Low-cost agroforestry technologies for climate change mitigation and adaptation in Sub-Saharan Africa: A review

Authors

Eméline S. P. ASSÈDÉ
aDepartment of management of Natural Resources, Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin
Samadori S. H. BIAOU
aDepartment of management of Natural Resources, Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin -- cLaboratory of Ecology, Botany and Plant biology, University of Parakou, 03 BP 125, Parakou, Benin
Paxie W. CHIRWA
bDepartment of Plant and Soil Sciences, University of Pretoria, 1121 South Street, Pretoria, South Africa
Jesugnon Fifamè Murielle Féty TONOUEWA
a:1:{s:5:"fr_FR";s:22:"Université de Parakou";}
Eduardo Valdés VELARDE
Agroforestry Center for Sustainable Development, Plant Science Department, Chapingo Autonomous University, Km 38.5 Carretera Fed. México-Texcoco s/n, Col. Chapingo, Texcoco, Estado de México, Mexico, 56230

DOI:

https://doi.org/10.19182/bft2023.356.a36908

Keywords


agroforestry, innovation, impact, cost, Sub-Saharan Africa.

Abstract

Agroforestry encompasses a large set of techniques and practices that have the potential to improve farm productivity with minimum environmental impacts in the context of climate change mitigation and adaptation (CCMA). In this paper, we discuss the relevance of agroforestry technologies and practices for CCMA in Sub-Saharan Africa (SSA). We recorded 173 scholarly works and and reviewed 62. Our findings indicate that comprehensive and well-developed technologies are used in agroforestry systems in SSA. They can be classified into four main groups (intercropping, improved fallows, mulching and parkland) and seven sub-groups (relay cropping, hedgerow intercropping, rotational woodlots, coppicing fallows, farmer-managed regeneration, on-farm tree domestication through poly-propagation and mulching) based on factors including the origins and uses of the trees and the types of tree-crop association. Our review showed that the maximum positive effect of parkland agroforestry is obtained when tree density ranges from 20 to 40 tree/ha, indicating an increase in crop production of 915.9 kg/ha. Furthermore, overall, the returns to labour of techniques involving fertilizer trees outperform those for natural fallows by 17%. Agroforestry techniques contribute substantially to the REDD+ program, but the best techniques with the highest cost-benefit- ratio and a substantial CCMA effect appear to be the intercropping and improved fallow systems. However, we observed a lack of detailed context-specific economic, social and environmental costs for the different techniques. For effective and rational decision-making by farmers in their adoption of agroforestry, further research should focus on filling in the detailed economic, social and environmental costs of each technology in each specific context.

Downloads

Download data is not yet available.

References

Ajayi O. C., Pace Kwesiga F., Mafongoya P., Franzel S., 2005. Impact of Fertilizer Tree Fallows in Eastern Zambia. Nairobi, Kenya, World Agroforestry Centre (ICRAF), 28 p.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.581.1853&rep=rep1&type=pdf

Ajayi O. C., Place F., Akinnifesi F. K., Sileshi G. W., 2011. Agricultural success from Africa: The case of fertilizer tree systems in Southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe). International Journal of Agricultural Sustainability, 9 (1): 129-136. https://doi.org/10.3763/ijas.2010.0554

Akinnifesi F. K., Chirwa P. W., Ajayi O. C., Sileshi G., Matakala P., et al., 2008. Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agricultural Journal, 3 (1): 58-75. https://www.medwelljournals.com/abstract/?doi=aj.2008.58.75

Amadalo B., Jama B., Niang A., Noordin Q., Nyasimi M., et al., 2003. Improved fallows for western Kenya: an extension guideline. Nairobi, Kenya, World Agroforestry Centre (ICRAF), 56 p. http://www.knowledgebank.irri.org/cglrc/icraf/Improvedfallow.pdf

Assèdé E. S. P., Azihou A. F., Geldenhuys C. J., Chirwa P. W., Biaou S. S. H., 2020. Sudanian versus Zambezian woodlands of Africa: Composition, ecology, biogeography and use. Acta Oecologica, 107: 103599. https://www.sciencedirect.com/science/article/abs/pii/S1146609X20300916

