Séquestration du carbone et provision d’autres services écosystémiques des parcs agroforestiers à karité au Burkina Faso

Auteurs

Jules Bayala

DOI :

https://doi.org/10.19182/bft2023.356.a36903

Mots-clés


agrisylviculture, biomasse, carbone, contrôle de l’érosion, climat, Burkina Faso.

Résumé

L'agroforesterie joue un rôle important dans l'atténuation du climat et la provison d’autres services ecosystemiques. La forme la plus repandue de cette agroforesterie pour l’Afrique de l’Ouest est constituée par les parcs agroforestiers avec karité (Vitellaria paradoxa) comme espèce dominante. En depit de cette importance, le potentiel de séquestration du carbone des parcs agroforestiers à karité a été très peu documenté au Burkina Faso. La présente étude a pour objectif d’évaluer la contribution des parcs agroforestiers à karité à la séquestration du carbone et autres services écosystémiques dans ce pays. Pour cela, une enquête auprès des ménages et des inventaires ont été réalisés dans trois secteurs phytogeographiques au Burkina Faso. Plus de 89 % des personnes enquetées ont le karité dans leurs champs. Selon les résultats d’enquêtes, la plante fournit du bois de chauffe et du bois d'œuvre. Elle améliore également la fertilité du sol et intervient dans le contrôle l'érosion du sol. La densité du karité dans les champs varie entre 32 et 45 individus par hectare avec une hauteur moyenne de 7,93 ± 0, 22 m et un diamètre à hauteur de poitrine (DBH) de 31,9 0± 1,37 cm. La biomasse aérienne des individus de V. paradoxa présents dans les différents parcs varie entre 15,52 et 42,8 Mg/ha (soit une moyenne de 25,69 ± 8,14 Mg/ha ou 12,85 Mg de carbone par hectare). Nos resultats ont donc montré que les parcs agroforestiers à karité contribuent de manière significative à la séquestration du carbone et que l'ampleur de ces bénéfices varie avec le DBH des arbres et les secteurs phytogeographiques. Nous avons constaté que les individus ont tous un DBH> 24 cm et qu'il n'y a donc pas de jeunes sujets. Il y a donc nécessité de régénération qui peut se faire par régénération naturelle assistée ou par plantation ou une combinaison des deux.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Ahlström A., Raupach M. R., Schurgers G, Smith B., Arneth A., et al., 2015. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science, 348: 895-899.

https://doi.org/10.1126/science.aaa1668

Albrecht A., Kandji S. T., 2003. Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems & Environment, 99: 15-27. https://doi.org/10.1016/S0167-8809(03)00138-5

Aleza K., Wala K., Bayala J., Villamor G. B., Dourma M., et al., 2015. Population structure and regeneration status of Vitellaria Paradoxa (C. F. Gaertner) under different land management regimes in Atacora department, Benin. Agroforestry Systems, 89: 511-523. https://doi.org/10.1007/s10457-015-9787-9

Arevalo J., 2016. Improving woodfuel governance in Burkina Faso: The experts׳ assessment. Renewable and Sustainable Energy Reviews, 57: 1398-1408. https://doi.org/10.1016/j.rser.2015.12.178

Bargués‐Tobella A., Hasselquist N. J., Bazié H. R., Bayala J., Laudon H., et al., 2020. Trees in African drylands can promote deep soil and groundwater recharge in a future climate with more intense rainfall. Land Degradation & Development, 31: 81-95. https://doi.org/10.1002/ldr.3430

Bargués Tobella A., Reese H., Almaw A., Bayala J., Malmer A., et al., 2014. The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resource Research, 50: 3342-3354. https://doi.org/10.1002/2013WR015197

Bayala J., Balesdent J., Marol C., Zapata F., Teklehaimanot Z., et al., 2006. Relative contribution of trees and crops to soil carbon content in a parkland system in Burkina Faso using variations in natural 13C abundance. Nutrient Cycling in Agroecosystems, 76: 193-201. https://doi.org/10.1007/s10705-005-1547-1

Bayala J., Ouedraogo S. J., Teklehaimanot Z., 2008. Rejuvenating indigenous trees in agroforestry parkland systems for better fruit production using crown pruning. Agroforestry Systems, 72: 187-194. https://doi.org/10.1007/s10457-007-9099-9

Bayala J., Sanou J., Teklehaimanot Z., Kalinganire A., Ouédraogo S. J., 2014. Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Current Opinion in Environmental Sustainability, 6: 28-34. https://doi.org/10.1016/j.cosust.2013.10.004

