Genetic diversity of ten Moroccan populations of Tetraclinis articulata as revealed by Inter Simple Sequence Repeat (ISSR) markers

Authors

Meryem MAKKAOUI
Forest Research Center Silviculture Department Molecular Biology Laboratory PO Box 763, Rabat Morocco - Mohamed V University Faculty of Sciences. Microbiology and Molecular Biology Laboratory PO Box 1014, Rabat Morocco
Younes ABBAS
Sultan Moulay Slimane University Polydisciplinary Faculty Polyvalent Laboratory R&D – Mghila PO Box 592, Beni Mellal Morocco
Salwa EL ANTRY-TAZY
Forest Research Center Silviculture Department Molecular Biology Laboratory PO Box 763, Rabat Morocco
Leila MEDRAOUI
Mohamed V University Faculty of Sciences. Microbiology and Molecular Biology Laboratory PO Box 1014, Rabat Morocco
Mohammed ALAMI
Mohamed V University Faculty of Sciences. Microbiology and Molecular Biology Laboratory PO Box 1014, Rabat Morocco
Selouka RABANI
Mohamed V University Faculty of Sciences. Microbiology and Molecular Biology Laboratory PO Box 1014, Rabat Morocco
Abdelkarim FILALI-MALTOUF
Mohamed V University Faculty of Sciences. Microbiology and Molecular Biology Laboratory PO Box 1014, Rabat Morocco

DOI:

https://doi.org/10.19182/bft2020.345.a31927

Keywords


Tetraclinis articulata, genetic variation, fragmentation, ISSR, conservation, Morocco

Abstract

Tetraclinis articulata (Vahl) Masters is one of Morocco's most important forest species. It is also found occasionally in Malta and Spain, showing significant adaptability to different bio-climatic conditions. However, the species is being affected by anthropogenic fragmentation, logging and neglect from authorities, which could lead to the irretrievable loss of this resource. In this study, the genetic diversity and genetic structure of ten Moroccan populations of T. articulata were assessed. Fifteen Inter-Simple Sequence Repeat (ISSR) markers were used. These generated 271 polymorphic fragments with an average of 18.06 per primer and showed 79.59% of polymorphism. The 129 individuals revealed a high level of genetic diversity (Hs = 0.221; Ht = 0.254) and 85% of genetic variation within populations. However, the genetic differentiation level was low (Gst = 0.13), which is consistent with the lack of correlation between genetic and geographic distances revealed by the Mantel test, resulting in a high level of gene flow (Nm = 3.294). Based on PCoA and neighbour-joining methods, the ten populations clustered under the effect of continental and marine climates. Compared with other conifers, the current genetic diversity and the pattern of T. articulata population structure indicate an important gene pool requiring efficient conservation strategies.

Downloads

Download data is not yet available.

