Exploration du potentiel de l’imagerie hyperspectrale proche infrarouge et de la chimiométrie pour discriminer la banque de graines du sol de deux espèces de bois d’Afrique centrale : Erythrophleum suaveolens (Guill. & Perr.) Brenan et Erythrophleum ivorense A. Chev.

Version anglaise

Auteurs

Forest is life, TERRA Teaching and Research Centre Gembloux Agro-Bio Tech, University of Liège Passage des Déportés 2, 5030 Gembloux Belgium - Université Marien N’gouabi École nationale supérieure d’Agronomie et de Foresterie (ENSAF) Laboratoire de Géomatique et d’Écologie tropicale appliquées BP 69, Brazzaville République du Congo
Jean-Louis DOUCET
Forest is life, TERRA Teaching and Research Centre Gembloux Agro-Bio Tech, University of Liège Passage des Déportés 2, 5030 Gembloux Belgium
Félicien TOSSO
Forest is life, TERRA Teaching and Research Centre Gembloux Agro-Bio Tech, University of Liège Passage des Déportés 2, 5030 Gembloux Belgium
Kasso DAÏNOU
Université Nationale d’Agriculture BP 43, Kétou Bénin - Nature+ asbl/TERRA Research Centre, Central African Forests, Gembloux Agro-Bio, Tech, University of Liege Passage des Déportés 2, 5030 Gembloux Belgium
Anaïs-Pasiphaé GOREL
Forest is life, TERRA Teaching and Research Centre Gembloux Agro-Bio Tech, University of Liège Passage des Déportés 2, 5030 Gembloux Belgium - Ghent University Faculty of Bioscience Engineering Department of Plants and Crops Laboratory of Plant Ecology Ghent Belgium
Antoine DERYCK
Forest is life, TERRA Teaching and Research Centre Gembloux Agro-Bio Tech, University of Liège Passage des Déportés 2, 5030 Gembloux Belgium -- Walloon Agricultural Research Centre (CRA-W) Valorization of Agricultural Products Department Chaussée de Namur n°24 5030 Gembloux Belgium
Juan Antonio Fernández PIERNA
Walloon Agricultural Research Centre (CRA-W) Valorization of Agricultural Products Department Chaussée de Namur n°24 5030 Gembloux Belgium

DOI :

https://doi.org/10.19182/bft2024.360.a37138

Mots-clés


banque de graines, espèces de bois, imagerie hyperspectrale proche infrarouge, chimiométrie, identification, discrimination.

Résumé

Les semences contenues dans le stock semencier du sol peuvent être trop petites pour être quantifiées visuellement. Les essences concernées sont généralement identifiées lors d’essais de germination en pépinière, ce qui prend du temps. Cette étude examine une nouvelle approche basée sur l'imagerie hyperspectrale dans le proche infrarouge (PIR) couplée à des outils chimiométriques. Elle se concentre sur le stock semencier du sol des forêts humides africaines, qui est encore méconnu. Nous avons utilisé quatre-vingt-trois semences de deux espèces sœurs, Erythrophleum suaveolens (Guill. & Perr.) Brenan et Erythrophleum ivorense A.Chev., collectées dans le sol forestier (profondeur entre 0 et 10 cm) au Gabon, au Cameroun et au Congo. À l’aide d'analyses en composantes principales et d’analyses discriminantes par moindres carrés partiels, nous avons étudié la capacité de l'imagerie hyperspectrale dans le proche infrarouge à identifier les semences des deux espèces. La méthode est rapide, non-destructive et offre de nouvelles perspectives pour l'étude des stocks semenciers des sols forestiers.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Aubréville A., 1970. Légumineuses-Césalpinioidés (Leguminosae-Caesalpinioideae). Flore du Cameroun. Volume 9. Muséum National d’histoire Naturelle, Paris, France, 339 p.