Bayala J., Sanou J., Bazié H. R., Coe R., Kalinganire A., et al., 2020. Regenerated trees in farmers’ fields increase soil carbon across the Sahel. Agroforestry Systems, 94: 401-415. https://doi.org/10.1007/s10457-019-00403-6

Bazié P., Ky-Dembele C., Jourdan C., Roupsard O., Zombre G., et al., 2019. Synchrony in the phenologies of fine roots and leaves of Vitellaria paradoxa in different land uses of Burkina Faso. Agroforestry Systems, 93: 449-460. https://doi.org/10.1007/s10457-017-0135-0

Bennett A. C., McDowell N. G., Allen C. D., Anderson-Teixeira K. J., 2015. Larger trees suffer most during drought in forests worldwide. Nature Plants, 1: 15139. https://doi.org/10.1038/nplants.2015.139

Binam J. N., Place F., Kalinganire A., Hamade S., Boureima M., et al., 2015. Effects of farmer managed natural regeneration on livelihoods in semi-arid West Africa. Environmental Economics and Policy Studies, 17: 543-575. https://doi.org/10.1007/s10018-015-0107-4

Blaser W. J., Oppong J., Hart S. P., Landolt J., Yeboah E., et al., 2018. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nature Sustainability, 1: 234-239. https://doi.org/10.1038/s41893-018-0062-8

Boffa J.-M., 1999. Agroforestry parklands in sub-Saharan Africa. Rome, Italy, FAO. https://www.fao.org/3/x3940e/X3940E00.htm#TOC

Boffa J.-M., 2015. Opportunities and challenges in the improvement of the shea (Vitellaria paradoxa) resource and its management. Nairobi, Kenya, World Agroforestry Centre, 76 p. https://apps.worldagroforestry.org/downloads/Publications/PDFS/B17800.pdf

Bondé L., 2019. Distribution, production fruitière et potentiel socio-économique de Tamarindus indica L. et de Vitellaria paradoxa C.F. Gaertn. au Burkina Faso. Thèse de doctorat, Université Joseph Ki-Zerbo, Burkina Faso, 182 p.

Bonkoungou E. G., 2004. L’arbre à karité (Vitellaria paradoxa) et les parcs à karité en Afrique. In : Atelier international sur le traitement, la valorisation et le commerce du karité en Afrique. FAO et CFC, 54-63. https://www.fao.org/publications/card/fr/c/8dce81da-8d95-580d-b9f8-2c50a5bdb8ee

Bonkoungou E. G., Ayuk E. T., Depommier D., Morant P., Ouadba J. M., 1994. Les parcs agroforestiers des zones semi-arides d'Afrique de l'Ouest : conclusions et recommandations. Symposium international sur les parcs agroforestiers, Ouagadougou, Burkina Faso, 25-27 octobre 1993, Nairobi, ICRAF, 226 p. https://agritrop.cirad.fr/325919/

Cerda R., Deheuvels O., Calvache D., Niehaus L., Saenz Y., et al., 2014. Contribution of cocoa agroforestry systems to family income and domestic consumption: looking toward intensification. Agroforestry Systems, 88: 957-981. https://doi.org/10.1007/s10457-014-9691-8

Chabi A., Lautenbach S., Orekan V. O. A., Kyei-Baffour N., 2016. Allometric models and aboveground biomass stocks of a West African Sudan Savannah watershed in Benin. Carbon Balance and Management, 11: 16. https://doi.org/10.1186/s13021-016-0058-5

Cyamweshi A. R., Kuyah S., Mukuralinda A., Muthuri C. W., 2021. Potential of Alnus acuminata based agroforestry for carbon sequestration and other ecosystem services in Rwanda. Agroforestry Systems, 95: 1125-1135. https://link.springer.com/article/10.1007/s10457-021-00619-5

Dagnelie P., 1998. Statistique théorique et appliquée. De Boeck Université, 516 p.

Dietz J., Kuyah S., 2011. Guidelines for establishing regional allometric equations for biomass estimation through destructive sampling. Nairobi, Kenya, World Agroforestry Center (ICRAF).