References

Allnutt T. R., Newton A. C., Premoli A., Lara A., 2003. Genetic variation in the threatened South American conifer Pilgerodendron uviferum (Cupressaceae), detected using RAPD markers. Biological Conservation, 114 (2): 245-253. https://doi.org/10.1016/S0006-3207(03)00044-2
Aravanopoulos F. A. 2016. Conservation and monitoring of tree genetic resources in temperate forests. Current Forestry Reports, 2: 119-129. https://doi.org/10.1007/s40725-016-0038-8
Benabid A. 1984. Étude phytoécologique des peuplements forestiers et préforestiers du Rif centro-occidental (Maroc). Rabat, Maroc, Université Mohammed V, Travaux de l'Institut scientifique, Série Botanique, 34, 64 p.
Bennett K. D., Haberle S. G., Lumley S. H., 2000. The Last Glacial-Holocene Transition in Southern Chile. Science, 290 (5490): 325-328. https://doi.org/10.1126/science.290.5490.325
Bourkhiss M., Hnach M., Bourkhiss B., Ouhssine M., Chaouch A., 2007. Composition chimique et propriétés antimicrobiennes de l’huile essentielle extraite des feuilles de Tetraclinis articulata (Vahl) du Maroc. Afrique Science, 3 (2): 232-242. http://www.afriquescience.info/docannexe.php?id=813M
Buhagiar J., Podestà M. T. C., Cioni P. L., Flamini G., Morelli I., 2000. Essential oil composition of different parts of Tetraclinis articulata. Journal of Essential Oil Research, 12 (1): 29-32. https://doi.org/10.1080/10412905.2000.9712034
Chung J. D., Lin T. P., Tan Y. C., Lin M. Y., Hwang S. Y., 2004. Genetic diversity and biogeography of Cunninghamia konishii (Cupressaceae), an island species in Taiwan: a comparison with Cunninghamia lanceolata, a mainland species in China. Molecular Phylogenetics and Evolution, 33 (3): 791-801. https://doi.org/10.1016/j.ympev.2004.08.011
Dagher-Kharrat M. B., Mariette S., Lefèvre F., Fady B., Grenier-de March G., et al., 2007. Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genetics & Genomes, 3 (3): 275-285. https://doi.org/10.1007/s11295-006-0065-x
Douaihy B., Vendramin G. G., Boratyński A., Machon N., Dagher-Kharrat M. B., 2011. High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region. AoB Plants, 2011: plr003. https://doi.org/10.1093/aobpla/plr003
Esteve-Selma M. A., Martínez-Fernández J., Hernández I., Montávez J. P., Lopez J. J., Calvo J. F., et al., 2010. Effects of climatic change on the distribution and conservation of Mediterranean forests: the case of Tetraclinis articulata in the Iberian Peninsula. Biodiversity and Conservation, 19 (13): 3809-3825. https://doi.org/10.1007/s10531-010-9928-4
Esteve-Selma M. A., Martínez-Fernández J., Hernández-García I., Montávez J. P., López-Hernández J. J., Calvo J. F., 2012. Potential effects of climatic change on the distribution of Tetraclinis articulata, an endemic tree from arid Mediterranean ecosystems. Climatic Change, 113 (3-4): 663-678. https://doi.org/10.1007/s10584-011-0378-0
Evanno G., Regnaut S., Goudet J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14 (8): 2611-20. https://doi.org/10.1111/j.1365-294x.2005.02553.x
Excoffier L., Smouse P. E., Quattro J. M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131 (2): 479-91. https://pubmed.ncbi.nlm.nih.gov/1644282/
Falk D. A., Holsinger K. E., 1991. Genetics and Conservation of Rare Plants. Oxford, UK, Oxford University Press, 302 p.
Fidah A., Rahouti M., Kabouchi B., Ziani M., El Bouhtoury-Charrier F., Famiri A., 2015. Natural durability of Tetraclinis articulata (Vahl) Masters woods against wood decay fungi: Laboratory test. Wood Research, 60 (6): 865-872. http://www.centrumdp.sk/wr/201506/02.pdf
Ge S., Hong D.-Y., Wang H.-Q., Liu Z.-Y., Zhang C.-M., 1998. Population genetic structure and conservation of an endangered conifer, Cathaya argyrophylla (Pinaceae). International Journal of Plant Sciences, 159 (2): 351-357. https://doi.org/10.1086/297556
Godwin I. D., Aitken E. A. B., Smith L. W., 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 18: 1524-1528. https://doi.org/10.1002/elps.1150180906
Hamrick J. L., Godt M. J. W., Sherman-Broyles S. L., 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests, 6: 95-124. https://doi.org/10.1007/BF00120641