Biancarosa I., Espe M., Bruckner C. G., Heesch S., Liland N., Waagbo R., et al., 2017. Amino acid composition, protein content, and nitrogen-to-protein conversion factors of 21seaweed species from Norwegian waters. Journal of Applied Phycology, 29: 1001-1009.

https://doi.org/10.1007/s10811-016-0984-3

Ben-Dor E., Banin A., 1995. Near infrared analysis as a rapid method to simultaneously evaluate several soil properties. Soil Science Society of America Journal, 59: 364-372. https://doi.org/10.2136/sssaj1995.03615995005900020014x

Caporaso N., Whitworth M. B., Fisk I. D., 2018. Near-Infrared spectroscopy and hyperspectral imaging for non-destructive quality assessment of cereal grains. Applied Spectroscopy Reviews, 1-21. https://doi.org/10.1080/05704928.2018.1425214

Cui Y., Xu L., An D., Liu Z., Gu J., Li S., et al., 2018. Identification of maize seed varieties based on near infrared reflectance spectroscopy and chemometrics. International Journal of Agricultural and Biological Engineering, 11: 177-183. https://doi.org/10.25165/j.ijabe.20181102.2815

Daïnou K., Bauduin A., Bourland N., Gillet J. F., Fétéké F., Doucet J.-L., 2011. Soil seed bank characteristics in Cameroonian rainforests and implications for post-logging forest recovery. Ecological Engineering, 37: 1499-1506. https://doi.org/10.1016/j.ecoleng.2011.05.004

Dale L. M., Thewis A., Boudry C., Rotar I., Dardenne P., Baeten V, et al., 2013. Hyperspectral imaging applications in agriculture and agrofood product quality and safety control: a review. Applied Spectroscopy Reviews, 48: 142-159. https://doi.org/10.1080/05704928.2012.705800

Dale L. M., Thewis A., Rotar I., Fernández Piema J. A., Boudry C., Vidican R. M., et al., 2012. Chemometric tools for NIRS and NIR hyperspectral imaging. Bulletin of Usavm Cluj Napoca Agriculture, 69: 70-76. http://hdl.handle.net/2268/132855

D'Erfurth I., Le Signor C., Aubert G., Sanchez M., Vernoud V., Darchy B., et al., 2012. A role for an endosperm-localized subtilase in the control of seed size in legumes. New Phytologist, 196: 738-751. https://doi.org/10.1111/j.1469-8137.2012.04296.x

Douh C., Daïnou K., Loumeto J. J., Moutsambote J.-M., Fayolle A., Tosso F, et al., 2018a. Soil seed bank characteristics in two central African forest types and implications for forest restoration. Forest Ecology and Management, 409: 766-776. https://doi.org/10.1016/j.foreco.2017.12.012

Douh C., Gorel A. P., Daïnou K., Fonteyn D., Bustillo E., Obsomer L, et al., 2018b. Banque de graines du sol et déterminants de la germination du tali, Erythrophleum suaveolens (Guill. & Perr.) Brenan. Bois et Forêts des Tropiques, 338 : 43-55. https://doi.org/10.19182/bft2018.338.a31681

Douh C., Mabengo B. C., Nzila J. D., Malonga Mbouchi L., Nsongola G., Loumeto J. J., et al., 2023. Soil Seed Bank Characteristics in Congolese Rainforests and Implications for Post-Logging Plots Reforestation. Open Journal of Forestry, 13: 294-314. https://doi.org/10.4236/ojf.2023.133018

Dumas C., Rogowsky P., 2008. Fertilization and early seed formation. , Académie des Sciences Institut de France, Comptes Rendus Biologies, 331: 715-725. https://doi.org/10.1016/j.crvi.2008.07.013

Duminil J., Daïnou K., Kombi Kaviriri D., Gillet P., Loo J., Doucet J.-L., et al., 2016. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests. Heredity (Edinb), 116: 295-303. https://doi.org/10.1038/hdy.2015.101

Duminil J., Heuertz M., Doucet J.-L., Bourland N., Cruaud C., Gavory F, et al., 2010. CpDNA-based species identification and phylogeography: application to African tropical tree species. Molecular Ecology, 19: 5469-5483. https://doi.org/10.1111/j.1365-294X.2010.04917.x

Eylenbosch D., Bodson B., Baeten V., Fernández Pierna J. A., 2017. NIR hyperspectral imaging spectroscopy and chemometrics for the discrimination of roots and crop residues extracted from soil samples. Journal of Chemometrics, 32: e2982. https://doi.org/10.1002/cem.2982