Bambio Y., Agha S. B., 2018. Land tenure security and investment: Does strength of land right really matter in rural Burkina Faso? World Development, 111: 130-147. https://doi.org/10.1016/j.worlddev.2018.06.026

Bayala J., Kalinganire A., Sileshi G. W., Tondoh J. E., 2018. Soil organic carbon and nitrogen in agroforestry systems in sub-Saharan Africa: A review. In: Bationo A., Ngaradoum D., Youl S., Lompo F., Fening J. (eds). Improving the profitability, sustainability and efficiency of nutrients through site specific fertilizer recommendations in West Africa agro-ecosystems. Springer, Cham, 51-61. https://doi.org/10.1007/978-3-319-58789-9_4

Bayala J., Kalinganire A., Tchoundjeu Z., Sinclair F., Garrity D., 2011. Conservation agriculture with trees in the West African Sahel: A review. Nairobi, Kenya, World Agroforestry Centre (ICRAF), Occasional Paper 14.

Bayala J., Sanou J., Teklehaimanot Z., Kalinganire A., Ouédraogo S. J., 2014. Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Current Opinion in Environmental Sustainability, 6: 28-34. https://doi.org/10.1016/j.cosust.2013.10.004

Binam J. N., Place F., Djalal A. A., Kalinganire A., 2017. Effects of local institutions on the adoption of agroforestry innovations: Evidence of farmer managed natural regeneration and its implications for rural livelihoods in the Sahel. Agricultural and Food Economics, 5: 2. https://doi.org/10.1186/s40100-017-0072-2

CCNUC, 1992. Convention-cadre des Nations Unies sur les changements climatiques. New York, 31 p. https://www.recyclage-recuperation.fr/comptes/jcamille/convention_cadre%20_climat.pdf

Cheesman S., Thierfelder C., Eash N. S., Kassie G. T., Frossard E., 2016. Soil carbon stocks in conservation agriculture systems of Southern Africa. Soil and Tillage Research, 156: 99-109. https://doi.org/10.1016/j.still.2015.09.018

Chirwa T. S., Mafongoya P. L., Chintu R., 2003. Mixed planted-fallows using coppicing and non-coppicing tree species for degraded Acrisols in eastern Zambia. Agroforestry Systems, 59 (3): 243-251. https://doi.org/10.1023/B:AGFO.0000005225.12629.61

Cooper P. J. M., Dimes J., Rao K. P. C., Shapiro B., Shiferaw B., et al., 2008. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agriculture, Ecosystems & Environment, 126 (1-2): 24-35. https://doi.org/10.1016/j.agee.2008.01.007

Corbeels M., Cardinael R., Naudin K., Guibert H., Torquebiau E., 2019. The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil and Tillage Research, 188: 16-26. https://doi.org/10.1016/j.still.2018.02.015

Dallimer M., Stringer L. C., Orchard S. E., Osano P., Njoroge G., et al., 2018. Who uses sustainable land management practices and what are the costs and benefits? Insights from Kenya. Land Degradation and Development, 29 (9): 2822-2835. https://doi.org/10.1002/ldr.3001

Degrande A., 2001. Farmer assessment and economic evaluation of shrub fallows in the humid lowlands of Cameroon. Agroforestry Systems, 53 (1): 11-19. https://doi.org/10.1023/A:1012220807248

Djalante R., 2018. A systematic literature review of research trends and authorships on natural hazards, disasters, risk reduction and climate change in Indonesia. Natural Hazards & Earth System Sciences, 18 (6): 1785-1810. https://doi.org/10.5194/nhess-18-1785-2018

Fahmi M. K. M., Dafa-Alla D.-A. M., Kanninen M., Luukkanen O., 2018. Impact of agroforestry parklands on crop yield and income generation: Case study of rainfed farming in the semi-arid zone of Sudan. Agroforestry Systems, 92 (3): 785-800. https://doi.org/10.1007/s10457-016-0048-3

FAO., 2020. FAO’s role in promoting conservation agriculture. Conservation Agriculture. Website, FAO. http://www.fao.org/ag/ca/

