Quels sont les défis opérationnels et les coûts pour les porteurs-chargeurs forestiers dans différentes conditions de site dans le sud de Bahia, au nord-est du Brésil ?

Auteurs

Federal Institute of Education, Science and Technology of Pará (IFPA) Campus Ananindeua Ananindeua, Pará Brazil
Francisco DE ASSIS COSTA FERREIRA
Federal University of Viçosa (UFV) Department of Forest Engineering Viçosa, Minas Gerais Brazil
State University of Goiás (UEG), Academic Institute of Agricultural Sciences and Sustainability Ipameri, Goiás Brazil
Luciano José MINETTE
Brazil 3 State University of Goiás (UEG), Academic Institute of Agricultural Sciences and Sustainability Ipameri, Goiás Brazil
Arthur Araújo SILVA
Ananindeua, Pará Brazil 2 Federal University of Viçosa (UFV) Department of Forest Engineering Viçosa, Minas Gerais Brazil
State University of Southwest Bahia (UESB) Department of Plant Science and Animal Science Vitória da Conquista, Bahia Brazil
Federal University of Minas Gerais (UFMG), Institute of Agricultural Sciences Montes Claros, Minas Gerais Brazil
Bruno Leão SAID SCHETTINI
Federal University of Viçosa (UFV) Department of Forest Engineering Viçosa, Minas Gerais Brazil
Elton DA SILVA LEITE
Federal University of Recôncavo of Bahia (UFRB), Centre for Agricultural, Environmental and Biological Sciences Cruz das Almas, Bahia Brazil
Anne Caroline GUIMARÃES VELOSO
State University of Goiás (UEG), Academic Institute of Agricultural Sciences and Sustainability Ipameri, Goiás Brazil
Fernanda Araujo LIMA
Viçosa State Center for Specialized Care Viçosa, Minas Gerais Brazil

DOI :

https://doi.org/10.19182/bft2025.362.a37726

Mots-clés


: opérations forestières, étude des temps de cycle de travail, extraction du bois, productivité des machines forestières, Brésil.

Résumé

Le secteur brésilien des forêts plantées joue un rôle essentiel dans la durabilité économique et environnementale, favorisant la mécanisation pour répondre aux demandes du marché. Cependant, les études portant sur les performances opérationnelles dans la région nord-est restent rares, en particulier dans des conditions de site et de peuplement variables. De plus, il existe un manque de modèles prédictifs reliant la productivité des porteurs-chargeurs aux coûts opérationnels et aux stratégies d'extraction adaptées à la variabilité locale des sites. Il convient de noter que l'extraction forestière au Brésil est confrontée à des défis en raison de la variabilité des conditions édapho-climatiques, qui ont un impact sur la productivité des porteurs-chargeurs et les coûts opérationnels. Cette étude visait à évaluer comment des facteurs opérationnels spécifiques (tels que la distance d'extraction, la capacité de charge du porteur-chargeur, la productivité forestière et la répartition du temps dans le cycle opérationnel de la machine) influencent l'efficacité et les coûts de l'extraction du bois. Les données de terrain ont été collectées dans le sud de Bahia, une zone stratégique pour l'industrie de la pâte à papier et du papier, dans des peuplements présentant des niveaux de productivité et des rotations forestières distincts. Des études sur le temps et les mouvements, une régression linéaire, et une analyse des coûts ont révélé que les modèles prédictifs expliquaient jusqu'à 92 % de la productivité des porteurs-chargeurs. Une forte corrélation inverse a été observée entre la productivité et la distance d'extraction. Ce résultat souligne l'importance de réduire au minimum les longs trajets afin de diminuer les coûts. La productivité était directement proportionnelle au rendement forestier, le processus de chargement des porteurs-chargeurs représentant jusqu'à 42 % du cycle opérationnel. L'utilisation de porteurs-chargeurs de plus grande capacité a permis d'optimiser l'extraction, avec une moyenne de 21 m³ par trajet. L'analyse des coûts a montré une augmentation de 26 % du coût par mètre cube avec une baisse du rendement forestier et une augmentation de 61 % avec des distances d'extraction plus longues. Ces résultats définissent les paramètres opérationnels optimaux pour le sud de Bahia, dans le nord-est du Brésil, en mettant l'accent sur la rentabilité et l'amélioration des performances.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes Gonçalves, J. L., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711‑728. https://doi.org/10.1127/0941-2948/2013/0507