Dimobe K., Goetze D., Ouédraogo A., Mensah S., Akpagana K., et al., 2018a. Aboveground biomass allometric equations and carbon content of the shea butter tree (Vitellaria paradoxa C.F. Gaertn., Sapotaceae) components in Sudanian savannas (West Africa). Agroforestry Systems, 93: 1119-1132. https://doi.org/10.1007/s10457-018-0213-y

Dimobe K., Tondoh J. E., Weber J. C., Bayala J., Ouédraogo K., et al., 2018b. Farmers’ preferred tree species and their potential carbon stocks in southern Burkina Faso: Implications for biocarbon initiatives. PLoS One, 13: 1-21. https://doi.org/10.1371/journal.pone.0199488

Dimobe K., Kouakou J., Tondoh J., Zoungrana B., Forkuor G., et al., 2018c. Predicting the Potential Impact of Climate Change on Carbon Stock in Semi-Arid West African Savannas. Land, 7: 124. https://www.mdpi.com/2073-445X/7/4/124#

Dimobe K., Ouédraogo A., Ouédraogo K., Goetze D., Stein K., et al., 2020. Climate change reduces the distribution area of the shea tree (Vitellaria paradoxa C.F. Gaertn.) in Burkina Faso. Journal of Arid Environments, 181: 104237. https://doi.org/10.1016/j.jaridenv.2020.104237

Enquist B. J., West G. B., Charnov E. L., Brown J. H., 1999. Allometric scaling of production and life-history variation in vascular plants. Nature, 401: 907-911. https://doi.org/10.1038/44819

Fischer C., Kleinn C., Fehrmann L., Fuchs H., Panferov O., 2011. A national level forest resource assessment for Burkina Faso – A field based forest inventory in a semiarid environment combining small sample size with large observation plots. Forest Ecology and Management, 262: 1532-1540. https://doi.org/10.1016/j.foreco.2011.07.001

Gaisberger H., Kindt R., Loo J., Schmidt M., Bognounou F., et al., 2017. Spatially explicit multi-threat assessment of food tree species in Burkina Faso: A fine-scale approach. PLoS One, 12: e0184457. https://doi.org/10.1371/journal.pone.0184457

Gnangle P. C., Egah J., Baco M. N., Gbemavo C. D. S. J., Kakaï R. G., et al., 2012. Perceptions locales du changement climatique et mesures d’adaptation dans la gestion des parcs à karité au Nord-Bénin. International Journal of Biological and Chemical Sciences, 6: 136-149. https://doi.org/10.4314/ijbcs.v6i1.13

Ilstedt U., Bargués Tobella A., Bazié H. R., Bayala J., Verbeeten E., et al., 2016. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Scientific Reports, 6: 21930. https://doi.org/10.1038/srep21930

Kaboré S. A., Bastide B., Traoré S., Boussim J. I., 2012. Dynamique du karité, Vitellaria paradoxa, dans les systèmes agraires du Burkina Faso. Bois et Forêts des Tropiques, 313 : 47-59. https://doi.org/10.19182/bft2012.313.a20496

Kelly B. A., Gourlet-Fleury S., Bouvet J.-M., 2007. Impact of agroforestry practices on the flowering phenology of Vitellaria paradoxa in parklands in southern Mali. Agroforestry Systems 71: 67-75. https://doi.org/10.1007/s10457-007-9074-5

Kim D.-G., Kirschbaum M. U. F., Beedy T. L., 2016. Carbon sequestration and net emissions of CH4 and N2O under agroforestry: Synthesizing available data and suggestions for future studies. Agriculture, Ecosystems & Environment, 226: 65-78. https://doi.org/10.1016/j.agee.2016.04.011

Kinda P. T., Zerbo P., Guenné S., Compaoré M., Ciobica A., et al., 2017. Medicinal plants used for neuropsychiatric disorders treatment in the Hauts Bassins region of Burkina Faso. Medicines, 4: 32. https://doi.org/10.3390/medicines4020032

Kirby K. R., Potvin C., 2007. Variation in carbon storage among tree species: implications for the management of a small-scale carbon sink project. Forest Ecology and Management, 246: 208-221. https://doi.org/10.1016/j.foreco.2007.03.072

Kuyah S., Öborn I., Jonsson M., Dahlin A. S., Barrios E., et al., 2016. Trees in agricultural landscapes enhance provision of ecosystem services in Sub-Saharan Africa. International Journal of Biodiversity Science, Ecosystem Services & Management, 12: 255-273. https://doi.org/10.1080/21513732.2016.1214178

