Techniques agroforestières à faible coût pour l'atténuation du dérèglement climatique et l'adaptation à celui-ci en Afrique subsaharienne

Auteurs

Eméline S. P. ASSÈDÉ
aDepartment of management of Natural Resources, Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin
Samadori S. H. BIAOU
aDepartment of management of Natural Resources, Faculty of Agronomy, University of Parakou, BP 123, Parakou, Benin -- cLaboratory of Ecology, Botany and Plant biology, University of Parakou, 03 BP 125, Parakou, Benin
Paxie W. CHIRWA
bDepartment of Plant and Soil Sciences, University of Pretoria, 1121 South Street, Pretoria, South Africa
Jesugnon Fifamè Murielle Féty TONOUEWA
a:1:{s:5:"fr_FR";s:22:"Université de Parakou";}
Eduardo Valdés VELARDE
Agroforestry Center for Sustainable Development, Plant Science Department, Chapingo Autonomous University, Km 38.5 Carretera Fed. México-Texcoco s/n, Col. Chapingo, Texcoco, Estado de México, Mexico, 56230

DOI :

https://doi.org/10.19182/bft2023.356.a36908

Mots-clés


agroforesterie, innovation, impact, coût, Afrique subsaharienne.

Résumé

L'agroforesterie englobe un large éventail de techniques et de pratiques ayant un potentiel pour améliorer la productivité des exploitations agricoles avec un minimum d'impact sur l'environnement, dans le contexte de l'atténuation du dérèglement climatique et de l'adaptation à celui-ci. Notre étude examine la pertinence des techniques et pratiques agroforestières en Afrique subsaharienne (ASS) pour l’atténuation et l’adaptation au dérèglement climatique. Nous avons inventorié 173 ouvrages scientifiques et 62 ont été examinés. Nos résultats indiquent que des techniques accomplies et bien développées sont utilisées dans les systèmes agroforestiers en Afrique subsaharienne. Elles peuvent être classées en quatre groupes principaux (cultures intercalaires, jachères améliorées, paillage et parcs) et sept sous-groupes (cultures de relais, cultures intercalaires de haies, boisements en rotation, jachères en taillis, régénération gérée par les agriculteurs, domestication d'arbres à la ferme par poly-propagation et paillage) en fonction de facteurs tels que l'origine et l'utilisation des arbres et les types d'association arbres-cultures. Notre étude a montré que l'effet positif maximal de l'agroforesterie en mode parc est obtenu lorsque la densité des arbres se situe entre 20 et 40 arbres/ha, puisque nos résultats indiquent une augmentation de la production végétale de 915,9 kg/ha. En outre, dans l'ensemble, la rentabilité du travail pour les techniques utilisant des arbres fertilisants dépasse de 17 % la rentabilité pour les jachères naturelles. Les techniques agroforestières contribuent grandement au programme REDD+, mais les meilleures techniques avec le meilleur rapport coût-bénéfice et un effet conséquent pour l’atténuation et l’adaptation semblent être les systèmes de culture intercalaire et de jachère améliorée. Cependant, nous avons constaté un manque de précision et de détail quant aux coûts économiques, sociaux et environnementaux spécifiques au contexte pour les différentes techniques. Pour que les agriculteurs puissent prendre des décisions utiles et rationnelles dans le cadre de l'adoption de l'agroforesterie, les recherches à venir doivent veiller à détailler les coûts économiques, sociaux et environnementaux de chaque technique dans chaque contexte spécifique.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Ajayi O. C., Pace Kwesiga F., Mafongoya P., Franzel S., 2005. Impact of Fertilizer Tree Fallows in Eastern Zambia. Nairobi, Kenya, World Agroforestry Centre (ICRAF), 28 p.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.581.1853&rep=rep1&type=pdf

Ajayi O. C., Place F., Akinnifesi F. K., Sileshi G. W., 2011. Agricultural success from Africa: The case of fertilizer tree systems in Southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe). International Journal of Agricultural Sustainability, 9 (1): 129-136. https://doi.org/10.3763/ijas.2010.0554

Akinnifesi F. K., Chirwa P. W., Ajayi O. C., Sileshi G., Matakala P., et al., 2008. Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agricultural Journal, 3 (1): 58-75. https://www.medwelljournals.com/abstract/?doi=aj.2008.58.75

