Effets à long terme de l’ombrage et des niveaux d’intrants sur les rendements de café dans la région Pacifique du Nicaragua

Auteurs

Arlene LÓPEZ-SAMPSON
CATIE Cartago Turrialba 30501 Costa Rica
Norvin SEPÚLVEDA
CATIE Nicaragua Oficina Nacional A.P. 4830 Km 8.5 Carretera a Masaya Edificio MAGFOR Managua Nicaragua
Mirna BARRIOS
CATIE Nicaragua Oficina Nacional A.P. 4830 Km 8.5 Carretera a Masaya Edificio MAGFOR Managua Nicaragua
Eduardo SOMARRIBA
CATIE Cartago Turrialba 30501 Costa Rica
Rodolfo MUNGUÍA
Universidad Nacional Agraria Costado Noroeste Camino de Oriente Managua Nicaragua
Pedro MORAGA
Centro Nicaragüense de Estudios Cooperativos-Caja Rural Nacional Nicaragua
Alejandro PONCE
Centro de Desarrollo Tecnológico Instituto Nicaragüense de Tecnología Agropecuaria 12 Avenue Sureste Managua 14005 Nicaragua
Luis OROZCO-AGUILAR
Lutheran World Relief PO Box 17061 Baltimore, MD 21297-1061 USA
Elvin NAVARRETE
CATIE Nicaragua Oficina Nacional A.P. 4830 Km 8.5 Carretera a Masaya Edificio MAGFOR Managua Nicaragua
Ledis NAVARRETE
CATIE Nicaragua Oficina Nacional A.P. 4830 Km 8.5 Carretera a Masaya Edificio MAGFOR Managua Nicaragua

DOI :

https://doi.org/10.19182/bft2020.346.a36292

Mots-clés


rendement de café, bois d'œuvre, système sous ombrage, Inga laurina, Simarouba glauca, Tabebuia rosea, conventionnel intensif, biologique intensif, agroforesterie, Nicaragua

Résumé

La pertinence et la rentabilité de la culture du café en Amérique centrale sont menacées par des infestations de ravageurs et des maladies, par la fluctuation des cours et par le changement climatique. La culture du café sous ombrage approprié serait une des pratiques les plus prometteuses dans une optique de développement durable et d'adaptation de la caféiculture en zone marginale. La présente étude vise à enregistrer et à comparer    les rendements de cerises de café sur une période de 10 ans, sous l'ombrage d'essences fixatrices d'azote et d'essences à bois d'œuvre dans le cadre de différents systèmes d'agroforesterie (culture conventionnelle / culture biologique) sur site suboptimal. Pour certaines années de la période d'étude, des écarts de production significatifs sont constatés entre le système conventionnel et différentes combinaisons avec intrants biologiques sous différents types d'ombrage. Les systèmes de culture intensive en plein soleil sont les plus productifs en termes de rendement de café, suivis des systèmes sous ombrage d'essences à bois d'œuvre. Il est intéressant de noter que, quel que soit le système de gestion (conventionnel intensif ou biologique intensif), les systèmes de culture sous ombrage d'essences légumineuses (Inga laurina (Sw.) Willd. + Simarouba glauca DC.), sont les moins productifs en termes de rendement de café. Sur l'ensemble des placettes étudiées, les essences à bois d'œuvre Simarouba glauca et Tabebuia rosea (Bertol.) DC. montrent une bonne croissance, avec un accroissement moyen en diamètre de 2,5-3,3 cm/an (à 12 ans d'âge). Les systèmes d'agroforesterie en plein soleil et sous ombrage d'essences à bois d'œuvre génèrent les revenus bruts moyens les plus élevés. Globalement, les régimes intensifs sont les plus coûteux en gestion bien qu’ils aient les meilleures performances en termes de rendement de café.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Références bibliographiques / References / Referencias bibliográficas

Avelino J., Cristancho M., Georgiou S., Imbach P., Aguilar L., Bornemann G., et al., 2015. The coffee rust crises in Colombia and Central America (2008-2013): impacts, plausible causes and proposed solutions. Food Security, 7: 303-321. https://doi.org/10.1007/s12571-015-0446-9

Baca M., Laderach P., Haggar J., Schroth G., Ovalle O., 2014. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in Mesoamerica. PLoS One 9, e88463. https://doi.org/10.1371/journal.pone.0088463

Beer J., Muschler R., Kass D., Somarriba E., 1998. Shade management in coffee and cacao plantations. Agroforestry Systems, 38: 139-164. https://doi.org/10.1007/978-94-015-9008-2_6

Bonilla G., Somarriba E., 2000. Tipologías cafetaleras del Pacífico de Nicaragua. Agroforestería en las Américas, 7: 27-29.