American Society of Agricultural and Biological Engineers (2011). Agricultural machinery management data. ASAE D496.3. ASABE, St. Joseph, USA. https://elibrary.asabe.org/abstract.asp?aid=36431&t=2&redir=&redirType=

Amorim, E. P., Pimenta, A. S., & De Souza, E. C. (2021). Aproveitamento dos resíduos da colheita florestal: estado da arte e oportunidades. Research Society and Development, 10(2), e4410212175. https://doi.org/10.33448/rsd-v10i2.12175

Aworka, R., Cedric, L. S., Adoni, W. Y. H., Zoueu, J. T., Mutombo, F. K., et al. (2022). Agricultural decision system based on advanced machine learning models for yield prediction: Case of East African countries. Smart Agricultural Technology, 2, 100048. https://doi.org/10.1016/j.atech.2022.100048

Bacescu, N. M., Hueller, S., Marchi, L., & Grigolato, S. (2024). Evaluating Variables’ Influence on Forwarder Performance and Fuel Efficiency in Mountain Salvage Logging Using an Automatic Work-Element Detection Method. Forests, 15(12), 2169. https://doi.org/10.3390/f15122169

Barnes, R. M. (1977). Estudos de movimentos e de tempos: projeto e medida do trabalho. 6th edition. Edgard Blucher, São Paulo, 648 p.

Barnes, R. M. (1990). Motion and time study: design and measurement of work. John Wiley & Sons, New York, 704 p.

Bont, L. G., Fraefel, M., Frutig, F., Holm, S., Ginzler, C., & Fischer, C. (2022). Improving forest management by implementing best suitable timber harvesting methods. Journal of Environmental Management, 302, 114099. https://doi.org/10.1016/j.jenvman.2021.114099

Burnham, K. P., & Anderson, D. R. (1998). Practical Use of the Information-Theoretic Approach. In Springer eBooks (p. 75 117). https://doi.org/10.1007/978-1-4757-2917-7_3

Cabral, V. O. M. J., Lopes Silva, E., da Krulikowski Rodrigues, C., Figueiredo Filho, A., (2020). Impact of distance between strip roads on productivity and costs of a forwarder in commercial thinning of Pinus taeda stands. Croatian Journal of Forest Engineering, 41(2), 7. https://doi.org/10.5552/crojfe.2020.592

Cadei, A., Mologni, O., Röser, D., Cavalli, R., & Grigolato, S. (2020b). Forwarder Productivity in Salvage Logging Operations in Difficult Terrain. Forests, 11(3), 341: 1-14. https://doi.org/10.3390/f11030341

De Assis Costa Ferreira, F., De Freitas, L. C., Da Silva Leite, E., Santos, S. L. M. D., & Rocabado, J. M. A. (2023). Work efficiency and harvester costs in Brazilian eucalyptus plantations. International Journal of Forest Engineering, 35(1), 21 28. https://doi.org/10.1080/14942119.2023.2276577

De Assis Costa Ferreira, F., De Freitas, L. C., Leite, E. S., Santos, S. L. M. D., Lima, C. F., et al. (2024). Technical and economic performance of a feller buncher in eucalyptus forests with different yields in Southern Bahia, Brazil. Caderno Pedagógico, 21(8), e6737. https://doi.org/10.54033/cadpedv21n8-130

De Souza Gomes, V., Monti, C. A. U., Silva, C. S. J. E., & Gomide, L. R. (2021). Operational harvest planning under forest road maintenance uncertainty. Forest Policy And Economics, 131, 102562. https://doi.org/10.1016/j.forpol.2021.102562

Dvořák, J., Jankovský, M., Chytrý, M., Nuhlíček, O., Natov, P., et al. (2021). Operational Costs of Mid-Performance Forwarders in Czech Forest Bioeconomy. Forests, 12(4), 435. https://doi.org/10.3390/f12040435

Eriksson, M., & Lindroos, O. (2014). Productivity of harvesters and forwarders in CTL operations in northern Sweden based on large follow-up datasets. International Journal of Forest Engineering, 25(3), 179 200. https://doi.org/10.1080/14942119.2014.974309

Ezzati, S., Tavankar, F., Ghaffariyan, M. R., Venanzi, R., Latterini, F., & Picchio, R. (2021). The Impact of Weather and Slope Conditions on the Productivity, Cost, and GHG Emissions of a Ground-Based Harvesting Operation in Mountain Hardwoods. Forests, 12(12), 1612. https://doi.org/10.3390/f12121612

