Quels sont les défis opérationnels et les coûts pour les porteurs-chargeurs forestiers dans différentes conditions de site dans le sud de Bahia, au nord-est du Brésil ?
DOI :
https://doi.org/10.19182/bft2025.362.a37726Mots-clés
: opérations forestières, étude des temps de cycle de travail, extraction du bois, productivité des machines forestières, Brésil.Résumé
Le secteur brésilien des forêts plantées joue un rôle essentiel dans la durabilité économique et environnementale, favorisant la mécanisation pour répondre aux demandes du marché. Cependant, les études portant sur les performances opérationnelles dans la région nord-est restent rares, en particulier dans des conditions de site et de peuplement variables. De plus, il existe un manque de modèles prédictifs reliant la productivité des porteurs-chargeurs aux coûts opérationnels et aux stratégies d'extraction adaptées à la variabilité locale des sites. Il convient de noter que l'extraction forestière au Brésil est confrontée à des défis en raison de la variabilité des conditions édapho-climatiques, qui ont un impact sur la productivité des porteurs-chargeurs et les coûts opérationnels. Cette étude visait à évaluer comment des facteurs opérationnels spécifiques (tels que la distance d'extraction, la capacité de charge du porteur-chargeur, la productivité forestière et la répartition du temps dans le cycle opérationnel de la machine) influencent l'efficacité et les coûts de l'extraction du bois. Les données de terrain ont été collectées dans le sud de Bahia, une zone stratégique pour l'industrie de la pâte à papier et du papier, dans des peuplements présentant des niveaux de productivité et des rotations forestières distincts. Des études sur le temps et les mouvements, une régression linéaire, et une analyse des coûts ont révélé que les modèles prédictifs expliquaient jusqu'à 92 % de la productivité des porteurs-chargeurs. Une forte corrélation inverse a été observée entre la productivité et la distance d'extraction. Ce résultat souligne l'importance de réduire au minimum les longs trajets afin de diminuer les coûts. La productivité était directement proportionnelle au rendement forestier, le processus de chargement des porteurs-chargeurs représentant jusqu'à 42 % du cycle opérationnel. L'utilisation de porteurs-chargeurs de plus grande capacité a permis d'optimiser l'extraction, avec une moyenne de 21 m³ par trajet. L'analyse des coûts a montré une augmentation de 26 % du coût par mètre cube avec une baisse du rendement forestier et une augmentation de 61 % avec des distances d'extraction plus longues. Ces résultats définissent les paramètres opérationnels optimaux pour le sud de Bahia, dans le nord-est du Brésil, en mettant l'accent sur la rentabilité et l'amélioration des performances.
Téléchargements
Références
Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711‑728. https://doi.org/10.1127/0941-2948/2013/0507
American Society of Agricultural and Biological Engineers (2011). Agricultural machinery management data. ASAE D496.3. ASABE, St. Joseph, USA. https://elibrary.asabe.org/abstract.asp?aid=36431&t=2&redir=&redirType=
Amorim, E. P., Pimenta, A. S., & De Souza, E. C. (2021). Aproveitamento dos resíduos da colheita florestal: estado da arte e oportunidades. Research Society and Development, 10(2), e4410212175. https://doi.org/10.33448/rsd-v10i2.12175
Aworka, R., Cedric, L. S., Adoni, W. Y. H., Zoueu, J. T., Mutombo, F. K., et al. (2022). Agricultural decision system based on advanced machine learning models for yield prediction: Case of East African countries. Smart Agricultural Technology, 2, 100048. https://doi.org/10.1016/j.atech.2022.100048
Bacescu, N. M., Hueller, S., Marchi, L., & Grigolato, S. (2024). Evaluating Variables’ Influence on Forwarder Performance and Fuel Efficiency in Mountain Salvage Logging Using an Automatic Work-Element Detection Method. Forests, 15(12), 2169. https://doi.org/10.3390/f15122169
Barnes, R. M. (1977). Estudos de movimentos e de tempos: projeto e medida do trabalho. 6th edition. Edgard Blucher, São Paulo, 648 p.
