engl. & K. Krause (Anacardiaceae) in Benin, West Africa. PhD Thesis, University of Abomey-Calavi, Republic of Benin, 155 p.
Goudégnon E. O. A., Gouwakinnou N. G., Houessou L. G., Oumorou M., 2016. Fruit and pulp production of the African grape Lannea microcarpa Engl. and K. Krause from dry and humid Sudanian zone in Northern Bénin, West Africa. International Journal of Biological and Chemical Sciences, 10 (3): 1114-1121. https://doi.org/10.4314/ijbcs.v10i3.17
Goudégnon E. O. A., Vodouhê F. G., Gouwakinnou G. N., Salako V. K., Oumorou M., 2017. Ethnic and generational differences in traditional knowledge and the cultural importance of Lannea microcarpa Engl. & K. Krause in the Sudanian savannah of Benin. Bois et Forêts des Tropiques, 334 (4): 49-59. https://doi.org/10.19182/bft2017.334.a31491
Gouwakinnou G. N., Assogbadjo A. E., Lykke A. M., Sinsin B., 2011. Phenotypic variations in fruits and selection potential in Sclerocarya birrea ssp. birrea. Scientia Horticulturae, 129: 777-783. https://doi.org/10.1016/j.scienta.2011.05.041
Haarmeyer D. H., Schumann K., Bernhardt-Römermann M., Wittig R., Thiombiano A., Hahn K., 2013. Human impact on population structure and fruit production of the socio-economically important tree Lannea microcarpa in Burkina Faso. Agroforestry Systems, 87 (6): 1363-1375. https://doi.org/10.1007/s10457-013-9644-7
Hopper N. W., Overholt J. R., Martin J. R., 1979. Effect of cultivar, temperature and seed size on the germination and emergence of soya beans (Glycine max (L.) Merr.). Annals of Botany, 44 (3): 301-308. https://doi.org/10.1093/oxfordjournals.aob.a085733
Idohou R., Assogbadjo A. E., Houehanou T., Glèlè Kakaï R. L., Agbangla C., 2015. Variation in Hyphaene thebaica Mart. fruit: physical characteristics and factors affecting seed germination and seedling growth in Benin (West Africa). Journal of Horticultural Science and Biotechnology, 90 (3): 291-296. https://doi.org/10.1080/14620316.2015.11513185
Keeley J. E., 1991. Seed germination and life history syndromes in the California Chaparral. The Botanical Review, 54: 87-116. https://link.springer.com/article/10.1007/BF02858766
Mabika A. B. M., Loumpangou C. N., Agnaniet H., Moutsamboté J. M., Ouamba J. M., 2013. Les plantes tinctoriales d’Afrique centrale : enquête ethnobotanique et screening phytochimique. Journal of Applied Biosciences, 67 : 5236-5251. https://doi.org/10.4314/jab.v67i0.95045
Marquet M., Jansen P. C. M., 2005. Lannea microcarpa Engl. & K. Krause. In: Jansen P. C. M., Cardon D. (eds). PROTA 3: Dyes and tannins/Colorants et tanins. Wageningen, The Netherlands, PROTA. [CD-Rom]
Mbora A., Barnekov Lilles J. P., Schmidt L., Angaine P., Meso M., Omondi W., et al., 2009. Tree seeds source re-classification manual. Nairobi, Kenya, World Agroforestry Centre, 34 p. https://www.worldagroforestry.org/sites/default/files/Tree_Seed_source_classification_manual.pdf
Mkonda A., Lungu S., Maghembe J. A., Mafongoya P. L., 2003. Fruit and seed-germination characteristics of Strychnos cocculoides an indigenous fruit tree from natural populations in Zambia. Agroforestry Systems, 58: 25-31. https://doi.org/10.1023/A:1025454231002
Mogie M., Latham J. R., Warman E. A., 1990. Genotype-independent aspects of seed ecology in Taraxacum. Oikos, 59: 175-182. https://doi.org/10.2307/3545532
Moyo M., Kulkarni M. G., Finnie J. F., Van Staden J., 2009. After-ripening, light conditions, and cold stratification influence germination of Marula [Sclerocarya birrea (A. Rich.) Hochst. subsp. caffra (Sond.) Kokwaro] seeds. HortScience, 44 (1): 119-124. https://doi.org/10.21273/HORTSCI.44.1.119
Mtambalika K., Munthali C., Gondwe D., Missanjo E., 2014. Effect of seed size of Afzelia quanzensis on germination and seedling growth. International Journal of Forestry Research, vol. 2014, article ID 384565. http://dx.doi.org/10.1155/2014/384565
Murdoch A. J., Ellis R. H., 2000. Chapter 8: Dormancy, viability and longevity. In: Fenner M. Seeds: The Ecology of Regeneration in Plant Communities. 2nd edition. Wallingford, UK, CABI Publishing, 183-214.
