Impact de l’ombrage sur le microclimat d’une plantation de café : étude de cas en Amazonie péruvienne
DOI :
https://doi.org/10.19182/bft2017.334.a31488Mots-clés
agroforesterie, humidité de l’air, Coffea arabica, température du sol, disponibilité en eau du sol, Pérou, AmazonieRésumé
L’agroforesterie est considérée comme l’une des stratégies agricoles pouvant contribuer à l’adaptation des cultures au changement climatique. La présente étude de cas visait à comparer les conditions microclimatiques d’une parcelle de Coffea arabica cultivée sous ombrage, principalement Inga spp., et celles d’une parcelle de C. arabica menée en monoculture sans ombrage dans la même plantation de café, dans la région de Pasco au Pérou. La température et l’humidité de l’air, la température du sol et la disponibilité en eau du sol ont été mesurées pendant trois ans. Les résultats indiquent que l’ombrage des arbres réduit la température moyenne de l’air de 0,4 ± 0,04 °C et la température du sol de 1,7 ± 0,3 °C, et augmente l’humidité de l’air de 3,9 ± 0,4 % par rapport à la zone sans ombrage. Cependant, la moyenne mensuelle des températures de l’air dans la zone non ombragée, et même la température maximale, ne dépassent pas outre mesure la limite permettant la photosynthèse (seuil 34 °C). De plus, les températures minimales mensuelles diffèrent peu entre les zones ombragées et non ombragées, alors que la fluctuation des températures du sol est plus marquée dans la zone non ombragée. Un des principaux constats de cette étude concerne la sécheresse plus marquée des sols dans la zone ombragée, surtout au début et à la fin de la saison sèche. Ceci s’explique probablement par l’augmentation de la transpiration totale par celle des arbres d’ombrage. L’absorption d’eau plus importante en agroforesterie pourrait ainsi avoir un impact négatif sur la croissance des caféiers dans les situations où la disponibilité en eau est un facteur limitatif.
Téléchargements
Références
Alegre C., 1959. Climats et caféiers d’Arabie. Agronomie Tropicale, 14: 23-58.
Avelino J., Muller R. A., Cilas C., Velasco Pascual H., 1991. Development and behavior of coffee orange rust (Hemileia vastatrix Berk. and Br.) in plantations undergoing modernization, planted with dwarf varieties in South-East Mexico. Café Cacao Thé, 35 (1): 21-37.
Avelino J., Cabut S., Barboza B., Barquero M., Alfaro R., Esquivel C., et al., 2007. Topography and crop management are key factors for the development of American leaf spot epidemics on coffee in Costa Rica. Phytopathology, 97: 1532-1542.
Barradas V. L., Fanjul L., 1986. Microclimatic characterization of shaded and open-grown coffee (Coffea arabica L.) plantations in Mexico. Agricultural and Forest Meteorology, 38: 101-112.
Beer J. W., 1992. Production and competitive effects of the shade trees Cordia alliodora and Erythrina poeppigiana in an agroforestry system with Coffea arabica. United Kingdom, Ph. D., University of Oxford, 230 p.
Boreux J., Vaast P., Madappa L. P., Cheppudira K. G., Garcia C., Ghazoul J., 2016. Agroforestry coffee production increased by native shade trees, irrigation, and liming. Agronomy for Sustainable Development, 36 (3): 1-9.
Bunn C., Läderach P., Rivera O. O., Kirschke D., 2015. A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129 (1-2): 89-101. https://link.springer. com/article/10.1007/s10584-014-1306-x
Cannavo P., Sansoulet J., Harmand J. M., Sile P., Dreyer E., Vaast P., 2011. Agroforestry associating coffee and Inga densiflora results in complementarity for water uptake and decreases deep drainage in Costa Rica. Agriculture Ecosystem and Environment, 140: 1-13.
Carr M. K. V., 2001. The water relations and irrigation requirements of coffee. Experimental Agriculture, 37: 1-36.
Craparo A. C. W., Van Asten P. J. A., Läderach P., Jassogne L. T. P., Grab S. W., 2015. Coffea arabica yields decline in Tanzania due to climate change: Global implications. Agricultural and Forest Meteorology, 207: 1-10.
Čermák J., Prax A., 2001. Water balance of a Southern Moravian floodplain forest under natural and modified soil water regimes and its ecological consequences. Annals of Forest Science, 58: 15-29. Čermák J., Nadezhdina N., Trcala M., Simon J., 2015. Open field-applicable instrumental methods for structural and functional assessment of whole trees and stands. iForest-Biogeosciences and Forestry, 8 (3): 226.
Davis A. P., Gole T. W., Baena S., Moat J., 2012. The Impact of Climate Change on Indigenous Arabica Coffee (Coffea arabica): Predicting Future Trends and Identifying Priorities. Plos One, 7: 10-14. http://journals.plos.org/plosone/article?id=10.1371/journal. pone.0047981
Ehrenbergerová L., Cienciala E., Kučera A., Guy L., Habrová H., 2016. Carbon stock in agroforestry coffee plantations with different shade trees in Villa Rica, Peru. Agroforestry Systems, 90 (3): 433-445.