Barnes, R. M. (1990). Motion and time study: design and measurement of work. John Wiley & Sons, New York, 704 p.
Bont, L. G., Fraefel, M., Frutig, F., Holm, S., Ginzler, C., & Fischer, C. (2022). Improving forest management by implementing best suitable timber harvesting methods. Journal of Environmental Management, 302, 114099. https://doi.org/10.1016/j.jenvman.2021.114099
Burnham, K. P., & Anderson, D. R. (1998). Practical Use of the Information-Theoretic Approach. In Springer eBooks (p. 75 117). https://doi.org/10.1007/978-1-4757-2917-7_3
Cabral, V. O. M. J., Lopes Silva, E., da Krulikowski Rodrigues, C., Figueiredo Filho, A., (2020). Impact of distance between strip roads on productivity and costs of a forwarder in commercial thinning of Pinus taeda stands. Croatian Journal of Forest Engineering, 41(2), 7. https://doi.org/10.5552/crojfe.2020.592
Cadei, A., Mologni, O., Röser, D., Cavalli, R., & Grigolato, S. (2020b). Forwarder Productivity in Salvage Logging Operations in Difficult Terrain. Forests, 11(3), 341: 1-14. https://doi.org/10.3390/f11030341
De Assis Costa Ferreira, F., De Freitas, L. C., Da Silva Leite, E., Santos, S. L. M. D., & Rocabado, J. M. A. (2023). Work efficiency and harvester costs in Brazilian eucalyptus plantations. International Journal of Forest Engineering, 35(1), 21 28. https://doi.org/10.1080/14942119.2023.2276577
De Assis Costa Ferreira, F., De Freitas, L. C., Leite, E. S., Santos, S. L. M. D., Lima, C. F., et al. (2024). Technical and economic performance of a feller buncher in eucalyptus forests with different yields in Southern Bahia, Brazil. Caderno Pedagógico, 21(8), e6737. https://doi.org/10.54033/cadpedv21n8-130
De Souza Gomes, V., Monti, C. A. U., Silva, C. S. J. E., & Gomide, L. R. (2021). Operational harvest planning under forest road maintenance uncertainty. Forest Policy And Economics, 131, 102562. https://doi.org/10.1016/j.forpol.2021.102562
Dvořák, J., Jankovský, M., Chytrý, M., Nuhlíček, O., Natov, P., et al. (2021). Operational Costs of Mid-Performance Forwarders in Czech Forest Bioeconomy. Forests, 12(4), 435. https://doi.org/10.3390/f12040435
Eriksson, M., & Lindroos, O. (2014). Productivity of harvesters and forwarders in CTL operations in northern Sweden based on large follow-up datasets. International Journal of Forest Engineering, 25(3), 179 200. https://doi.org/10.1080/14942119.2014.974309
Ezzati, S., Tavankar, F., Ghaffariyan, M. R., Venanzi, R., Latterini, F., & Picchio, R. (2021). The Impact of Weather and Slope Conditions on the Productivity, Cost, and GHG Emissions of a Ground-Based Harvesting Operation in Mountain Hardwoods. Forests, 12(12), 1612. https://doi.org/10.3390/f12121612
Ferreira, F., Freitas, L., Leite, E., Silva, M., Santos, S., et al. (2025). Forwarder Machine Performance in Eucalyptus Forests in Brazil with Different Productivity Levels: An Analysis of Production Costs. Forests, 16(4), 646. https://doi.org/10.3390/f16040646
Gagliardi, K., Ackerman, S., & Ackerman, P. (2020). Multi-Product Forwarder-Based timber extraction. Croatian Journal of Forest Engineering, 41(2), 231 242. https://doi.org/10.5552/crojfe.2020.736
Ghotb, S., Sowlati, T., & Mortyn, J. (2023). Scheduling of log logistics using a metaheuristic approach. Expert Systems With Applications, 238, 122008. https://doi.org/10.1016/j.eswa.2023.122008
Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Dans Springer series in statistics. https://doi.org/10.1007/978-0-387-84858-7
Holzleitner, F., & Kanzian, C. (2021). Integrated in-stand debarking with a harvester in cut-to-length operations – processing and extraction performance assessment. International Journal of Forest Engineering, 33(1), 66 79. https://doi.org/10.1080/14942119.2021.2013049
IBÁ (2023). Indústria Brasileira de Árvores. Relatório Anual 2023. ESG Tech, São Paulo, SP, 91 p. https://www.arefloresta.org.br/noticia/422/relatorio-anual-de-florestas-plantadas-2023-iba
Kamarulzaman, A. M. M., Jaafar, W. S. W. M., Maulud, K. N. A., Saad, S. N. M., Omar, H., & Mohan, M. (2022). Integrated Segmentation Approach with Machine Learning Classifier in Detecting and Mapping Post Selective Logging Impacts Using UAV Imagery. Forests, 13(1), 48. https://doi.org/10.3390/f13010048
Kärhä, K., Haavikko, H., Kääriäinen, H., Palander, T., Eliasson, L., & Roininen, K. (2023). Fossil-fuel consumption and CO2eq emissions of cut-to-length industrial roundwood logging operations in Finland. European Journal of Forest Research, 142(3), 547 563. https://doi.org/10.1007/s10342-023-01541-4
Labelle, E. R., Breinig, L., & Sycheva, E. (2018). Exploring the Use of Harvesters in Large-Diameter Hardwood-Dominated Stands. Forests, 9(7), 424. https://doi.org/10.3390/f9070424
Labelle, E. R., Hansson, L., Högbom, L., Jourgholami, M., & Laschi, A. (2022). Strategies to Mitigate the Effects of Soil Physical Disturbances Caused by Forest Machinery: a Comprehensive Review. Current Forestry Reports, 8(1), 20 37. https://doi.org/10.1007/s40725-021-00155-6
Lima, C. F., Da Silva, L. F., De Souza, C. M. A., De Assis Costa Ferreira, F., Minette, L. J., Mendieta, F. M. P., et al. (2025). Analysis of Operational Performance and Costs of Log Loaders Under Different Conditions. Forests, 16(6), 913. https://doi.org/10.3390/f16060913
Lima, C. F., Lima, R. C. A., De Souza, A. P., Minette, L. J., Schettino, S., et al. (2019). Occupational Noise and Vibration Assessments in Forest Harvesting Equipment in North-eastern Brazil. Journal of Experimental Agriculture International, 1 9. https://doi.org/10.9734/jeai/2019/v40i530379
Lima, C. F., Minette, L. J., Lima, R. C. A., Lima, F. A., Schettino, S., et al. (2024b). Ergonomic optimization in forestry harvesting: analysis of indicators and workstation layout for machine operators. Caderno Pedagógico, 21(9), e8046. https://doi.org/10.54033/cadpedv21n9-212
Lima, C. F., Torres, F. T. P., Minette, L. J., Lima, F. A., Lima, R. C. A., et al. (2024a). Is there a relationship between forest fires and deforestation in the Brazilian Amazon? PLoS ONE, 19(6), e0306238. https://doi.org/10.1371/journal.pone.0306238
Lima, R. C. A., Minette, L. J., Simões, D., Rocha, Q. S., Miyajima, R. H., et al. (2023). Measurement Time in the Evaluation of Whole-Body Vibration: The Case of Mechanized Wood Extraction with Grapple Skidder. Forests, 14(8), 1551. https://doi.org/10.3390/f14081551
Liski, E., Jounela, P., Korpunen, H., Sosa, A., Lindroos, O., & Jylhä, P. (2020). Modeling the productivity of mechanized CTL harvesting with statistical machine learning methods. International Journal of Forest Engineering, 31(3), 253 262. https://doi.org/10.1080/14942119.2020.1820750