GIEC, 2007. Changements climatiques 2007. Rapport de synthèse. Contribution des Groupes de travail I, II et III au quatrième rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat. PNUE, OMM, 114 p. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_fr.pdf

Gregory P. J., Ingram J. S., Brklacich M., 2005. Climate change and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1463): 2139-2148. https://doi.org/10.1098/rstb.2005.1745

Haider H., Smale M., Theriault V., 2018. Intensification and intrahousehold decisions: Fertilizer adoption in Burkina Faso. World Development, 105: 310-320. https://doi.org/10.1016/j.worlddev.2017.11.012

Haile M., 2005. Weather patterns, food security and humanitarian response in sub-Saharan Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1463): 2169-2182. https://doi.org/10.1098/rstb.2005.1746

Halevi G., Moed H., Bar-Ilan J., 2017. Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation – Review of the literature. Journal of Informetrics, 11 (3): 823-834. https://doi.org/10.1016/j.joi.2017.06.005

Ibrahim A., Abaidoo R. C., Fatondji D., Opoku A., 2015. Integrated use of fertilizer micro-dosing and Acacia tumida mulching increases millet yield and water use efficiency in Sahelian semi-arid environment. Nutrient Cycling in Agroecosystems, 103 (3): 375-388. https://doi.org/10.1007/s10705-015-9752-z

ICRAF, 2017. Corporate Strategy 2017-2026. Transforming lives and landscapes with trees. Nairobi, Kenya, 35 p. https://www.worldagroforestry.org/sites/default/files/users/admin/Strategy%20Report_2017.pdf

Jahan H., Rahman Md. W., Islam Md. S., Rezwan-Al-Ramim A., Tuhin Md. M.-U.-J., et al., 2022. Adoption of agroforestry practices in Bangladesh as a climate change mitigation option: Investment, drivers, and SWOT analysis perspectives. Environmental Challenges, 7: 100509. https://www.sciencedirect.com/science/article/pii/S2667010022000683

Kaba J. S., Zerbe S., Zanotelli D., Abunyewa A. A., Tagliavini M., 2017. Uptake of nitrogen by cocoa (Theobroma cocoa L.) trees derived from soil decomposition of gliricidia (Gliricidia sepium Jacq.) shoots. VIII International Symposium on Mineral Nutrition of Fruit Crops. Acta Horticulturae,1217: 263-270. https://www.actahort.org/books/1217/1217_33.htm

Kaba J. S., Zerbe S., Agnolucci M., Scandellari F., Abunyewa A. A., et al., 2019. Atmospheric nitrogen fixation by gliricidia trees (Gliricidia sepium (Jacq.) Kunth ex Walp.) intercropped with cocoa (Theobroma cacao L.). Plant and Soil, 435 (1-2): 323-336. https://doi.org/10.1007/s11104-018-3897-x

Kaba J. S., Abunyewa A. A., 2021. New aboveground biomass and nitrogen yield in different ages of gliricidia (Gliricidia sepium Jacq.) trees under different pruning intensities in moist semi-deciduous forest zone of Ghana. Agroforestry Systems, 95: 835-842. https://doi.org/10.1007/s10457-019-00414-3

Kalaba K. F., Chirwa P., Syampungani S., Ajayi C. O., 2010. Contribution of agroforestry to biodiversity and livelihoods improvement in rural communities of Southern African regions. In: Tscharntke T., Leuschner C., Veldkamp E., Faust H., Guhardja E., et al. (eds). Tropical Rainforests and Agroforests under Global Change. Environmental Science and Engineering. Berlin, Heidelberg, Springer, 461-476. https://doi.org/10.1007/978-3-642-00493-3_22

Kang B. T., 1997. Alley cropping – Soil productivity and nutrient recycling. Forest Ecology and Management, 91 (1): 75-82. https://doi.org/10.1016/s0378-1127(96)03886-8