Hou L., Cui Y., Li X., Chen W., Zhang Z., Pang X., Li Y., 2018. Genetic evaluation of natural populations of the endangered conifer Thuja koraiensis using microsatellite markers by restriction-associated DNA sequencing. Genes (Basel), 9 (4): 218. https://doi.org/10.3390/genes9040218
Huh M. K., Hong W. H., 2000. Genetic diversity and population structure of Juniperus rigida (Cupressaceae) and Juniperus coreana. Evolutionary Ecology, 14 (2): 87-98. https://doi.org/10.1023/A:1011090013749
Jubrael J. M., Udupa S. M., Baum M., 2005. Assessment of AFLP-based genetic relationships among date palm (Phoenix dactylifera L.) varieties of Iraq. Journal of American Society for Horticultural Science, 130 (3): 442-447. https://doi.org/10.21273/JASHS.130.3.442
Kim E.-H., Shin J.-K., Jeong K.-S., Lee C.-S., Chung J.-M., 2018. Genetic variation and structure of Juniperus chinensis L. (Cupressaceae) in Korea. Journal of Ecology and Environment, 42 (1): 14. https://doi.org/10.1186/s41610-018-0073-4
Lanner R. M., 1966. Needed: a new approach to the study of pollen dispersion. Silvae Genetica, 15: 50-52. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1966/Vol._15_Heft_2/15_2_50.pdf
Li F., Xia N., 2005. Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Botanical Bulletin of Academia Sinica, 46: 155-162. https://ejournal.sinica.edu.tw/bbas/content/2005/2/Bot462-09.pdf
Liu J., Shi S., Chang E., Yang W., Jiang Z., 2013. Genetic diversity of the critically endangered Thuja sutchuenensis revealed by ISSR markers and the implications for conservation. International Journal of Molecular Science, 14 (7): 14860-14871. https://doi.org/10.3390/ijms140714860
Liu Z.-J., Chen Y., Peng Z., Wu C., Ma Z., Ding G., et al., 2017. Genetic diversity and variation of Chinese fir from Fujian province and Taiwan, China, based on ISSR markers. Plos One, 12 (4): e0175571. https://doi.org/10.1371/journal.pone.0175571
Loveless M. D., Hamrick J. L., 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics, 15: 65-95. https://doi.org/10.1146/annurev.es.15.110184.000433
Mantel N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, 27 (2 Part 1): 209-220. https://cancerres.aacrjournals.org/content/27/2_Part_1/209
Meloni M., Perini D., Filigheddu R., Binelli G., 2006. Genetic variation in five Mediterranean populations of Juniperus phoenicea as revealed by inter-simple sequence repeat (ISSR) markers. Annals of Botany, 97 (2): 299-304. https://dx.doi.org/10.1093%2Faob%2Fmcj024
Morte M. A., Honrubia M., 1996. Tetraclinis articulata (Cartagena Cypress). In: Bajaj Y. P. S. (ed.). Trees IV. Heidelberg, Germany, Springer-Verlag. https://link.springer.com/chapter/10.1007/978-3-662-10617-4_24
Nei M., 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70 (12): 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
Ng W. L., Tan S. G., 2015. Inter-Simple Sequence Repeat (ISSR) markers: Are we doing it right? ASM Science Journal, 9 (1): 30-39. https://www.researchgate.net/publication/283256624_Inter-Simple_Sequence_Repeat_ISSR_markers_Are_we_doing_it_right
Nybom H., 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13 (5): 1143-55. https://doi.org/10.1111/j.1365-294X.2004.02141.x
Nybom H., Bartish I. V., 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics, 3 (2): 93-114. https://doi.org/10.1078/1433-8319-00006
Pandey M., Rajora O. P., 2012. Genetic diversity and differentiation of core vs. peripheral populations of eastern white cedar, Thuja occidentalis (Cupressaceae). American Journal of Botany, 99 (4): 690-699. https://doi.org/10.3732/ajb.1100116
Porth I., El-Kassaby Y., 2014. Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity, 6 (2): 283-295. https://doi.org/10.3390/d6020283
Powell W., Morgante M., Chaz A., Hanafey M., Vogel J., Tingey S., et al., 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2 (3): 225-238. https://doi.org/10.1007/BF00564200
Prevost A., Wilkinson M. J., 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98 (1): 107-112. https://doi.org/10.1007/s001220051046
Pritchard J. K., Stephens M., Donnelly P., 2000. Inference of population structure using multilocus genotype data. Genetics, 155 (2): 945-59. https://www.genetics.org/content/155/2/945