Lundbäck, M., Lindroos, O., & Servin, M. (2024). Rubber-Tracked Forwarders—Productivity and Cost Efficiency Potentials. Forests, 15(2), 284. https://doi.org/10.3390/f15020284
Luo, D., Jin, Z., Yu, Y., & Chen, Y. (2021). Effects of Topography on Planted Trees in a Headwater Catchment on the Chinese Loess Plateau. Forests, 12(6), 792. https://doi.org/10.3390/f12060792
Malinovski, R. A., Malinovski, R. A., & Malinovski, J. R. (2006). Análise das variáveis de influência na produtividade das máquinas de colheita de madeira em função das características físicas do terreno, do povoamento e do planejamento operacional florestal. Floresta, 36(2), 169-182. https://doi.org/10.5380/rf.v36i2.6459
Manner, J., Palmroth, L., Nordfjell, T., & Lindroos, O. (2016). Load level forwarding work element analysis based on automatic follow-up data. Silva Fennica, 50(3). https://doi.org/10.14214/sf.1546
Marcu, M. V., & Borz, S. A. (2024). Effect of Trail Condition, Slope, and Direction of Extraction on Forwarding Performance: Insights from a Controlled Comparative Study. Forests, 15(10), 1790. https://doi.org/10.3390/f15101790
Masioli, W., Fiedler, N. C., Brisson, E. V., De Almeida, A. T. S., & Lacerda, L. C. (2024). Variáveis de influência da produtividade na extração de madeira em um sistema de toras curtas. Contribuciones A Las Ciencias Sociales, 17(2), e4781. https://doi.org/10.55905/revconv.17n.2-300
Melchiori, L., Nasini, G., Montagna, J. M., & Corsano, G. (2022). A mathematical modeling for simultaneous routing and scheduling of logging trucks in the forest supply chain. Forest Policy And Economics, 136, 102693. https://doi.org/10.1016/j.forpol.2022.102693
Miyajima, R. H., Simões, D., Fenner, P. T., & Batistela, G. C. (2021). The Impact of Felling Method, Bunch Size, Slope Degree and Skidding Area on Productivity and Costs of Skidding in a Eucalyptus Plantation. Croatian Journal of Forest Engineering, 42(3). https://doi.org/10.5552/crojfe.2021.879
Munis, R. A., Almeida, R. O., Camargo, D. A., Da Silva, R. B. G., Wojciechowski, J., & Simões, D. (2023b). Tactical Forwarder Planning: A Data-Driven Approach for Timber Forwarding. Forests, 14(9), 1782. https://doi.org/10.3390/f14091782
Munis, R. A., Camargo, D. A., Rocha, Q. S., Pandolfo, P. T., Da Silva, R. B. G., & Simões, D. (2023a). Economic analysis of the feller buncher in Brazilian Eucalyptus plantations: modeling with time series. International Journal of Forest Engineering, 35(2), 296 302. https://doi.org/10.1080/14942119.2023.2290800
Palander, T. (2025). Precision Modeling of Fuel Consumption to Select the Most Efficient Logging Method for Cut-to-Length Timber Harvesting. Forests, 16(2), 294. https://doi.org/10.3390/f16020294
Papandrea, S. F., Stoilov, S., Cataldo, M. F., Nichev, P., Angelov, G., & Proto, A. R. (2025). How Different Distribution of Assortments on Worksites Influences Forwarder Performance in Coniferous Plantations. Croatian Journal of Forest Engineering, 46(1). https://doi.org/10.5552/crojfe.2025.2593
Picchio, R., Mederski, P. S., & Tavankar, F. (2020). How and How Much, Do Harvesting Activities Affect Forest Soil, Regeneration and Stands ? Current Forestry Reports, 6(2), 115 128. https://doi.org/10.1007/s40725-020-00113-8
Proto, A. R., Macrì, G., Visser, R., Harrill, H., Russo, D., & Zimbalatti, G. (2017). A Case Study on the Productivity of Forwarder Extraction in Small-Scale Southern Italian Forests. Small-scale Forestry, 17(1), 71 87. https://doi.org/10.1007/s11842-017-9376-z