Bosselmann A. S., Dons K., Oberthur T., Olsen C.S., Ræbild A., Usma H., 2009. The influence of shade trees on coffee quality in small holder coffee agroforestry systems in Southern Colombia. Agriculture, Ecosystems & Environment, 129: 253-260. https://doi.org/10.1016/j.agee.2008.09.004

Bouroncle C., Imbach P., Rodríguez-Sánchez B., Medellín C., Martinez-Valle A. P. L., 2017. Mapping climate change adaptive capacity and vulnerability of smallholder agricultural livelihoods in Central America: ranking and descriptive approaches to support adaptation strategies. Climatic Change, 141: 123-137. https://doi.org/10.1007/s10584-016-1792-0

Carr M. K. V., Lockwood G., 2011. The water relations and irrigation requirements of cocoa (Theobroma Cacao L.): a review. Experimental Agriculture, 47: 653-676. https://doi.org/10.1017/s0014479711000421

Cordero J., Mesén F., Montero M., Stewart J., Boshier D., Chamberlain J., et al., 2003. Descripciones de especies de árboles nativos de América Central. In: Cordero J., Boshier D. H. (eds.). Árboles de Centroamérica: un manual para extensionistas. Turrialba, Costa Rica, Editorial OFI, CATIE, 621-624.

Craipeau C., 1992. El cafe en Nicaragua. Anuario de Estudios Centroamericanos, 18: 41-69.

DaMatta F. M., 2004. Ecophysiological constraints on the production of shaded and unshaded coffee: a review. Field Crops Research, 86: 99-114. https://doi.org/10.1016/j.fcr.2003.09.001

de Sousa K., van Zonneveld M., Holmgren M., Kindt R., Ordonez J. C., 2019. The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Scientific Reports 9, 8828. https://doi.org/10.1038/s41598-019-45491-7

de Sousa K., van Zonneveld M., Imbach P., Casanoves F., Kindt R., Ordoñez J., 2017. Atlas de aptitud de especies agroforestales claves bajo climas futuros en América Central. Turrialba, Costa Rica, ICRAF, 257 p.

Di Rienzo J., Casanoves F., Balzarini M., Gonzalez L., Tablada M., Robledo C. W., 2011. InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Ehrenbergerová L., Šeptunová Z., Habrová H., Puerta Tuesta R. H., Matula R., 2019. Shade tree timber as a source of income diversification in agroforestry coffee plantations. Bois et Forêts des Tropiques, 342: 93-103. https://doi.org/10.19182/bft2019.342.a31812

Ehrenbergerová L., Šenfeldr M., Habrová H., 2018. Impact of tree shading on the microclimate of a coffee plantation: a case study from the Peruvian Amazon. Bois et Forêts des Tropiques, 334: 13-22. https://doi.org/10.19182/bft2017.334.a31488

Gay C., Estrada F., Conde C., Eakin H., Villers L., 2006. Potential impacts of climate change on agriculture: a case study of coffee production in Veracruz, Mexico. Climatic Change, 79: 259-288. https://doi.org/10.1007/s10584-006-9066-x

Guhl A., 2008. Coffee production intensification and landscape change in Colombia, 1970-2002. In: Millington A., Jepson W. (eds). Land-Change Science in the Tropics. Boston, MA, USA, Springer, 93-116. https://doi.org/10.1007/978-0-387-78864-7_6

Haggar J., Barrios M., Bolaños M., Merlo M., Moraga P., Munguía R., et al., 2011. Coffee agroecosystem performance under full sun, shade, conventional and organic management regimes in Central America. Agroforestry Systems, 82: 285-301. https://doi.org/10.1007/s10457-011-9392-5

Harvey C. A., Martínez-Rodríguez M. R., Cárdenas J. M., Avelino J., Rapidel B., Vignola R., et al., 2017. The use of Ecosystem-based Adaptation practices by smallholder farmers in Central America. Agriculture, Ecosystems & Environment, 246: 279-290. https://doi.org/10.1016/j.agee.2017.04.018

Jezeer R. E., Santos M. J., Boot R. G. A., Junginger M., Verweij P. A., 2018. Effects of shade and input management on economic performance of small-scale Peruvian coffee systems. Agricultural Systems, 162: 179-190. https://doi.org/10.1016/j.agsy.2018.01.014