Kant R., Verma J., Thakur K., 2012. Distribution pattern, survival threats and conservation of’ ‘Astavarga’ orchids in Himachal Pradesh, Northwest Himalaya. Plant Archives, 12 (1): 165-168. https://www.researchgate.net/profile/Ravi-Kant-14/publication/282747692_Distribution_pattern_survival_threats_and_conservation_of_%27astavarga%27_orchids_in_himachal_pradesh_northwest_himalaya/links/561b33fa08ae044edbb21129/Distribution-pattern-su

Kimaro A. A., Mpanda M., Rioux J., Aynekulu E., Shaba S., et al., 2016. Is conservation agriculture ‘climate-smart’ for maize farmers in the highlands of Tanzania? Nutrient Cycling in Agroecosystems, 105 (3): 217-228. https://doi.org/10.1007/s10705-015-9711-8

Kimaro A. A., Sererya O. G., Matata P., Uckert G., Hafner J., et al., 2019. Understanding the multidimensionality of climate-smartness: Examples from agroforestry in Tanzania. In: Rosenstock T., Nowak A., Girvetz E. (eds). The Climate-Smart Agriculture Papers. Springer, Cham, 153-162. https://doi.org/10.1007/978-3-319-92798-5_13

Kiyani P., Andoh J., Lee Y., Lee D. K., 2017. Benefits and challenges of agroforestry adoption: a case of Musebeya sector, Nyamagabe District in southern province of Rwanda. Forest Science and Technology, 13 (4): 174-180. https://www.tandfonline.com/doi/pdf/10.1080/21580103.2017.1392367

Kohl C., McIntosh E. J., Unger S., Haddaway N. R., Kecke S., et al., 2018. Online tools supporting the conduct and reporting of systematic reviews and systematic maps: A case study on CADIMA and review of existing tools. Environmental Evidence, 7 (1): 8. https://doi.org/10.1186/s13750-018-0115-5

Latruffe L., Diazabakana A., Bockstaller C., Desjeux Y., Finn J., et al., 2016. Measurement of sustainability in agriculture: A review of indicators. Studies in Agricultural Economics, 118 (3): 123-130. http://repo.aki.gov.hu/2092/

Lawin K. G., Tamini L. D., 2019. Land Tenure Differences and Adoption of Agri-Environmental Practices: Evidence from Benin. The Journal of Development Studies, 55 (2): 177-190. https://doi.org/10.1080/00220388.2018.1443210

Leakey R., 2017. Trees: Meeting the social, economic and environmental needs of poor farmers–Scoring sustainable development goals: an update. Multifunctional Agriculture: Achieving Sustainable Development in Africa, 417-420. http://dx.doi.org/10.1016/B978-0-12-805356-0.00040-4

Leydesdorff L., de Moya-Anegón F., Guerrero-Bote V. P., 2010. Journal maps on the basis of Scopus data: A comparison with the Journal Citation Reports of the ISI. Journal of the American Society for Information Science and Technology, 61 (2): 352-369. https://doi.org/10.1002/asi.21250

Mafongoya P. L., Bationo A., Kihara J., Waswa B. S., 2006. Appropriate technologies to replenish soil fertility in southern Africa. Nutrient Cycling in Agroecosystems, 76 (2-3): 137-151. https://doi.org/10.1007/s10705-006-9049-3

Masikati P., Manschadi A., Van Rooyen A., Hargreaves J., 2014. Maize-mucuna rotation : An alternative technology to improve water productivity in smallholder farming systems. Agricultural Systems, 123: 62‑70. https://doi.org/10.1016/j.agsy.2013.09.003

Maithya J. M., Kimenye L. N., Mugivane F. I., Ramisch J. J., 2006. Profitability of agroforestry-based soil fertility management technologies: The case of small holder food production in Western Kenya. Nutrient Cycling in Agroecosystems, 76 (2-3): 355-367. https://doi.org/10.1007/s10705-006-9062-6

Maranz S., 2009. Tree mortality in the African Sahel indicates an anthropogenic ecosystem displaced by climate change. Journal of Biogeography, 36 (6): 1181-1193. https://doi.org/10.1111/j.1365-2699.2008.02081.x