Purfürst, F. T., & Erler, J. (2011). The Human Influence on Productivity in Harvester Operations. International Journal of Forest Engineering, 22(2), 15 22. https://doi.org/10.1080/14942119.2011.10702606
Rocha, Q. S., Lima, R. C. A., Munis, R. A., Pereira, G., & Simões, D. (2022). Economic viability of the whole tree harvest under conditions of uncertainty: a study in southeastern Brazil. International Journal of Forest Engineering, 33(3), 181 188. https://doi.org/10.1080/14942119.2022.2029316
Rukomojnikov, K. P., Aleksagina, N. N., & Anisimov, I. S. (2024). Mathematical Modeling of Forwarder Operation When Collecting Logs in the Forest Swath. Tehnički Glasnik, 18(4), 646 652. https://doi.org/10.31803/tg-20240415215912
Schettino, S., Minette, L. J., Soranso, D. R., & Lima, R. C. A. (2022). Influência de fatores ergonômicos na produtividade do sistema homem-máquina na colheita florestal mecanizada. Scientia Forestalis, 50. https://doi.org/10.18671/SCIFOR.V50.20
Shadbahr, J., Bensebaa, F., & Ebadian, M. (2021). Impact of forest harvest intensity and transportation distance on biomass delivered costs within sustainable forest management - A case study in southeastern Canada. Journal of Environmental Management, 284, 112073. https://doi.org/10.1016/j.jenvman.2021.112073
Silva, A. A., Machado, C. C., Gomes, R. R. M., Schettini, B. L. S., Minette, L. J., et al. (2022). Forest extraction management with the indicator of Overall Efficiency of Forest Machines (OEFM). Revista Árvore, 46, 1-8. https://doi.org/10.1590/1806-908820220000018
Silva, A. A., Machado, C. C., Gomes, R. R. M., Schettini, B. L. S., Minette, L. J., et al. (2023). Indicador eficiência global de Máquinas Florestais (EGMF) na gestão do corte florestal. Scientia Forestalis, 50. https://doi.org/10.18671/scifor.v50.43
Spinelli, R., Magagnotti, N., Lombardini, C., & Leonello, E. C. (2020). Cost-effective Integrated Harvesting of Short-Rotation Poplar Plantations. BioEnergy Research, 14(2), 460 468. https://doi.org/10.1007/s12155-020-10163-2
Stankić, I., Poršinsky, T., Tomašić, Ž., Tonković, I., & Frntić, M. (2012). Productivity models for operational planning of timber forwarding in Croatia. Croatian Journal of Forest Engineering, 33(1), 61-78. https://crojfe.com/archive/volume-33-no-1/productivity-models-for-operational-planning-of-timber-forwarding-in-croatia/
Stoilov, S., Papandrea, S. F., Angelov, G., Oslekov, D., Zimbalatti, G., & Proto, A. R. (2023). Productivity analysis and costs of wheel cable skidder during salvage logging in European beech stand. Journal of Agricultural Engineering, 54(2). https://doi.org/10.4081/jae.2023.1419
Temba, G. P., Mauya, E. W., & Migunga, G. A. (2023). Productivity and Costs of Mechanized Skidding operations at Sao Hill Forest Plantation, Tanzania. Forest Science And Technology, 20(1), 91 103. https://doi.org/10.1080/21580103.2023.2299260

Téléchargements
Numéro
Rubrique
-
Résumé31
-
ARTICLE SCIENTIFIQUE - VERSION ANGLAISE 12
Reçu
Publié
Comment citer
Licence
© CIRAD - Bois et Forêts des Tropiques 2025

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
Les articles sont publiés en Accès libre. Ils sont régis par le Droit d'auteur et par les licenses créative commons. La license utilisée est Attribution (CC BY 4.0).