Rocha J. A., Santelmo V., Meneses da Silva F. M., Jurkiewicz M. A., Souza Silva M. F., et al., 2014. ISSR Primer Selection for Genetic Variability Analyses with Jaborandi (Pilocarpus microphyllus Stapf ex Wardlew., Rutaceae). Forest Research: Open Access, 03 (04). https://doi.org/10.4172/2168-9776.1000126
Roldán-Ruiz I., Dendauw J., Van Bockstaele E., Depicker A., De Loose M., 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding, 6 (2): 125-134. https://doi.org/10.1023/A:1009680614564
Rourke J. P., 1991. Tetraclinis articulata, a hitherto unrecorded naturalised alien conifer in South Africa. Bothalia, 21 (1): 62-64. https://doi.org/10.4102/abc.v21i1.2015
Sánchez-Gómez P., Jiménez J., Vera J., Sánchez-Saorín F., Martínez J., Buhagiar J., 2013. Genetic structure of Tetraclinis articulata, an endangered conifer of the western Mediterranean basin. Silva Fennica, 47 (5): 1073. https://www.readcube.com/articles/10.14214/sf.1073
Schaal B. A., Hayworth D. A., Olsen K. M., Rauscher J. T., Smith W. A., 1998. Phylogeographic studies in plants: problems and prospects. Molecular Ecology, 7: 465-474. https://doi.org/10.1046/j.1365-294x.1998.00318.x
Shannon C. E., Weaver W., 1964. The mathematical theory of communication. Urbana, IL, USA, University of Illinois Press, 131 p. https://pure.mpg.de/rest/items/item_2383164/component/file_2383163/content
Tam N. M., Hoa N. T., 2006. Genetic variation in threatened conifer Cunninghamia lanceolata var. konishii using ISSR markers: Implications for conservation. Tap chi Sinh hoc, 31 (2): 66-72. https://tailieuxanh.com/vn/tlID2186218_genetic-variation-in-threatened-conifer-cunninghamia-lanceolata-var-konishii-using-issr-markers-implications-for-conservation.html
Terrab A., Schonswetter P., Talavera S., Vela E., Stuessy T. F.. 2008. Range-wide phylogeography of Juniperus thurifera L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene. Molecular Phylogenetics and Evolution, 48 (1): 94-102. https://doi.org/10.1016/j.ympev.2008.03.018
Tonk F. A., Tosum M., Ilker E., Istipliler D., Tatar O., 2014. Evaluation and comparison of ISSR and RAPD markers for assessment of genetic diversity in triticale genotypes. Bulgarian Journal of Agricultural Science, 20 (6): 1413-1420. https://acikerisim.ege.edu.tr/xmlui/handle/11454/17532
Vashishtha A., Jehan T., Lakhanpaul S., 2013. Genetic diversity and population structure of Butea monosperma (Lam.) Taub.- a potential medicinal legume tree. Physiology and Molecular Biology of Plants, 19 (3): 389-397. https://dx.doi.org/10.1007%2Fs12298-013-0170-x
Vijayan K., 2005. Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis. International Journal of industrial Entomology, 10 (2): 79-86. http://www.koreascience.or.kr/article/JAKO200502637383451.page
Wang D.-L., Li Z.-C., Hao G., Chiang T.-Y., Ge X.-J., 2004. Genetic diversity of Calocedrus macrolepis (Cupressaceae) in southwestern China. Biochemical Systematics and Ecology, 32 (9): 797-807. https://doi.org/10.1016/j.bse.2003.12.003
Xia T., Meng L., Mao K., Tian B., Miehe G., Liu J., 2008. Genetic Variation in the Qinghai-Tibetan Plateau Endemic and Endangered Conifer Cupressus gigantea, Detected Using RAPD and ISSR Markers. Silvae Genetica, 57 (1-6): 85-92. https://doi.org/10.1515/sg-2008-0014
Zhang Z.-Y., Chen Y.-Y., Li D.-Z., 2005. Detection of Low Genetic Variation in a Critically Endangered Chinese Pine, Pinus squamata, Using RAPD and ISSR Markers. Biochemical Genetics, 43 (5-6): 239-249. https://doi.org/10.1007/s10528-005-5215-6
Zietkiewicz E., Rafalski A., Labuda D., 1994. Genomic fingerprinting by Simple Sequence Repeat (SSR) anchored polymerase chain reaction amplification. Genomics, 20 (2): 176-183. https://doi.org/10.1006/geno.1994.1151
Metrics
Views/Downloads
  • Abstract
    601
  • PDF (Français)
    559

Published

2020-10-26

How to Cite

MAKKAOUI, M., ABBAS, Y., EL ANTRY-TAZY, S. ., MEDRAOUI, L., ALAMI, M., RABANI, S., & FILALI-MALTOUF, A. (2020). Genetic diversity of ten Moroccan populations of Tetraclinis articulata as revealed by Inter Simple Sequence Repeat (ISSR) markers. BOIS & FORETS DES TROPIQUES, 345, 15–25. https://doi.org/10.19182/bft2020.345.a31927

Most read articles by the same author(s)