Kuyah S., Whitney C. W., Jonsson M., Sileshi G. W., Öborn I., et al., 2019a. Agroforestry delivers a win-win solution for ecosystem services in sub-Saharan Africa. A meta-analysis. Agronomy for Sustainable Development, 39: 47. https://doi.org/10.1007/s13593-019-0589-8

Kuyah S., Sileshi G. W., Luedeling E., Akinnifesi F. K., Whitney C. W., et al., 2019b. Potential of agroforestry to enhance livelihood security in Africa. In: Dagar J. C., Gupta S. R., Teketay D. (eds). Agroforestry for Degraded Landscapes. Springer, 135-167. https://link.springer.com/chapter/10.1007/978-981-15-4136-0_4

Lamien N., Ouédraogo S. J., Diallo O. B., Guinko S., 2004. Productivité fruitière du karité (Vitellaria paradoxa Gaertn. C.F., Sapotaceae) dans les parcs agroforestiers traditionnels au Burkina Faso. Fruits, 59 : 423-429. https://revues.cirad.fr/index.php/fruits/article/view/35862

Leakey R. R. B., Tientcheu Avana M.-L., Awazi N. P., Assogbadjo A. E., Mabhaudhi T., et al., 2022. The Future of Food: Domestication and Commercialization of Indigenous Food Crops in Africa over the Third Decade (2012-2021). Sustainability, 14: 2355. https://doi.org/10.3390/su14042355

Lovett P. N., Haq N., 2000. Evidence for anthropic selection of the Sheanut tree (Vitellaria paradoxa). Agroforestry Systems, 48: 273-288. https://doi.org/10.1023/A:1006379217851

Luedeling E., Neufeldt H., 2012. Carbon sequestration potential of parkland agroforestry in the Sahel. Climatic Change, 115: 443-461. https://doi.org/10.1007/s10584-012-0438-0

Mbow C., Smith P., Skole D., Duguma L., Bustamante M., 2014a. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Current Opinion in Environmental Sustainability, 6: 8-14. https://doi.org/10.1016/j.cosust.2013.09.002

Mbow C., Van Noordwijk M., Luedeling E., Neufeldt H., Minang P. A., Kowero G., 2014b. Agroforestry solutions to address food security and climate change challenges in Africa. Current Opinion in Environmental Sustainability, 6: 61-67. https://doi.org/10.1016/j.cosust.2013.10.014

Mensah S., Noulèkoun F., Ago E. E., 2020. Aboveground tree carbon stocks in West African semi-arid ecosystems: Dominance patterns, size class allocation and structural drivers. Global Ecology and Conservation, 24: e01331. https://doi.org/10.1016/j.gecco.2020.e01331

Meyer T., D’Odorico P., Okin G. S., Shugart H. H., Caylor K. K., et al., 2014. An analysis of structure: biomass structure relationships for characteristic species of the western Kalahari, Botswana. African Journal of Ecology, 52: 20-29. https://doi.org/10.1111/aje.12086

Mononen K., Pitkänen S., 2016. Sustainable fuelwood management in West Africa. University of Eastern Finland, 150 p. https://www.oph.fi/sites/default/files/documents/sustainable-fuelwood-management-in-west-africa_4.pdf

Mutuo P. K., Cadisch G., Albrecht A., Palm C. A., Verchot L., 2005. Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutrient Cycling in Agroecosystems, 71: 43-54. https://doi.org/10.1007/s10705-004-5285-6

Ndoli A., Baudron F., Schut A. G. T., Mukuralinda A., Giller K. E., 2017. Disentangling the positive and negative effects of trees on maize performance in smallholdings of Northern Rwanda. Field Crops Research, 213: 1-11. https://doi.org/10.1016/j.fcr.2017.07.020

Nicolas J.-P., 2018. Plantes médicinales pour le soin de la famille au Burkina Faso. Quimper, France, Jardins du Monde, 268 p. https://duddal.org/s/bibnum-promap/item/3885#?c=0&m=0&s=0&cv=0

Ojo O., Kengne M. H. K., Fotsing M. C., Mmutlane E. M., Ndinteh D. T., 2021. Traditional uses, phytochemistry, pharmacology and other potential applications of Vitellaria paradoxa Gaertn. (Sapotaceae): A review. Arabian Journal of Chemistry, 14: 103213. https://doi.org/10.1016/j.arabjc.2021.103213

Ouoba H. Y., Bastide B., Coulibaly-lingani P., Albert S., Issaka J., 2018. Connaissances et perceptions des producteurs sur la gestion des parcs à Vitellaria paradoxa C. F. Gaertn. (karité) au Burkina Faso. International Journal of Biological and Chemical Sciences, 12: 2766-2783. https://doi.org/10.4314/ijbcs.v12i6.23