Ferreira, F., Freitas, L., Leite, E., Silva, M., Santos, S., et al. (2025). Forwarder Machine Performance in Eucalyptus Forests in Brazil with Different Productivity Levels: An Analysis of Production Costs. Forests, 16(4), 646. https://doi.org/10.3390/f16040646

Gagliardi, K., Ackerman, S., & Ackerman, P. (2020). Multi-Product Forwarder-Based timber extraction. Croatian Journal of Forest Engineering, 41(2), 231 242. https://doi.org/10.5552/crojfe.2020.736

Ghotb, S., Sowlati, T., & Mortyn, J. (2023). Scheduling of log logistics using a metaheuristic approach. Expert Systems With Applications, 238, 122008. https://doi.org/10.1016/j.eswa.2023.122008

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Dans Springer series in statistics. https://doi.org/10.1007/978-0-387-84858-7

Holzleitner, F., & Kanzian, C. (2021). Integrated in-stand debarking with a harvester in cut-to-length operations – processing and extraction performance assessment. International Journal of Forest Engineering, 33(1), 66 79. https://doi.org/10.1080/14942119.2021.2013049

IBÁ (2023). Indústria Brasileira de Árvores. Relatório Anual 2023. ESG Tech, São Paulo, SP, 91 p. https://www.arefloresta.org.br/noticia/422/relatorio-anual-de-florestas-plantadas-2023-iba

Kamarulzaman, A. M. M., Jaafar, W. S. W. M., Maulud, K. N. A., Saad, S. N. M., Omar, H., & Mohan, M. (2022). Integrated Segmentation Approach with Machine Learning Classifier in Detecting and Mapping Post Selective Logging Impacts Using UAV Imagery. Forests, 13(1), 48. https://doi.org/10.3390/f13010048

Kärhä, K., Haavikko, H., Kääriäinen, H., Palander, T., Eliasson, L., & Roininen, K. (2023). Fossil-fuel consumption and CO2eq emissions of cut-to-length industrial roundwood logging operations in Finland. European Journal of Forest Research, 142(3), 547 563. https://doi.org/10.1007/s10342-023-01541-4

Labelle, E. R., Breinig, L., & Sycheva, E. (2018). Exploring the Use of Harvesters in Large-Diameter Hardwood-Dominated Stands. Forests, 9(7), 424. https://doi.org/10.3390/f9070424

Labelle, E. R., Hansson, L., Högbom, L., Jourgholami, M., & Laschi, A. (2022). Strategies to Mitigate the Effects of Soil Physical Disturbances Caused by Forest Machinery: a Comprehensive Review. Current Forestry Reports, 8(1), 20 37. https://doi.org/10.1007/s40725-021-00155-6

Lima, C. F., Da Silva, L. F., De Souza, C. M. A., De Assis Costa Ferreira, F., Minette, L. J., Mendieta, F. M. P., et al. (2025). Analysis of Operational Performance and Costs of Log Loaders Under Different Conditions. Forests, 16(6), 913. https://doi.org/10.3390/f16060913

Lima, C. F., Lima, R. C. A., De Souza, A. P., Minette, L. J., Schettino, S., et al. (2019). Occupational Noise and Vibration Assessments in Forest Harvesting Equipment in North-eastern Brazil. Journal of Experimental Agriculture International, 1 9. https://doi.org/10.9734/jeai/2019/v40i530379

Lima, C. F., Minette, L. J., Lima, R. C. A., Lima, F. A., Schettino, S., et al. (2024b). Ergonomic optimization in forestry harvesting: analysis of indicators and workstation layout for machine operators. Caderno Pedagógico, 21(9), e8046. https://doi.org/10.54033/cadpedv21n9-212

Lima, C. F., Torres, F. T. P., Minette, L. J., Lima, F. A., Lima, R. C. A., et al. (2024a). Is there a relationship between forest fires and deforestation in the Brazilian Amazon? PLoS ONE, 19(6), e0306238. https://doi.org/10.1371/journal.pone.0306238

Lima, R. C. A., Minette, L. J., Simões, D., Rocha, Q. S., Miyajima, R. H., et al. (2023). Measurement Time in the Evaluation of Whole-Body Vibration: The Case of Mechanized Wood Extraction with Grapple Skidder. Forests, 14(8), 1551. https://doi.org/10.3390/f14081551