Fischer G., Shah M., Tubiello F. N., van Velhuizen H., 2005. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990-2080. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 360: 2067-2083.
Franck N., Vaast P., 2009. Limitation of coffee leaf photosynthesis by stomatal conductance and light availability under different shade levels. Trees, 23: 761-769.
Garab G. (Ed.), 1998. Photosynthesis: Mechanisms and Effects. Springer Science & Business Media, 4400 p. https://link.springer. com/book/10.1007/978-94-011-3953-3
Harmand J. M., Ávila H., Dambrine E., Skiba U., De Miguel S., Renderos R. V., et al., 2007. Nitrogen dynamics and soil nitrate retention in a Coffea Arabica-Eucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry, 85 (2): 125-139.
IBC, 1986. Cultura do Café no Brasil Manual de Recomendações. Instituto Brasileiro do Café G.E.R.C.A., Rio de Janeiro, 215 p.
IPCC (Intergovernmental Panel On Climate), 2007. Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, 987 p. https://www.ipcc.ch/pdf/assessment-report/ar4/ wg2/ar4_wg2_full_report.pdf
Khatun K., Imbach P., Zamora J. C., 2013. An assessment of climate change impacts on the tropical forests of Central America using the Holdridge Life Zone (HLZ) land classification system. iForest, 6: 183-189.
Laycock D. H., Wood R. A., 1963. Some observations on soil moisture use under tea in Nysaland. II. The effect of shade trees. Tropical Agriculture, 40: 40-42.
Lin B. B., 2007. Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agricultural and Forest Meteorology, 144: 85-94.
Lin B. B., 2010. The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agricultural and Forest Meteorology, 150: 510-518.
Locatelli B., Vignola R., 2009. Managing watershed services of tropical forests and plantations: Can meta-analyses help? Forest Ecology and Management, 258: 1864-1870.
Mes M. G., 1957. Studies on the flowering of Coffea arabica L. III. Various phenomena associated with the dormancy of coffee flower buds. Portugaliae Acta Biologica, 5: 25-44.
Michéli E., Schad P., Spaargaren O., Dent D., Nachtergale F., 2006. World reference base for soil resources. World Soil Resources Reports 103. Food and Agricultural Organization of the United Nations, Rome, 145 p. http://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/
Marengo J. A., 2010. Future climate change scenarios and their application for studies of impacts, vulnerability, and adaptation in Brazil. In: IN Adaptación al cambio climático y servicios ecosistémicos en América Latina. Libro de actas del Seminario Internacional sobre Adaptación al Cambio Climático: el Rol de los Servicios Ecosistémicos, SIAASE 2008, Martínez-Alonso C., Locatelli B., Vignola R., Imbach P. (Eds). CATIE, Serie técnica. Manual técnico, 144 p. http://agents.cirad.fr/pjjimg/bruno.locatelli@cirad.fr/Martinez_2010_Adaptation_servicios_ecosistemicos.pdf
Moguel P., Toledo V. M., 1999. Biodiversity Conservation in Traditional Coffee Systems of Mexico. Conservation Biology, 13: 11-21.
Morais H., Caramori P. H., Maria A., Ribeiro D. A., Gomes J. C., 2006. Microclimatic characterization and productivity of coffee plants
grown under shade of pigeon pea in Southern Brazil. Pesquisa Agropecuária Brasileira, 41: 763-770.
Muller R. A., 1975. L’irrigation précoce, assurance pour une production régulière de haut niveau du caféier Arabica. Café Cacao Thé, 19 (2): 95-122.
Noponen M. R., Haggar J. P., Edwards-Jones G., Healey J. R., 2013. Intensification of coffee systems can increase the effectiveness of REDD mechanisms. Agricultural Systems, 119: 1-9.
Nunes M. A., Bierhuizen J. F., Ploegman C., 1968. Studies on productivity of coffee. I. Effect of light, temperature and CO2 concentration on photosynthesis of Coffea arabica. Acta Botanica Neerlandica, 17 (2): 93-102.
Ovalle-rivera O., Läderach P., Bunn C., Obersteiner M., Schroth G., 2015. Projected Shifts in Coffea arabica Suitability among Major Global Producing Regions Due to Climate Change. Plos one, 10 (4): 1-13.
Padovan M. P., Cortez V. J., Navarrete L. F., Navarrete E. D., Deffner A. C., Centeno L. G, et al., 2015. Root distribution and water use in coffee shaded with Tabebuia rosea Bertol. and Simarouba glauca DC. compared to full sun coffee in sub-optimal environmental conditions. Agroforestry Systems, 89 (5): 857-868.