Amadalo B., Jama B., Niang A., Noordin Q., Nyasimi M., et al., 2003. Improved fallows for western Kenya: an extension guideline. Nairobi, Kenya, World Agroforestry Centre (ICRAF), 56 p. http://www.knowledgebank.irri.org/cglrc/icraf/Improvedfallow.pdf

Assèdé E. S. P., Azihou A. F., Geldenhuys C. J., Chirwa P. W., Biaou S. S. H., 2020. Sudanian versus Zambezian woodlands of Africa: Composition, ecology, biogeography and use. Acta Oecologica, 107: 103599. https://www.sciencedirect.com/science/article/abs/pii/S1146609X20300916

Bambio Y., Agha S. B., 2018. Land tenure security and investment: Does strength of land right really matter in rural Burkina Faso? World Development, 111: 130-147. https://doi.org/10.1016/j.worlddev.2018.06.026

Bayala J., Kalinganire A., Sileshi G. W., Tondoh J. E., 2018. Soil organic carbon and nitrogen in agroforestry systems in sub-Saharan Africa: A review. In: Bationo A., Ngaradoum D., Youl S., Lompo F., Fening J. (eds). Improving the profitability, sustainability and efficiency of nutrients through site specific fertilizer recommendations in West Africa agro-ecosystems. Springer, Cham, 51-61. https://doi.org/10.1007/978-3-319-58789-9_4

Bayala J., Kalinganire A., Tchoundjeu Z., Sinclair F., Garrity D., 2011. Conservation agriculture with trees in the West African Sahel: A review. Nairobi, Kenya, World Agroforestry Centre (ICRAF), Occasional Paper 14.

Bayala J., Sanou J., Teklehaimanot Z., Kalinganire A., Ouédraogo S. J., 2014. Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Current Opinion in Environmental Sustainability, 6: 28-34. https://doi.org/10.1016/j.cosust.2013.10.004

Binam J. N., Place F., Djalal A. A., Kalinganire A., 2017. Effects of local institutions on the adoption of agroforestry innovations: Evidence of farmer managed natural regeneration and its implications for rural livelihoods in the Sahel. Agricultural and Food Economics, 5: 2. https://doi.org/10.1186/s40100-017-0072-2

CCNUC, 1992. Convention-cadre des Nations Unies sur les changements climatiques. New York, 31 p. https://www.recyclage-recuperation.fr/comptes/jcamille/convention_cadre%20_climat.pdf

Cheesman S., Thierfelder C., Eash N. S., Kassie G. T., Frossard E., 2016. Soil carbon stocks in conservation agriculture systems of Southern Africa. Soil and Tillage Research, 156: 99-109. https://doi.org/10.1016/j.still.2015.09.018

Chirwa T. S., Mafongoya P. L., Chintu R., 2003. Mixed planted-fallows using coppicing and non-coppicing tree species for degraded Acrisols in eastern Zambia. Agroforestry Systems, 59 (3): 243-251. https://doi.org/10.1023/B:AGFO.0000005225.12629.61

Cooper P. J. M., Dimes J., Rao K. P. C., Shapiro B., Shiferaw B., et al., 2008. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agriculture, Ecosystems & Environment, 126 (1-2): 24-35. https://doi.org/10.1016/j.agee.2008.01.007

Corbeels M., Cardinael R., Naudin K., Guibert H., Torquebiau E., 2019. The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil and Tillage Research, 188: 16-26. https://doi.org/10.1016/j.still.2018.02.015

Dallimer M., Stringer L. C., Orchard S. E., Osano P., Njoroge G., et al., 2018. Who uses sustainable land management practices and what are the costs and benefits? Insights from Kenya. Land Degradation and Development, 29 (9): 2822-2835. https://doi.org/10.1002/ldr.3001

Degrande A., 2001. Farmer assessment and economic evaluation of shrub fallows in the humid lowlands of Cameroon. Agroforestry Systems, 53 (1): 11-19. https://doi.org/10.1023/A:1012220807248

Djalante R., 2018. A systematic literature review of research trends and authorships on natural hazards, disasters, risk reduction and climate change in Indonesia. Natural Hazards & Earth System Sciences, 18 (6): 1785-1810. https://doi.org/10.5194/nhess-18-1785-2018