Fernández Pierna J. A., Vermeulen P., Amand O., Tossens A., Dardenne P., Baeten V., 2012. NIR Hyperspectral Imaging spectroscopy and chemometrics for the detection of undesirable substances in food and feed. Chemometrics and intelligent laboratory systems, 117: 233-239. https://doi.org/10.1016/j.chemolab.2012.02.004

Fernández Pierna J. A., Vermeulen P., Stilmant D., Dupuis B., Dardenne P., Baeten V., 2010. Characterisation of fonio millet by near infrared hyperspectral imaging, Proceedings of the 14th International Conference on Near Infrared Spectroscopy (ICNIRS): Breaking the Dawn. Bangkok, Thailand, 997-1002.

Fernández Pierna J. A., Baeten V., Dardenne P., Dubois J., Lewis E. N., Burger J., 2009. Spectroscopic Imaging. In: Comprehensive Chemometrics – 1st Edition. Brown S., Tauler R., Walczak B. (eds). Elsevier, 4: 173-196. https://doi.org/10.1016/B978-044452701-1.00004-1

Fernández Pierna J. A., Baeten V., Dardenne P., 2006. Screening of compound feeds using NIR hyperspectral data. Chemometrics and intelligent laboratory systems, 84: 114-118. https://doi.org/10.1016/j.chemolab.2006.03.012

Fernández Pierna J. A., Baeten V., Michotte Renier A., Cogdill R. P., Dardenne P., 2004. Combination of support vector machines (SVM) and near-infrared (NIR) imaging spectroscopy for the detection of meat and bone meal (MBM) in compound feeds. Journal of Chemometrics, 18: 341-349. https://doi.org/10.1002/cem.877

Freycon V., 2014. Caractérisation des sols de Loundoungou et de Mokabi (Congo). Rapport de mission DynAfFor, 2 au 24 avril 2014. CIRAD, Montpelier. https://agritrop.cirad.fr/573670/

Gorel A. P., Fayolle A., Doucet J. -L., 2015. Écologie et gestion des espèces multi-usages du genre Erythrophleum (Fabaceae-Caesapinioideae) en Afrique (synthèse bibliographique). Biotechnologie, Agronomie, Société et Environnement, 19 : 415-429. https://popups.uliege.be/1780-4507/index.php?id=12455

Hacisalihoglu G., Larbi B., Settles A., 2010. Near-Infrared reflectance spectroscopy predicts protein, starch, and seed weight in intact seeds of Common Bean (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 58: 702-706. https://doi.org/10.1021/jf9019294

Hille Ris Lambers J., Clark J. S., Lavine M., 2005. Implications of seed banking for recruitment of southern Appalachian woody species. Ecology, 86: 85-95. https://doi.org/10.1890/03-0685

Janné K., Pettersen J., Lindberg N. O., Lundstedt T., 2001. Hierarchical principal component analysis (PCA) and projection to latent structure (PLS) technique on spectroscopic data as a data pre-treatment for calibration. Journal of Chemometrics, 15: 203-213. https://doi.org/10.1002/cem.677

Kjeldahl J., 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift fur Anal Chemie, 22: 366-382. https://doi.org/10.1007/BF01338151

Legendre P., Gallagher E. D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129: 271-280. https://doi.org/10.1007/s004420100716

Lipoma M. L., Funes G., Díaz S., 2018. Fire effects on the soil seed bank and post‐fire resilience of a semi‐arid shrubland in central Argentina. Austral Ecology, 43: 46-55. https://doi.org/10.1111/aec.12533

Martins A. M., Engel V. L., 2007. Soil seed banks in tropical forest fragments with different disturbance histories in south-eastern Brazil. Ecological Engineering, 31: 165-174. https://doi.org/10.1016/j.ecoleng.2007.05.008

Massart D. L., Vandeginste B. G. M., Buydens L. M. C., De Jong S., Lewi P. J., Smeyers-Verbeke J., 1998. Handbook of chemometrics and qualimetrics, Part A. NIR Publications, West Sussex, United Kingdom, 867 p. https://www.sciencedirect.com/bookseries/data-handling-in-science-and-technology/vol/20/part/PA