Liski, E., Jounela, P., Korpunen, H., Sosa, A., Lindroos, O., & Jylhä, P. (2020). Modeling the productivity of mechanized CTL harvesting with statistical machine learning methods. International Journal of Forest Engineering, 31(3), 253 262. https://doi.org/10.1080/14942119.2020.1820750

Lundbäck, M., Lindroos, O., & Servin, M. (2024). Rubber-Tracked Forwarders—Productivity and Cost Efficiency Potentials. Forests, 15(2), 284. https://doi.org/10.3390/f15020284

Luo, D., Jin, Z., Yu, Y., & Chen, Y. (2021). Effects of Topography on Planted Trees in a Headwater Catchment on the Chinese Loess Plateau. Forests, 12(6), 792. https://doi.org/10.3390/f12060792

Malinovski, R. A., Malinovski, R. A., & Malinovski, J. R. (2006). Análise das variáveis de influência na produtividade das máquinas de colheita de madeira em função das características físicas do terreno, do povoamento e do planejamento operacional florestal. Floresta, 36(2), 169-182. https://doi.org/10.5380/rf.v36i2.6459

Manner, J., Palmroth, L., Nordfjell, T., & Lindroos, O. (2016). Load level forwarding work element analysis based on automatic follow-up data. Silva Fennica, 50(3). https://doi.org/10.14214/sf.1546

Marcu, M. V., & Borz, S. A. (2024). Effect of Trail Condition, Slope, and Direction of Extraction on Forwarding Performance: Insights from a Controlled Comparative Study. Forests, 15(10), 1790. https://doi.org/10.3390/f15101790

Masioli, W., Fiedler, N. C., Brisson, E. V., De Almeida, A. T. S., & Lacerda, L. C. (2024). Variáveis de influência da produtividade na extração de madeira em um sistema de toras curtas. Contribuciones A Las Ciencias Sociales, 17(2), e4781. https://doi.org/10.55905/revconv.17n.2-300

Melchiori, L., Nasini, G., Montagna, J. M., & Corsano, G. (2022). A mathematical modeling for simultaneous routing and scheduling of logging trucks in the forest supply chain. Forest Policy And Economics, 136, 102693. https://doi.org/10.1016/j.forpol.2022.102693

Miyajima, R. H., Simões, D., Fenner, P. T., & Batistela, G. C. (2021). The Impact of Felling Method, Bunch Size, Slope Degree and Skidding Area on Productivity and Costs of Skidding in a Eucalyptus Plantation. Croatian Journal of Forest Engineering, 42(3). https://doi.org/10.5552/crojfe.2021.879

Munis, R. A., Almeida, R. O., Camargo, D. A., Da Silva, R. B. G., Wojciechowski, J., & Simões, D. (2023b). Tactical Forwarder Planning: A Data-Driven Approach for Timber Forwarding. Forests, 14(9), 1782. https://doi.org/10.3390/f14091782

Munis, R. A., Camargo, D. A., Rocha, Q. S., Pandolfo, P. T., Da Silva, R. B. G., & Simões, D. (2023a). Economic analysis of the feller buncher in Brazilian Eucalyptus plantations: modeling with time series. International Journal of Forest Engineering, 35(2), 296 302. https://doi.org/10.1080/14942119.2023.2290800

Palander, T. (2025). Precision Modeling of Fuel Consumption to Select the Most Efficient Logging Method for Cut-to-Length Timber Harvesting. Forests, 16(2), 294. https://doi.org/10.3390/f16020294

Papandrea, S. F., Stoilov, S., Cataldo, M. F., Nichev, P., Angelov, G., & Proto, A. R. (2025). How Different Distribution of Assortments on Worksites Influences Forwarder Performance in Coniferous Plantations. Croatian Journal of Forest Engineering, 46(1). https://doi.org/10.5552/crojfe.2025.2593

Picchio, R., Mederski, P. S., & Tavankar, F. (2020). How and How Much, Do Harvesting Activities Affect Forest Soil, Regeneration and Stands ? Current Forestry Reports, 6(2), 115 128. https://doi.org/10.1007/s40725-020-00113-8

Proto, A. R., Macrì, G., Visser, R., Harrill, H., Russo, D., & Zimbalatti, G. (2017). A Case Study on the Productivity of Forwarder Extraction in Small-Scale Southern Italian Forests. Small-scale Forestry, 17(1), 71 87. https://doi.org/10.1007/s11842-017-9376-z