Fahmi M. K. M., Dafa-Alla D.-A. M., Kanninen M., Luukkanen O., 2018. Impact of agroforestry parklands on crop yield and income generation: Case study of rainfed farming in the semi-arid zone of Sudan. Agroforestry Systems, 92 (3): 785-800. https://doi.org/10.1007/s10457-016-0048-3

FAO., 2020. FAO’s role in promoting conservation agriculture. Conservation Agriculture. Website, FAO. http://www.fao.org/ag/ca/

GIEC, 2007. Changements climatiques 2007. Rapport de synthèse. Contribution des Groupes de travail I, II et III au quatrième rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat. PNUE, OMM, 114 p. https://www.ipcc.ch/site/assets/uploads/2018/02/ar4_syr_fr.pdf

Gregory P. J., Ingram J. S., Brklacich M., 2005. Climate change and food security. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1463): 2139-2148. https://doi.org/10.1098/rstb.2005.1745

Haider H., Smale M., Theriault V., 2018. Intensification and intrahousehold decisions: Fertilizer adoption in Burkina Faso. World Development, 105: 310-320. https://doi.org/10.1016/j.worlddev.2017.11.012

Haile M., 2005. Weather patterns, food security and humanitarian response in sub-Saharan Africa. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1463): 2169-2182. https://doi.org/10.1098/rstb.2005.1746

Halevi G., Moed H., Bar-Ilan J., 2017. Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation – Review of the literature. Journal of Informetrics, 11 (3): 823-834. https://doi.org/10.1016/j.joi.2017.06.005

Ibrahim A., Abaidoo R. C., Fatondji D., Opoku A., 2015. Integrated use of fertilizer micro-dosing and Acacia tumida mulching increases millet yield and water use efficiency in Sahelian semi-arid environment. Nutrient Cycling in Agroecosystems, 103 (3): 375-388. https://doi.org/10.1007/s10705-015-9752-z

ICRAF, 2017. Corporate Strategy 2017-2026. Transforming lives and landscapes with trees. Nairobi, Kenya, 35 p. https://www.worldagroforestry.org/sites/default/files/users/admin/Strategy%20Report_2017.pdf

Jahan H., Rahman Md. W., Islam Md. S., Rezwan-Al-Ramim A., Tuhin Md. M.-U.-J., et al., 2022. Adoption of agroforestry practices in Bangladesh as a climate change mitigation option: Investment, drivers, and SWOT analysis perspectives. Environmental Challenges, 7: 100509. https://www.sciencedirect.com/science/article/pii/S2667010022000683

Kaba J. S., Zerbe S., Zanotelli D., Abunyewa A. A., Tagliavini M., 2017. Uptake of nitrogen by cocoa (Theobroma cocoa L.) trees derived from soil decomposition of gliricidia (Gliricidia sepium Jacq.) shoots. VIII International Symposium on Mineral Nutrition of Fruit Crops. Acta Horticulturae,1217: 263-270. https://www.actahort.org/books/1217/1217_33.htm

Kaba J. S., Zerbe S., Agnolucci M., Scandellari F., Abunyewa A. A., et al., 2019. Atmospheric nitrogen fixation by gliricidia trees (Gliricidia sepium (Jacq.) Kunth ex Walp.) intercropped with cocoa (Theobroma cacao L.). Plant and Soil, 435 (1-2): 323-336. https://doi.org/10.1007/s11104-018-3897-x

Kaba J. S., Abunyewa A. A., 2021. New aboveground biomass and nitrogen yield in different ages of gliricidia (Gliricidia sepium Jacq.) trees under different pruning intensities in moist semi-deciduous forest zone of Ghana. Agroforestry Systems, 95: 835-842. https://doi.org/10.1007/s10457-019-00414-3

Kalaba K. F., Chirwa P., Syampungani S., Ajayi C. O., 2010. Contribution of agroforestry to biodiversity and livelihoods improvement in rural communities of Southern African regions. In: Tscharntke T., Leuschner C., Veldkamp E., Faust H., Guhardja E., et al. (eds). Tropical Rainforests and Agroforests under Global Change. Environmental Science and Engineering. Berlin, Heidelberg, Springer, 461-476. https://doi.org/10.1007/978-3-642-00493-3_22