McGoverin C. M., Engelbrecht P., Geladi P., Manley M., 2011. Characterisation of nonviable whole barley, wheat and sorghum grains using near-infrared hyperspectral data and chemometrics. Analytical Bioanalytical. Chemistry, 401: 2283-2289. https://doi.org/10.1007/s00216-011-5291-x

Mæhre H. K., Dalheim L., Edvinsen G. K., Elvevoll E. O., Jensen I. -J., 2018. Protein determination-method matters. Foods, 7: 5. https://doi.org/10.3390/foods7010005

Naganathan G. K., Grimes L. M., Subbiah J., Calkins C. R., Samal A., Meyer G. E., 2008. Visible/near-infrared hyperspectral imaging for beef tenderness prediction. Computers and Electronics in Agriculture, 64: 225-233. https://doi.org/10.1016/j.compag.2008.05.020

Noguero M., Le Signor C., Verdier J., Aubert G., Udvardi M. K., Buitink J., et al., 2011. Rôle de l'albumen dans le développement de la graine chez les légumineuses. In : Graine 2011 (p. S4). Colloque national du Réseau français de Biologie des Graines, Nantes, France, 27-28 octobre 2011. https://prodinra.inra.fr/record/48575

Odum E. P., 1969. The strategy of ecosystem development. Science, 164: 262-270.

Padonou E. A., Akakpo B. A., Tchigossou B., Djossa B., 2022. Methods of soil seed bank estimation: a literature review proposing further work in Africa. iForest, 15: 121-127. https://doi.org/10.3832/ifor3850-015

Phuangsombut K., Ma T., Inagaki T., Tsuchikawa S., Terdwongworakul A., 2018. Near-infrared hyperspectral imaging for classification of mung bean seeds. International Journal of Food Properties, 21: 799-807. https://doi.org/10.1080/10942912.2018.1476378

Plaza-Bonilla D., Álvaro-Fuentes J., Hansen N. C., Lampurlanés J., Cantero-Martínez C., 2014. Winter cereal root growth and aboveground-belowground biomass ratios as affected by site and tillage system in dryland Mediterranean conditions. Plant and soil, 374: 925-939. https://doi.org/10.1007/s11104-013-1926-3

Plue J., Verheyen K., Calster H. V., Marage D., Thompson K., Kalamees R., et al., 2010. Seed banks of temperate deciduous forests during secondary succession. Journal of Vegetation Science, 21: 965-978. https://doi.org/10.1111/j.1654-1103.2010.01203.x

Reeve A. S., Siegel D., Glaser P. H., 1996. Geochemical controls on peatland pore water from the Hudson Bay lowland: a multivariate statistical approach. Journal of Hydrology, 181: 285-304. https://doi.org/10.1016/0022-1694(95)02900-1

Roberts H. A., 1981. Seed banks in soils. In: Advances in Applied Biology. Coaker T. H. (ed.). Academic Press, 6: 1-55.

Roggo Y., Edmond A., Chalus P., Ulmschneider M., 2005. Infrared Hyperspectral Imaging for qualitative analysis of pharmaceutical solid forms. Analytica Chimica Acta, 535: 79-87. https://doi.org/10.1016/j.aca.2004.12.037

Sadaiah K., Veronica N., Nagendra V., Niharika G., Neeraja C. N., Surekha K, et al., 2018. Methods of Protein Estimation and the Influence of Heat Stress on Rice Grain Protein. International Journal of Pure & Applied Bioscience, 6: 159-168. http://doi.org/10.18782/2320-7051.5733

Segalen P., 1967. Les sols et la géomorphologie du Cameroun. Cahier de l’ORSTOM, Série Pédologie, 5 (2) : 137-188.