Materechera S. A., Swanepol H. R., 2013. Integrating the indigenous Kei apple (Dovyalis caffra) into a local permaculture vegetable home eco-gardening system among resource-poor households in a semi-arid environment of South Africa. Acta Horticulturae, 979: 225-232. https://doi.org/10.17660/ActaHortic.2013.979.22

Mercer D. E., 2004. Adoption of agroforestry innovations in the tropics: a review. Agroforestry Systems, 61 (1): 311-328. https://doi.org/10.1023/B:AGFO.0000029007.85754.70

Noyons E., 2001. Bibliometric mapping of science in a policy context. Scientometrics, 50 (1), 83-98. https://doi.org/10.1023/a:1005694202977

Nyadzi G. I., Otsyina R. M., Banzi F. M., Bakengesa S. S., Gama B. M., et al., 2003. Rotational woodlot technology in northwestern Tanzania: Tree species and crop performance. Agroforestry Systems, 59 (3): 253-263. https://doi.org/10.1023/B:AGFO.0000005226.62766.05

Nyasimi M., Kimeli P., Sayula G., Radeny M., Kinyangi J., Mungai C., 2017. Adoption and dissemination pathways for climate-smart agriculture technologies and practices for climate-resilient livelihoods in Lushoto, Northeast Tanzania. Climate, 5 (3): 63. https://doi.org/10.3390/cli5030063

OECD/FAO., 2016. OECD-FAO Agricultural Outlook 2016-2025 (Chinese version). OECD Publishing, 136 p. https://doi.org/10.1787/19991142

Ouédraogo M., Houessionon P., Zougmoré R. B., Partey S. T., 2019. Uptake of climate-smart agricultural technologies and practices: Actual and potential adoption rates in the climate-smart village site of Mali. Sustainability, 11 (17): 4710. https://doi.org/10.3390/su11174710

Pachauri R. K., Reisinger A., 2007. IPCC fourth assessment report. Geneva, Switzerland, IPCC. https://www.ipcc.ch/assessment-report/ar4/

Partey S. T., Sarfo D. A., Frith O., Kwaku M., Thevathasan N. V., 2017a. Potentials of bamboo-based agroforestry for sustainable development in Sub-Saharan Africa: A review. Agricultural Research, 6 (1): 22-32. https://doi.org/10.1007/s40003-017-0244-z

Partey S.T., Zougmoré R. B., Ouédraogo M., Thevathasan N. V., 2017b. Why promote improved fallows as a climate-smart agroforestry technology in sub-Saharan Africa? Sustainability, 9 (11): 1887. https://doi.org/10.3390/su9111887

Phiri E., Verplancke H., Kwesiga F., Mafongoya P., 2003. Water balance and maize yield following improved sesbania fallow in eastern Zambia. Agroforestry Systems, 59 (3): 197-205. https://doi.org/10.1023/B:AGFO.0000005220.67024.2c

Place F., Roothaert R. L., Maina L., Franzel S., Sinja J., Wanjiku J., 2009. The impact of fodder trees on milk production and income among smallholder dairy farmers in East Africa and the role of research. Nairobi, Kenya, World Agroforestry Centre (ICRAF), Occasional Paper 12. 55 p. https://cgspace.cgiar.org/bitstream/handle/10568/2345/OP16490.pdf?sequence=3

Rao M. R., Mathuva M. N., 2000. Legumes for improving maize yields and income in semi-arid Kenya. Agriculture, Ecosystems & Environment, 78 (2): 123–137. https://doi.org/10.1016/S0167-8809(99)00125-5

Sawadogo H., 2011. Using soil and water conservation techniques to rehabilitate degraded lands in northwestern Burkina Faso. International Journal of Agricultural Sustainability, 9 (1): 120-128. https://www.tandfonline.com/doi/pdf/10.3763/ijas.2010.0552

Sileshi G. W., Akinnifesi F. K., Mafongoya P. L., Kuntashula E., Ajayi O. C., 2020. Potential of Gliricidia-Based Agroforestry Systems for Resource-Limited Agroecosystems. In: Dagar J. C., Gupta S. R., Teketay D. (eds). Agroforestry for Degraded Landscapes. Singapore, Springer, 255-282. https://doi.org/10.1007/978-981-15-4136-0_9