Kang B. T., 1997. Alley cropping – Soil productivity and nutrient recycling. Forest Ecology and Management, 91 (1): 75-82. https://doi.org/10.1016/s0378-1127(96)03886-8

Kant R., Verma J., Thakur K., 2012. Distribution pattern, survival threats and conservation of’ ‘Astavarga’ orchids in Himachal Pradesh, Northwest Himalaya. Plant Archives, 12 (1): 165-168. https://www.researchgate.net/profile/Ravi-Kant-14/publication/282747692_Distribution_pattern_survival_threats_and_conservation_of_%27astavarga%27_orchids_in_himachal_pradesh_northwest_himalaya/links/561b33fa08ae044edbb21129/Distribution-pattern-su

Kimaro A. A., Mpanda M., Rioux J., Aynekulu E., Shaba S., et al., 2016. Is conservation agriculture ‘climate-smart’ for maize farmers in the highlands of Tanzania? Nutrient Cycling in Agroecosystems, 105 (3): 217-228. https://doi.org/10.1007/s10705-015-9711-8

Kimaro A. A., Sererya O. G., Matata P., Uckert G., Hafner J., et al., 2019. Understanding the multidimensionality of climate-smartness: Examples from agroforestry in Tanzania. In: Rosenstock T., Nowak A., Girvetz E. (eds). The Climate-Smart Agriculture Papers. Springer, Cham, 153-162. https://doi.org/10.1007/978-3-319-92798-5_13

Kiyani P., Andoh J., Lee Y., Lee D. K., 2017. Benefits and challenges of agroforestry adoption: a case of Musebeya sector, Nyamagabe District in southern province of Rwanda. Forest Science and Technology, 13 (4): 174-180. https://www.tandfonline.com/doi/pdf/10.1080/21580103.2017.1392367

Kohl C., McIntosh E. J., Unger S., Haddaway N. R., Kecke S., et al., 2018. Online tools supporting the conduct and reporting of systematic reviews and systematic maps: A case study on CADIMA and review of existing tools. Environmental Evidence, 7 (1): 8. https://doi.org/10.1186/s13750-018-0115-5

Latruffe L., Diazabakana A., Bockstaller C., Desjeux Y., Finn J., et al., 2016. Measurement of sustainability in agriculture: A review of indicators. Studies in Agricultural Economics, 118 (3): 123-130. http://repo.aki.gov.hu/2092/

Lawin K. G., Tamini L. D., 2019. Land Tenure Differences and Adoption of Agri-Environmental Practices: Evidence from Benin. The Journal of Development Studies, 55 (2): 177-190. https://doi.org/10.1080/00220388.2018.1443210

Leakey R., 2017. Trees: Meeting the social, economic and environmental needs of poor farmers–Scoring sustainable development goals: an update. Multifunctional Agriculture: Achieving Sustainable Development in Africa, 417-420. http://dx.doi.org/10.1016/B978-0-12-805356-0.00040-4

Leydesdorff L., de Moya-Anegón F., Guerrero-Bote V. P., 2010. Journal maps on the basis of Scopus data: A comparison with the Journal Citation Reports of the ISI. Journal of the American Society for Information Science and Technology, 61 (2): 352-369. https://doi.org/10.1002/asi.21250

Mafongoya P. L., Bationo A., Kihara J., Waswa B. S., 2006. Appropriate technologies to replenish soil fertility in southern Africa. Nutrient Cycling in Agroecosystems, 76 (2-3): 137-151. https://doi.org/10.1007/s10705-006-9049-3

Masikati P., Manschadi A., Van Rooyen A., Hargreaves J., 2014. Maize-mucuna rotation : An alternative technology to improve water productivity in smallholder farming systems. Agricultural Systems, 123: 62‑70. https://doi.org/10.1016/j.agsy.2013.09.003

Maithya J. M., Kimenye L. N., Mugivane F. I., Ramisch J. J., 2006. Profitability of agroforestry-based soil fertility management technologies: The case of small holder food production in Western Kenya. Nutrient Cycling in Agroecosystems, 76 (2-3): 355-367. https://doi.org/10.1007/s10705-006-9062-6