Shahin M. A., Symons S. J., Hatcher D. W., 2014. Quantification of Mildew Damage in Soft Red Winter Wheat Based on Spectral Characteristics of Bulk Samples: A Comparison of Visible-Near-Infrared Imaging and Near-Infrared Spectroscopy. Food and Bioprocess Technology, 7: 224-234. https://doi.org/10.1007/s11947-012-1046-8

Shen Y. X., Liu W. L., Li Y. H., Guan H. L., 2014. Large sample area and size are needed for forest soil seed bank studies to ensure low discrepancy with standing vegetation. PLoS ONE, 9 (8): e105235. https://doi.org/10.1371/journal.pone.0105235

Silverstein R. M., Webster F. X., Kiemle D. J., 2007. Spectrometric identification of organic compounds. Seventh edition. State University of New York. College of Environmental Science & Forestry, 502 p. https://doi.org/10.1021/ed039p546

Skowronek S., Terwei A., Zerbe S., Mölder I., Annighöfer P., Kawaletz H., et al., 2014. Regeneration potential of floodplain forests under the influence of non-native tree species: soil seed bank analysis in Northern Italy. Restoration Ecology, 22: 22-30. https://doi.org/10.1111/rec.12027

Sousa T. R., Costa F. R. C., Bentos T. V., Leal Filho N., Mesquita R. C. G., Ribeiro I. O., 2017. The effect of forest fragmentation on the soil seed bank of Central Amazonia. Forest Ecology and Management, 393: 105-112. https://doi.org/10.1016/j.foreco.2017.03.020

R Core Team, 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/

Vermeulen P., Ebene M. B., Orlando B., Fernández Pierna J. A., Baeten V., 2017. Online detection and quantification of particles of ergot bodies in cereal flour using near infrared hyperspectral imaging. Food Additives & Contaminants: Part A, 34 (8): 1312-1319. https://doi.org/10.1080/19440049.2017.1336798

Vermeulen P., Fernández Pierna J. A., Abbas O., Dardenne P., Baeten V., 2010. Authentication and traceability of agricultural and food products using vibrational spectroscopy. In: Applications of vibrational spectroscopy in food science. Li-Chan E.C.Y., Griffiths P.R., Chalmers J. M. (Eds.). United Kingdom, John Wiley & Sons, 609-630. https://doi.org/10.1002/0470027320.s8969

Williams P., Geladi P., Fox G., Manley M., 2009. Maize kernel hardness classification by Near Infrared (NIR) Hyperspectral Imaging and multivariate data analysis. Analytica Chimica Acta, 653: 121-130. https://doi.org/10.1016/j.aca.2009.09.005

Wise B. M., Shaver J. M., Gallagher N. B., Windig W., Bro R., Koch R. S., 2006. PLSJToolbox Version 4.0 for use with Matlab™. USA, Eigenvector Research Inc., 420 p.

Yang Z., Hana L., Fernandez Pierna J. A., Dardenne P., Baeten V., 2011. The potential of near infrared microscopy to detect, identify and quantify processed animal by-products. Journal of Near Infrared Spectroscopy, 19: 211-231. https://doi.org/10.1255/jnirs.935

Zebaze D., Fayolle A., Daïnou K., Libalah M., Droissart V., Sonké B., et al., 2021. Land Use Has Little Influence on the Soil Seed Bank in a Central African Moist Forest. Biotropica, 54: 100-112. https://doi.org/10.1111/btp.13032

Near-infrared (NIR) hyperspectral imaging system (courtesy of the Walloon Agricultural Research Center, Belgium). Photo N. Kayoka Mukendi.

Numéro

Rubrique

ARTICLES SCIENTIFIQUES
Métriques
Vues/Téléchargements
  • Résumé
    48
  • SCIENTIFIC ARTICLE - PDF
    147

Reçu

2023-04-03

Accepté

2024-04-25

Publié

2024-06-01

Comment citer

DOUH, C., DOUCET, J.-L., TOSSO, F., DAÏNOU, K., GOREL, A.-P., DERYCK, A., & PIERNA, J. A. F. (2024). Exploration du potentiel de l’imagerie hyperspectrale proche infrarouge et de la chimiométrie pour discriminer la banque de graines du sol de deux espèces de bois d’Afrique centrale : Erythrophleum suaveolens (Guill. & Perr.) Brenan et Erythrophleum ivorense A. Chev.: Version anglaise. BOIS & FORETS DES TROPIQUES, 360, 77–86. https://doi.org/10.19182/bft2024.360.a37138

Articles les plus lus par le même auteur ou la même autrice

<< < 1 2