Swamila M., Philip D., Akyoo A. M., Sieber S., Bekunda M., Kimaro A. A., 2020. Gliricidia agroforestry technology adoption potential in selected dryland areas of Dodoma Region, Tanzania. Agriculture, 10 (7): 1-17. https://doi.org/10.3390/agriculture10070306

Tabutin D., Schoumaker B., Coleman H., 2020. The demography of Sub-Saharan Africa in the 21st century: Transformations since 2000, outlook to 2050. Population, 75 (2): 165-286. https://doi.org/10.3917/popu.2002.0169

Takimoto A., Nair P. R., Alavalapati J. R., 2008. Socioeconomic potential of carbon sequestration through agroforestry in the West African Sahel. Mitigation and Adaptation Strategies for Global Change, 13 (7): 745-761. https://doi.org/10.1007/s11027-007-9140-3

Tchoundjeu Z., Degrande A., Leakey R. R., Nimino G., Kemajou E., et al., 2010. Impacts of participatory tree domestication on farmer livelihoods in West and Central Africa. Forests, Trees and Livelihoods, 19 (3): 217-234. https://doi.org/10.1080/14728028.2010.9752668

Thierfelder C., Chivenge P., Mupangwa W., Rosenstock T. S., Lamanna C., et al., 2017. How climate-smart is conservation agriculture (CA)? – Its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. Food Security, 9 (3): 537-560. https://doi.org/10.1007/s12571-017-0665-3

Thorlakson T., Neufeldt H., 2012. Reducing subsistence farmers’ vulnerability to climate change: Evaluating the potential contributions of agroforestry in western Kenya. Agriculture & Food Security, 1 (1): 15. https://doi.org/10.1186/2048-7010-1-15

Toth G. G., Nair P. K., Duffy C. P., Franzel S. C., 2017. Constraints to the adoption of fodder tree technology in Malawi. Sustainability Science, 12 (5): 641-656. https://doi.org/10.1007/s11625-017-0460-2

Unruh J. D., Houghton R. A., Lefebvre P. A., 1993. Carbon storage in agroforestry: an estimate for sub-Saharan Africa. Climate Research, 3 (1): 39-52. https://www.jstor.org/stable/24863331

Vaast P., Somarriba E., 2014. Trade-offs between crop intensification and ecosystem services: The role of agroforestry in cocoa cultivation. Agroforestry Systems, 88 (6): 947-956. https://doi.org/10.1007/s10457-014-9762-x

WOCAT, 2020. What is SLM for WOCAT? Website, World Bank. https://www.wocat.net/en/slm/sustainable-land-management

World Bank, 2020. Data catalog – World development indicators. Website, World Bank. http://data.worldbank.org/data-catalog/world-development-indicators

World Population Prospects, 2019. Population Division. Website, United Nations. https://population.un.org/wpp/

Wraith J., Norman P., Pickering C., 2020. Orchid conservation and research: An analysis of gaps and priorities for globally Red Listed species. Ambio, 49 (10): 1601-1611. https://doi.org/10.1007/s13280-019-01306-7

Younger P., 2010. Using Google Scholar to conduct a literature search. Nursing Standard, 24 (45): 40-46. https://pubmed.ncbi.nlm.nih.gov/20701052/

Downloads

Metrics
Views/Downloads
  • Abstract
    978
  • PDF
    1295

Received

2022-04-06

Accepted

2022-09-12

Published

2023-09-04

How to Cite

ASSÈDÉ, E. S. P. ., BIAOU, S. S. H. ., CHIRWA, P. W. ., TONOUEWA, J. F. M. F., & VELARDE, E. V. . (2023). Low-cost agroforestry technologies for climate change mitigation and adaptation in Sub-Saharan Africa: A review. BOIS & FORETS DES TROPIQUES, 356, 29–42. https://doi.org/10.19182/bft2023.356.a36908

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 > >> 

You may also start an advanced similarity search for this article.