Jha S., Bacon C. M., Philpott S. M., Ernesto Méndez V., Läderach P., Rice R. A., 2014. Shade coffee: Update on a disappearing refuge for biodiversity. BioScience, 64: 416-428. https://doi.org/10.1093/biosci/biu038

Jose S., 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems, 76: 1-10. https://doi.org/10.1007/s10457-009-9229-7

Laderach P., Lundy M., Jarvis A., Ramirez J., Portilla E. P., Schepp K., Eitzinger A., 2011. Predicted impact of climate change on coffee supply chains. In: Leal Filho W. (ed.). The Economic, Social and Political Elements of Climate Change. Berlin, Heidelberg, Germany, Springer, 703-723. https://doi.org/10.1007/978-3-642-14776-0_42

Läderach P., Ramirez-Villegas J., Navarro-Racines C., Zelaya C., Martinez-Valle A., Jarvis A., 2017. Climate change adaptation of coffee production in space and time. Climatic Change, 141: 47-62. https://doi.org/10.1007/s10584-016-1788-9

López-Sánchez E., Musálem M. A., 2007. Sistemas agroforestales con cedro rojo, cedro nogal y primavera como alternativa para el establecimiento de plantaciones comerciales en Los Tuxtlas, Veracruz, Mexico. Revista Chapingo, Serie Ciencias Forestales y del Ambiente, 13: 59-66. http://www.scielo.org.mx/pdf/rcscfa/v13n1/2007-4018-rcscfa-13-01-59.pdf

López A., Orozco L., Somarriba E., Bonilla G., 2003. Tipologías y manejo de fincas cafetaleras en los municipios de San Ramón y Matagalpa, Nicaragua. Agroforestería en las Américas, 10: 74-79. http://hdl.handle.net/11554/6856

Lyngbæk A. E., Muschler R. G., Sinclair F. L., 2001. Productivity and profitability of multistrata organic versus conventional coffee farms in Costa Rica. Agroforestry Systems, 53: 205-213. https://doi.org/10.1023/a:1013332722014

Magrach A., Ghazoul J., 2015. Climate and pest-driven geographic shifts in global coffee production: implications for forest cover, biodiversity and carbon storage. PLoS One, 10: e0133071. https://doi.org/10.1371/journal.pone.0133071

Mbow C., Smith P., Skole D., Duguma L., Bustamante M., 2014. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Current Opinion in Environmental Sustainability, 6: 8-14. https://doi.org/10.1016/j.cosust.2013.09.002

Méndez V. E., Bacon C. M., Olson M., Petchers S., Herrador D., Carranza C., et al., 2010. Effects of fair trade and organic certifications on small-scale coffee farmer households in Central America and Mexico. Renewable Agriculture and Food Systems, 25: 236-251. https://doi.org/10.1017/s1742170510000268

Méndez V. E., Shapiro E. N., Gilbert G. S., 2009. Cooperative management and its effects on shade tree diversity, soil properties and ecosystem services of coffee plantations in western El Salvador. Agroforestry Systems, 76: 111-126. https://doi.org/10.1007/s10457-009-9220-3

Moço M. K. S., Gama-Rodrigues E. F., Gama-Rodrigues A. C., Machado R. C. R., Baligar V. C., 2010. Relationships between invertebrate communities, litter quality and soil attributes under different cacao agroforestry systems in the south of Bahia, Brazil. Applied Soil Ecology, 46: 347-354. https://doi.org/10.1016/j.apsoil.2010.10.006

Moguel P., Toledo V. M., 1999. Biodiversity Conservation in Traditional Coffee Systems of Mexico. Conservation Biology, 13: 11-21. https://doi.org/10.1046/j.1523-1739.1999.97153.x

Motisi N., Ribeyre F., Poggi S., 2019. Coffee tree architecture and its interactions with microclimates drive the dynamics of coffee berry disease in coffee trees. Scientific Reports 9, 2544. https://doi.org/10.1038/s41598-019-38775-5

Noponen M. R. A., Haggar J. P., Edwards-Jones G., Healey J. R., 2013. Intensification of coffee systems can increase the effectiveness of REDD mechanisms. Agricultural Systems, 119: 1-9. https://doi.org/10.1016/j.agsy.2013.03.006

Ovalle-Rivera O., Laderach P., Bunn C., Obersteiner M., Schroth G., 2015. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PLoS One, 10: e0124155. https://doi.org/10.1371/journal.pone.0124155