Ouoba Y. H., Bastide B., Coulibaly-Lingani P., Kaboré S. A., Yaméogo-Gaméné S. C., et al., 2020. Régénération assistée du karité (Vitellaria paradoxa C. F. Gaertn.) dans les parcs agroforestiers au Burkina Faso. European Scientific Journal, 16 (40) : 23-48. https://doi.org/10.19044/esj.2020.v16n40p23

Pouliot M., 2012. Contribution of “Women’s Gold” to West African Livelihoods: The Case of Shea (Vitellaria paradoxa) in Burkina Faso. Economic Botany, 66: 237-248. https://doi.org/10.1007/s12231-012-9203-6

Poulter B., Frank D., Ciais P., Myneni R.B., Andela N., et al., 2014. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature, 509: 600-603. https://doi.org/10.1038/nature13376

Ræbild A., Larsen A. S., Jensen J. S., Ouedraogo M., De Groote S., et al., 2011. Advances in domestication of indigenous fruit trees in the West African Sahel. New Forests, 41: 297-315. https://doi.org/10.1007/s11056-010-9237-5

Sanogo K., Gebrekirstos A., Bayala J., Villamor G. B., Kalinganire A., et al., 2016. Potential of dendrochronology in assessing carbon sequestration rates of Vitellaria paradoxa in southern Mali, West Africa. Dendrochronologia, 40: 26-35. https://doi.org/10.1016/j.dendro.2016.05.004

Sanogo K., Bayala J., Villamor G. B., Dodiomon S., van Noordwijk M., 2021. A non-destructive method for estimating woody biomass and carbon stocks of Vitellaria paradoxa in southern Mali, West Africa. Agroforestry Systems, 95: 135-150. https://doi.org/10.1007/s10457-020-00578-3

Sanou H., Kambou S., Teklehaimanot Z., Dembélé M., Yossi H., et al., 2004. Vegetative propagation of Vitellaria paradoxa by grafting. Agroforestry Systems, 60: 93-99. https://doi.org/10.1023/B:AGFO.0000009408.03728.46

Takimoto A., Nair P. K. R., Nair V. D., 2008. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agriculture, Ecosystems & Environment, 125: 159-166. http://dx.doi.org/10.1016/j.agee.2007.12.010

Tanyi T. F., Etongo D., Abdoulaye R., 2018. Assessing the sustainability of fuelwood production and its potential impact on REDD+ in Burkina Faso. International Journal of Environment Studies, 75: 186-200. https://doi.org/10.1080/00207233.2017.1386435

van Noordwijk M., Bayala J., Hairiah K., Lusiana B., Muthuri C., et al., 2014. Agroforestry solutions for buffering climate variability and adapting to change. In: Fuhrer J., Gregory P. J. (eds). Climate change impact and adaptation in agricultural systems. Wallingford, UK, CABI International, 216-232. https://books.google.fr/books?hl=fr&lr=&id=FseWBAAAQBAJ&oi=fnd&pg=PA216&ots=YEHBkEeSlU&sig=JQF1jHoleKa3VTi0cBsKLR816S0#v=onepage&q&f=false

Van Pelt R., Sillett S. C., Kruse W. A., Freund J. A., Kramer R. D., 2016. Emergent crowns and light-use complementarity lead to global maximum biomass and leaf area in Sequoia sempervirens forests. Forest Ecology and Management, 375: 279-308. https://doi.org/10.1016/j.foreco.2016.05.018

Zizka A., Thiombiano A., Dressler S., Nacoulma B. M. I., Ouédraogo A., et al., 2015. Traditional plant use in Burkina Faso (West Africa): a national-scale analysis with focus on traditional medicine. Journal of Ethnobiology and Ethnomedicine, 11: 9. https://doi.org/10.1186/1746-4269-11-9

Téléchargements

Métriques
Vues/Téléchargements
  • Résumé
    920
  • PDF
    1348

Reçu

2022-06-21

Publié

2023-09-04

Comment citer

Dimobe, K., & Bayala, J. (2023). Séquestration du carbone et provision d’autres services écosystémiques des parcs agroforestiers à karité au Burkina Faso . BOIS & FORETS DES TROPIQUES, 356, 67–80. https://doi.org/10.19182/bft2023.356.a36903