Purfürst, F. T., & Erler, J. (2011). The Human Influence on Productivity in Harvester Operations. International Journal of Forest Engineering, 22(2), 15 22. https://doi.org/10.1080/14942119.2011.10702606

Rocha, Q. S., Lima, R. C. A., Munis, R. A., Pereira, G., & Simões, D. (2022). Economic viability of the whole tree harvest under conditions of uncertainty: a study in southeastern Brazil. International Journal of Forest Engineering, 33(3), 181 188. https://doi.org/10.1080/14942119.2022.2029316

Rukomojnikov, K. P., Aleksagina, N. N., & Anisimov, I. S. (2024). Mathematical Modeling of Forwarder Operation When Collecting Logs in the Forest Swath. Tehnički Glasnik, 18(4), 646 652. https://doi.org/10.31803/tg-20240415215912

Schettino, S., Minette, L. J., Soranso, D. R., & Lima, R. C. A. (2022). Influência de fatores ergonômicos na produtividade do sistema homem-máquina na colheita florestal mecanizada. Scientia Forestalis, 50. https://doi.org/10.18671/SCIFOR.V50.20

Shadbahr, J., Bensebaa, F., & Ebadian, M. (2021). Impact of forest harvest intensity and transportation distance on biomass delivered costs within sustainable forest management - A case study in southeastern Canada. Journal of Environmental Management, 284, 112073. https://doi.org/10.1016/j.jenvman.2021.112073

Silva, A. A., Machado, C. C., Gomes, R. R. M., Schettini, B. L. S., Minette, L. J., et al. (2022). Forest extraction management with the indicator of Overall Efficiency of Forest Machines (OEFM). Revista Árvore, 46, 1-8. https://doi.org/10.1590/1806-908820220000018

Silva, A. A., Machado, C. C., Gomes, R. R. M., Schettini, B. L. S., Minette, L. J., et al. (2023). Indicador eficiência global de Máquinas Florestais (EGMF) na gestão do corte florestal. Scientia Forestalis, 50. https://doi.org/10.18671/scifor.v50.43

Spinelli, R., Magagnotti, N., Lombardini, C., & Leonello, E. C. (2020). Cost-effective Integrated Harvesting of Short-Rotation Poplar Plantations. BioEnergy Research, 14(2), 460 468. https://doi.org/10.1007/s12155-020-10163-2

Stankić, I., Poršinsky, T., Tomašić, Ž., Tonković, I., & Frntić, M. (2012). Productivity models for operational planning of timber forwarding in Croatia. Croatian Journal of Forest Engineering, 33(1), 61-78. https://crojfe.com/archive/volume-33-no-1/productivity-models-for-operational-planning-of-timber-forwarding-in-croatia/

Stoilov, S., Papandrea, S. F., Angelov, G., Oslekov, D., Zimbalatti, G., & Proto, A. R. (2023). Productivity analysis and costs of wheel cable skidder during salvage logging in European beech stand. Journal of Agricultural Engineering, 54(2). https://doi.org/10.4081/jae.2023.1419

Temba, G. P., Mauya, E. W., & Migunga, G. A. (2023). Productivity and Costs of Mechanized Skidding operations at Sao Hill Forest Plantation, Tanzania. Forest Science And Technology, 20(1), 91 103. https://doi.org/10.1080/21580103.2023.2299260

Forestry forwarder used to extract round timber from a eucalyptus plantation in southern Bahia, Northeastern Brazil. Photo C. F. Lima.
Métriques
Vues/Téléchargements
  • Résumé
    31
  • ARTICLE SCIENTIFIQUE - VERSION ANGLAISE
    12

Reçu

2025-03-04

Publié

2025-09-25

Comment citer

LIMA, C. F., DE ASSIS COSTA FERREIRA, F., LIMA, R. C. A., MINETTE, L. J., SILVA, A. A., DE FREITAS, L. C., … LIMA, F. A. (2025). Quels sont les défis opérationnels et les coûts pour les porteurs-chargeurs forestiers dans différentes conditions de site dans le sud de Bahia, au nord-est du Brésil ?. BOIS & FORETS DES TROPIQUES, 362, 1–16. https://doi.org/10.19182/bft2025.362.a37726

Articles similaires

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.