Maranz S., 2009. Tree mortality in the African Sahel indicates an anthropogenic ecosystem displaced by climate change. Journal of Biogeography, 36 (6): 1181-1193. https://doi.org/10.1111/j.1365-2699.2008.02081.x

Materechera S. A., Swanepol H. R., 2013. Integrating the indigenous Kei apple (Dovyalis caffra) into a local permaculture vegetable home eco-gardening system among resource-poor households in a semi-arid environment of South Africa. Acta Horticulturae, 979: 225-232. https://doi.org/10.17660/ActaHortic.2013.979.22

Mercer D. E., 2004. Adoption of agroforestry innovations in the tropics: a review. Agroforestry Systems, 61 (1): 311-328. https://doi.org/10.1023/B:AGFO.0000029007.85754.70

Noyons E., 2001. Bibliometric mapping of science in a policy context. Scientometrics, 50 (1), 83-98. https://doi.org/10.1023/a:1005694202977

Nyadzi G. I., Otsyina R. M., Banzi F. M., Bakengesa S. S., Gama B. M., et al., 2003. Rotational woodlot technology in northwestern Tanzania: Tree species and crop performance. Agroforestry Systems, 59 (3): 253-263. https://doi.org/10.1023/B:AGFO.0000005226.62766.05

Nyasimi M., Kimeli P., Sayula G., Radeny M., Kinyangi J., Mungai C., 2017. Adoption and dissemination pathways for climate-smart agriculture technologies and practices for climate-resilient livelihoods in Lushoto, Northeast Tanzania. Climate, 5 (3): 63. https://doi.org/10.3390/cli5030063

OECD/FAO., 2016. OECD-FAO Agricultural Outlook 2016-2025 (Chinese version). OECD Publishing, 136 p. https://doi.org/10.1787/19991142

Ouédraogo M., Houessionon P., Zougmoré R. B., Partey S. T., 2019. Uptake of climate-smart agricultural technologies and practices: Actual and potential adoption rates in the climate-smart village site of Mali. Sustainability, 11 (17): 4710. https://doi.org/10.3390/su11174710

Pachauri R. K., Reisinger A., 2007. IPCC fourth assessment report. Geneva, Switzerland, IPCC. https://www.ipcc.ch/assessment-report/ar4/

Partey S. T., Sarfo D. A., Frith O., Kwaku M., Thevathasan N. V., 2017a. Potentials of bamboo-based agroforestry for sustainable development in Sub-Saharan Africa: A review. Agricultural Research, 6 (1): 22-32. https://doi.org/10.1007/s40003-017-0244-z

Partey S.T., Zougmoré R. B., Ouédraogo M., Thevathasan N. V., 2017b. Why promote improved fallows as a climate-smart agroforestry technology in sub-Saharan Africa? Sustainability, 9 (11): 1887. https://doi.org/10.3390/su9111887

Phiri E., Verplancke H., Kwesiga F., Mafongoya P., 2003. Water balance and maize yield following improved sesbania fallow in eastern Zambia. Agroforestry Systems, 59 (3): 197-205. https://doi.org/10.1023/B:AGFO.0000005220.67024.2c

Place F., Roothaert R. L., Maina L., Franzel S., Sinja J., Wanjiku J., 2009. The impact of fodder trees on milk production and income among smallholder dairy farmers in East Africa and the role of research. Nairobi, Kenya, World Agroforestry Centre (ICRAF), Occasional Paper 12. 55 p. https://cgspace.cgiar.org/bitstream/handle/10568/2345/OP16490.pdf?sequence=3

Rao M. R., Mathuva M. N., 2000. Legumes for improving maize yields and income in semi-arid Kenya. Agriculture, Ecosystems & Environment, 78 (2): 123–137. https://doi.org/10.1016/S0167-8809(99)00125-5

Sawadogo H., 2011. Using soil and water conservation techniques to rehabilitate degraded lands in northwestern Burkina Faso. International Journal of Agricultural Sustainability, 9 (1): 120-128. https://www.tandfonline.com/doi/pdf/10.3763/ijas.2010.0552

Sileshi G. W., Akinnifesi F. K., Mafongoya P. L., Kuntashula E., Ajayi O. C., 2020. Potential of Gliricidia-Based Agroforestry Systems for Resource-Limited Agroecosystems. In: Dagar J. C., Gupta S. R., Teketay D. (eds). Agroforestry for Degraded Landscapes. Singapore, Springer, 255-282. https://doi.org/10.1007/978-981-15-4136-0_9