Ponce M. G., 2008. Plan de Desarollo Concentrado de Villa Rica 2009-2018. Municipalisas distrital de Villa Rica, provincia Oxapampa Región Pasco, DESCO, Centro de Estudios y Promoción del Desarollo, Programa Selva Central, 24 p. https://fr.scribd.com/ document/204873138/PDC-VRica
Rice R., 2008. Agricultural intensification within agroforestry: The case of coffee and wood products. Agriculture. Ecosystems & Environment, 128: 212-218.
Rich P. M., Clark D. B., Clark D. A., Oberbauer S. F., 1993. Longterm study of solar radiation regimes in a tropical wet forest using quantum sensors and hemispherical photography. Agricultural and Forest Meteorology, 65: 107-127.
Rodrigues W. P., Martins M. Q., Fortunato A. S., Rodrigues A. P., Semedo J. N., Simões-Costa M. C., et al., 2016. Long-term elevated air [CO2] strengthens photosynthetic functioning and mitigates the impact of supra-optimal temperatures in tropical Coffea arabica and C. canephora species. Global Change Biology, 22 (1): 415-431. https://www.ncbi.nlm.nih.gov/pubmed/26363182
Siles P., Harman J. M., Vaast P., 2010a. Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforestry Systems, 78: 269-186.
Siles P., Vaast P., Dreyer E., Harmand J. M., 2010b. Rainfall partitioning into throughfall, stemflow and interception loss in a coffee (Coffea arabica L.) monoculture compared to an agroforestry system with Inga densiflora. Journal of Hydrology, 395 (1): 39-48.
Siebert S. F., 2002. From shadeto sun-grown perennial crops in Sulawesi, Indonesia: implications for biodiversity conservation and soil fertility. Biodiversity and Conservation, 11: 1889-1902.
Slingo J. M., Challinor A. J., Hoskins B. J., Wheeler T. R., 2005. Introduction: food crops in a changing climate. Philosophical Transactions of the Royal Society of London, Series B, Biological sciences, 360: 1983-1989.
Smith E. S. C., 1981. The interrelationships between shade types and cocoa pest and disease problems in Papua New Guinea. In: Advantages, disadvantages and desirable characteristics of shade trees for coffee, cocoa and tea, Beer J., 1987. Agroforestry Systems, 5: 3-13. https://link.springer.com/article/10.1007/BF00046410
Solomon S., Qin M., Manning Z., Chen M., Marquis K. B., Averyt M., et al. (Eds), 2007. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, 996 p. https://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_ report_wg1_report_the_physical_science_basis.htm
Suárez de Castro F. M., Avilés L., Moreno C., Bolaños M. 1961. Efecto del sombrío en los primeros años de vida de un cafetal. Café de El Salvador, 31: 317-350.
Vaast P., Harmand J. M., Rapidel B., Jagoret P., Deheuvels O., 2016. Coffee and cocoa production in agroforestry a climate-smart agriculture model. In: Climate change and agriculture worldwide, Torquebiau E. (Ed.), Manley D. (Trad.), Cowan P. (Trad.). Heibelberg, Springer, 209-224.
Vaast P., Charbonnier F., Guillemot J., Maruti G., Devakumar A. S., 2014. Shade level and tree species composition affect water dynamics in coffee agroforestry systems of Western Ghats, India. In: Trees for life: accelerating the impact of agroforestry, abstracts, 3rd World Congress of Agroforestry, Wachira M. A., Rabar B., Magaju C., Borah G. (Eds). Nairobi, World Congress on Agroforestry.
Vaast P., Van Kanten R., Siles P., Angrand J., Aguilar A., 2008. Biophysical interactions between timber trees and Arabica coffee in suboptimal conditions of Central America. In: Toward agroforestry design: an ecological approach, Jose S., Gordon A. M. (Eds). New York, Springer, 133-146. http://www.springer.com/la/book/9781402065712
Van Kanten R., Vaast P., 2006. Transpiration of arabica coffee and associated shade tree species in sub-optimal. Low-altitude conditions of Costa Rica. Agroforestry Systems, 67: 187-202.
Willey R. W., 1975. The use of shade in coffee, cocoa and tea. Horticultural Abstracts, 45 (12): 791-798.
Wintgens J. N., 2004. Coffee: Growing, Processing,Sustainable Production. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 1040 p. http:// eu.wiley.com/WileyCDA/WileyTitle/productCd-3527332537,subjec-tCd-HO40.html
Téléchargements
Numéro
Rubrique
-
Résumé1247
-
PDF 682
-
HTML 924
Reçu
Accepté
Publié
Comment citer
Licence
(c) Tous droits réservés CIRAD - Bois et Forêts des Tropiques 2017
Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
Les articles sont publiés en Accès libre. Ils sont régis par le Droit d'auteur et par les licenses créative commons. La license utilisée est Attribution (CC BY 4.0).