Murrinie E. D., Yudono P., Purwantoro A., Sulistyaningsih E., 2019. Effect of postharvest maturation storage at different age fruit on chemical characters fruits and seed of wood-apple (Feronia limonia (L.) Swingle). Journal of Physics: Conference Series, 1464. http://dx.doi.org/10.1088/1742-6596/1464/1/012045
Nagarajan M., Mertia R. S., 2006. Effect of seed size and sowing depth on germination and seedling growth of Colophospermum mopane (Kirk ex Benth.) Kirk ex J. Léon. The Indian Forester, 132: 1007-1012. http://www.indianforester.co.in/index.php/indianforester/article/view/4240/0
Negasu G. B., 2015. Effect of harvesting Jatropha curcas L. seeds at different fruit maturity levels on germination, oil content and seed weight. Net Journal of Agricultural Science, 3 (3): 70-80. http://www.netjournals.org/z_NJAS_15_024.html
Neya O., 2006. Conservation of tree seeds from tropical dry lands. PhD Thesis, Wageningen University, The Netherlands, 166 p. https://edepot.wur.nl/16636
Neya O., Hoekstra F. A., Golovina E. A., 2008. Mechanism of endocarp-imposed constraints of germination of Lannea microcarpa seeds. Seeds Science Research, 18: 13-24. https://doi.org/10.1017/S0960258508890058
Noor N. M., Aizat W. M., Hussin K., Rohani E. R., 2016. Seed characteristics and germination properties of four Garcinia (Clusiaceae) fruit species. Fruits, 71 (4): 199-207. https://doi.org/10.1051/fruits/2016008
Padonou E. A., Teka O., Bachmann Y., Schmidt M., Lykke A. M., Sinsin B., 2015. Using species distribution models to select species resistant to climate change for ecological restoration of bowé in West Africa. African Journal of Ecology, 53: 83-92. https://doi.org/10.1111/aje.12205
Parker I. M., Lopez I., Petersen J. J., Anaya N., Cubilla-Rios L., Potter D., 2010. Domestication syndrome in Caimito (Chrysophyllum cainito L.): Fruit and seed characteristics. Economic Botany, 64 (2): 161-175. https://doi.org/10.1007/s12231-010-9121-4
Picerno P., Mencherini T., Della Loggia R., Meloni M., Sanogo R., Aquino R. P., 2006. An extract of Lannea microcarpa: composition, activity and evaluation of cutaneous irritation in cell cultures and reconstituted human epidermis. Journal of Pharmacy and Pharmacology, 58: 981-988. https://doi.org/10.1211/jpp.58.7.0014
Pinheiro J. C., Bates D. M., 2000. Mixed-effects models in S and SPLUS. Springer, 538 p. https://link.springer.com/book/10.1007/b98882
Pinheiro J., Bates D., DebRoy S., Sarkar D., R Core Team, 2016. nlme: Linear and nonlinear mixed effects models. R package, version 3.1-125. https://www.R-project.org/
R Development Core Team, 2016. R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. https://www.R-project.org/
Sacande M., 2007. Lannea microcarpa Engl. Seed Leaflet, 123, 2 p. https://curis.ku.dk/ws/files/20496596/123net.pdf
Sereme A., Millogo J., Guinko S., Nacro M., 2008. Horticultural cuttings of the wild grape: Lannea microcarpa Engl. & K. Krause. Journal des Sciences, 8 (3): 18-24. https://docplayer.fr/11495396-A-sereme-1-j-millogo-rasolodimby-2-s-guinko-2-m-nacro-2-1-institut-de-recherche-en-sciences-appliquees-et-technologies.html