Padovan M. P., Cortez V. J., Navarrete L. F., Navarrete E. D., Deffner A. C., Centeno L. G., et al., 2015. Root distribution and water use in coffee shaded with Tabebuia rosea Bertol. and Simarouba glauca DC. compared to full sun coffee in sub-optimal environmental conditions. Agroforestry Systems, 89: 857-868. https://doi.org/10.1007/s10457-015-9820-z

Peeters L. Y. K., Soto-Pinto L., Perales H., Montoya G., Ishiki M., 2003. Coffee production, timber, and firewood in traditional and Inga-shaded plantations in Southern Mexico. Agriculture, Ecosystems & Environment, 95: 481-493. https://doi.org/10.1016/s0167-8809(02)00204-9

Perfecto I., Vandermeer J., Mas A., Pinto L. S., 2005. Biodiversity, yield, and shade coffee certification. Ecological Economics, 54: 435-446. https://doi.org/10.1016/j.ecolecon.2004.10.009

Rice R. A., 2008. Agricultural intensification within agroforestry: The case of coffee and wood products. Agriculture, Ecosystems & Environment, 212-218. https://doi.org/10.1016/j.agee.2008.06.007

Rossi E., Montagnini F., De Melo Virginio Filho E., 2011. Effects of management practices on coffee productivity and herbaceous species diversity in agroforestry systems in Costa Rica. In: Montagnini F., Francesconi W., Rossi E. (eds). Agroforestry as a tool for landscape restoration. New York, USA, Nova Science Publishers, 115-132.

Siles P., Harmand J.-M., Vaast P., 2009. Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforestry Systems, 78: 269-286. https://doi.org/10.1007/s10457-009-9241-y

Somarriba E., Beer J., 2010. Productivity of Theobroma cacao agroforestry systems with timber or legume service shade trees. Agroforestry Systems, 81: 109-121. https://doi.org/10.1007/s10457-010-9364-1

Somarriba E., Calvo G., 1998. Enriquecimiento de cacaotales con especies maderables. Agroforestería en las Américas, 5: 28-30.

Somarriba E., López-Sampson A., 2018. Coffee and cocoa agroforestry systems: Pathways to deforestation, reforestation, and tree cover change. LEAVES. Washington, DC, USA, The World Bank, 49 p.

Thomazini A., Mendonça E. S., Cardoso I. M., Garbin M. L., 2015. SOC dynamics and soil quality index of agroforestry systems in the Atlantic rainforest of Brazil. Geoderma Regional, 5: 15-24. https://doi.org/10.1016/j.geodrs.2015.02.003

Tscharntke T., Clough Y., Bhagwat S. A., Buchori D., Faust H., Hertel D., et al., 2011. Multifunctional shade-tree management in tropical agroforestry landscapes – a review. Journal of Applied Ecology, 48: 619-629. https://doi.org/10.1111/j.1365-2664.2010.01939.x

Vaast P., Somarriba E., 2014. Trade-offs between crop intensification and ecosystem services: the role of agroforestry in cocoa cultivation. Agroforestry Systems, 88: 947-956. https://doi.org/10.1007/s10457-014-9762-x

Vaast P., van Kanten R., Siles P., Dzib B., Nicolas F., Harmand J.-M., Génard M., 2005. Shade: a key factor for coffee sustainability and quality. In: 20th International Conference on Coffee Science, 11-15 October 2004, Bangalore, India. Paris, France, ASIC, 887-896.

Van Der Vossen H. A. M., 2005. A critical analysis of the agronomic and economic sustainability of organic coffee production. Experimental Agriculture, 41: 449-473. https://doi.org/10.1017/s0014479705002863

van Kanten R., Vaast P., 2006. Transpiration of arabica coffee and associated shade tree species in sub-optimal, low-altitude conditions of Costa Rica. Agroforestry Systems, 67: 187-202. https://doi.org/10.1007/s10457-005-3744-y

Téléchargements

Numéro

Rubrique

ARTICLES SCIENTIFIQUES
Métriques
Vues/Téléchargements
  • Résumé
    835
  • PDF
    935

Publié

2020-12-25

Comment citer

LÓPEZ-SAMPSON, A. ., SEPÚLVEDA, N. ., BARRIOS, M. ., SOMARRIBA, E. ., MUNGUÍA, R. ., MORAGA, P., PONCE, A. ., OROZCO-AGUILAR, L. ., NAVARRETE, E. ., & NAVARRETE, L. . (2020). Effets à long terme de l’ombrage et des niveaux d’intrants sur les rendements de café dans la région Pacifique du Nicaragua. BOIS & FORETS DES TROPIQUES, 346, 21–33. https://doi.org/10.19182/bft2020.346.a36292