Swamila M., Philip D., Akyoo A. M., Sieber S., Bekunda M., Kimaro A. A., 2020. Gliricidia agroforestry technology adoption potential in selected dryland areas of Dodoma Region, Tanzania. Agriculture, 10 (7): 1-17. https://doi.org/10.3390/agriculture10070306

Tabutin D., Schoumaker B., Coleman H., 2020. The demography of Sub-Saharan Africa in the 21st century: Transformations since 2000, outlook to 2050. Population, 75 (2): 165-286. https://doi.org/10.3917/popu.2002.0169

Takimoto A., Nair P. R., Alavalapati J. R., 2008. Socioeconomic potential of carbon sequestration through agroforestry in the West African Sahel. Mitigation and Adaptation Strategies for Global Change, 13 (7): 745-761. https://doi.org/10.1007/s11027-007-9140-3

Tchoundjeu Z., Degrande A., Leakey R. R., Nimino G., Kemajou E., et al., 2010. Impacts of participatory tree domestication on farmer livelihoods in West and Central Africa. Forests, Trees and Livelihoods, 19 (3): 217-234. https://doi.org/10.1080/14728028.2010.9752668

Thierfelder C., Chivenge P., Mupangwa W., Rosenstock T. S., Lamanna C., et al., 2017. How climate-smart is conservation agriculture (CA)? – Its potential to deliver on adaptation, mitigation and productivity on smallholder farms in southern Africa. Food Security, 9 (3): 537-560. https://doi.org/10.1007/s12571-017-0665-3

Thorlakson T., Neufeldt H., 2012. Reducing subsistence farmers’ vulnerability to climate change: Evaluating the potential contributions of agroforestry in western Kenya. Agriculture & Food Security, 1 (1): 15. https://doi.org/10.1186/2048-7010-1-15

Toth G. G., Nair P. K., Duffy C. P., Franzel S. C., 2017. Constraints to the adoption of fodder tree technology in Malawi. Sustainability Science, 12 (5): 641-656. https://doi.org/10.1007/s11625-017-0460-2

Unruh J. D., Houghton R. A., Lefebvre P. A., 1993. Carbon storage in agroforestry: an estimate for sub-Saharan Africa. Climate Research, 3 (1): 39-52. https://www.jstor.org/stable/24863331

Vaast P., Somarriba E., 2014. Trade-offs between crop intensification and ecosystem services: The role of agroforestry in cocoa cultivation. Agroforestry Systems, 88 (6): 947-956. https://doi.org/10.1007/s10457-014-9762-x

WOCAT, 2020. What is SLM for WOCAT? Website, World Bank. https://www.wocat.net/en/slm/sustainable-land-management

World Bank, 2020. Data catalog – World development indicators. Website, World Bank. http://data.worldbank.org/data-catalog/world-development-indicators

World Population Prospects, 2019. Population Division. Website, United Nations. https://population.un.org/wpp/

Wraith J., Norman P., Pickering C., 2020. Orchid conservation and research: An analysis of gaps and priorities for globally Red Listed species. Ambio, 49 (10): 1601-1611. https://doi.org/10.1007/s13280-019-01306-7

Younger P., 2010. Using Google Scholar to conduct a literature search. Nursing Standard, 24 (45): 40-46. https://pubmed.ncbi.nlm.nih.gov/20701052/

Téléchargements

Métriques
Vues/Téléchargements
  • Résumé
    655
  • PDF
    1010

Reçu

2022-04-06

Accepté

2022-09-12

Publié

2023-09-04

Comment citer

ASSÈDÉ, E. S. P. ., BIAOU, S. S. H. ., CHIRWA, P. W. ., TONOUEWA, J. F. M. F., & VELARDE, E. V. . (2023). Techniques agroforestières à faible coût pour l’atténuation du dérèglement climatique et l’adaptation à celui-ci en Afrique subsaharienne. BOIS & FORETS DES TROPIQUES, 356, 29–42. https://doi.org/10.19182/bft2023.356.a36908

Articles les plus lus par le même auteur ou la même autrice