Sereme A., Millogo J., Guinko S., Nacro M., 2014. Micropropagation of a West African wild grape (Lannea microcarpa). International Journal of Biological and Chemical Science, 8: 862-870. https://doi.org/10.4314/ijbcs.v8i3.3
Shoab M., Tanveer A., Khaliq A., Ali H. H., 2012. Effect of seed size and ecological factors on germination of Emex spinosa. World Applied Sciences Journal, 17 (8): 964-969. https://www.semanticscholar.org/paper/Effect-of-Seed-Size-and-Ecological-Factors-on-of-Shoab-Tanveer/dc6e68160de08ffcc358a6eb99802004cd92d07e
Sinsin B., Kampmann D. (eds), 2010. Biodiversity Atlas of West Africa, Volume I: Benin. Cotonou and Frankfurt/Main, Biota, 726 p. https://www.uni-frankfurt.de/47671063/Generic_47671063.pdf
Souza M. L., Fagundes M., 2014. Seed size as key factor in germination and seedling development of Capaifera langsdorffii (Fabaceae). American Journal of Plant Sciences, 5: 2566-2573. https://doi.org/10.4236/ajps.2014.517270
Tchokponhoué D. A., Achigan-Dako E. G., N’Danikou S., Nyadanu D., Kahane R., Houéto J., et al., 2020. Phenotypic variation, functional traits repeatability and core collection inference in Synsepalum dulcificum (Schumach & Thonn.) Daniell reveals the Dahomey Gap as a centre of diversity. Scientific Reports, 10 (1): 1-17. https://doi.org/10.1038/s41598-020-76103-4
Tchokponhoué D. A., N’Danikou S., Fassinou N. V. H., Nyadanu D., Kahane R., Odindo A. O., et al., 2021. Use Patterns, Knowledge Diversity and Drivers for the Cultivation of the Miracle Plant [Synsepalum dulcificum (Schumach & Thonn.) Daniell] in Benin and Ghana. Plants, 10 (11): 2253. https://doi.org/10.3390/plants10112253
Vodouhê G. F., Coulibaly O., Greene C., Sinsin B., 2009. Estimating local values of non-timber forest products to Pendjari Biosphere Reserve dwellers in Benin. Economic Botany, 63 (4): 397-412. https://doi.org/10.1007/s12231-009-9102-7
Wiehle M., Prinz K., Kehlenbeck K., Goenster S., Mohamed S. A., Finkeldey R., et al., 2014. The African Baobab (Adansonia digitata, Malvaceae): Genetic Resources in neglected populations of the Nuba Mountains, Sudan. American Journal of Botany, 101 (9): 1498-1507. https://doi.org/10.3732/ajb.1400198
Yunus M. M., Zuru A. A., Faruq U. Z., Aliero A. A., 2013. Assessment of physicochemical properties of biodiesel from African grapes (Lannea microcarpa Engl. & K. Krause). Nigeria Journal of Basic and Applied Science, 21: 127-130. https://doi.org/10.4314/njbas.v21i2.7
Téléchargements
Numéro
Rubrique
-
Résumé894
-
PDF-Open access 530
Reçu
Publié
Comment citer
Licence
(c) Tous droits réservés CIRAD - Bois et Forêts des Tropiques 2022
Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
Les articles sont publiés en Accès libre. Ils sont régis par le Droit d'auteur et par les licenses créative commons. La license utilisée est Attribution (CC BY 4.0).