Connaissances actuelles sur le complexe de tourbières de la Cuvette Centrale et orientations futures pour la recherche

Auteurs

George Elliot BIDDULPH
University of St Andrews - School of Geography and Sustainable Development - St Andrews, KY16 9AJ United Kingdom
Yannick Enock BOCKO
Université Marien Ngouabi, Faculté des Sciences et Techniques, Brazzaville, Republic of the Congo
Pierre BOLA
Institut Supérieur Pédagogique Mbandaka - Mbandaka Democratic Republic of the Congo
Bart CREZEE
University of Leeds School of Geography - Leeds, LS2 9JT United Kingdom
Greta C. DARGIE
University of Leeds School of Geography - Leeds, LS2 9JT United Kingdom
Ovide EMBA
Institut Supérieur Pédagogique Mbandaka - Mbandaka Democratic Republic of the Congo
Selena GEORGIOU
University of Edinburgh School of Geosciences Crew Building, The King’s Buildings, Alexander Crum Brown Road Edinburgh, EH9 3FF United Kingdom
Nicholas GIRKIN
Cranfield Soil and Agrifood Institute School of Water, Energy and Environment Cranfield University - College Road Cranfield, MK43 0AL - United Kingdom -- University of Nottingham School of Biosciences Loughborough, LE12 5RE, United Kingdom
Donna HAWTHORNE
University of St Andrews - School of Geography and Sustainable Development - St Andrews, KY16 9AJ United Kingdom
Jonay JOVANI-SANCHO
University of Nottingham School of Biosciences Loughborough, LE12 5RE, United Kingdom -- UK Centre for Ecology & Hydrology, Environment Centre Wales - Deiniol Road - Bangor, LL57 2UW, Gwynedd United Kingdom
Joseph KANYAMA T.
Université de Kisangani - Faculté de Gestion des Ressources Naturelles Renouvelables Département d’Aménagement des Écosystèmes et Conservation de la Biodiversité - Kisangani Democratic Republic of the Congo
Wenina Emmanuel MAMPOUYA
Université Marien Ngouabi - École Nationale Supérieure d’Agronomie et de Foresterie - Brazzaville Republic of the Congo
Mackline MBEMBA
Université Marien Ngouabi - École Nationale Supérieure d’Agronomie et de Foresterie - Brazzaville Republic of the Congo
Matteo SCIUMBATA
Vrije Universiteit Amsterdam - Department of Ecological Science Amsterdam, Noord-Holland, 1081 HV Netherlands
Genevieve TYRRELL
University of Leicester School of Geography University Road - Leicester, LE1 7RH United Kingdom

DOI :

https://doi.org/10.19182/bft2021.350.a36288

Mots-clés


tourbière tropicale, stockage du carbone, émissions de gaz à effet de serre, paléoécologie, biodiversité, Anthropocène, République démocratique du Congo

Résumé

La Cuvette centrale est le plus vaste complexe de tourbières tropicales au monde, qui s'étend sur environ 145 000 km2 en République du Congo et en République démocratique du Congo. Ce complexe stocke environ 30,6 Pg C, soit l'équivalent de trois années d'émissions mondiales de dioxyde de carbone, et représente désormais le premier site Ramsar transnational. Malgré sa taille et son importance mondiale en tant que puits de carbone, les aspects clés de son écologie et de son histoire, notamment sa formation, l'ampleur des flux de gaz à effet de serre, sa biodiversité et l'histoire de l'activité humaine, demeurent relativement peu connus. Nous synthétisons ici les connaissances disponibles sur la Cuvette centrale, en identifiant des domaines clés pour la poursuite des recherches. Enfin, nous examinons le potentiel des modèles mathématiques pour évaluer les trajectoires futures des tourbières en termes d’impacts prévisibles de l'exploitation de ressources et du changement climatique.

 

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Akkermans T., Thiery W., Van Lipzig N.P.M., 2014. The regional climate impact of a realistic future deforestation scenario in the Congo Basin. Journal of Climate, 27 (7): 2714-2734.

https://doi.org/10.1175/JCLI-D-13-00361.1

Alsdorf D., Beighley E., Laraque A., Lee H., Tshimanga R., O’Loughlin F., et al., 2016. Opportunities for hydrologic research in the Congo Basin. Reviews of Geophysics, 54: 378-409. https://doi.org/10.1002/2016RG000517

Baird A. J., Low R., Young D., Swindles G. T., Lopez O. R., Page S., 2017. High permeability explains the vulnerability of the carbon store in drained tropical peatlands. Geophysical Research Letters, 44: 1333-1339. https://doi.org/10.1002/2016GL072245

Bechtold M., De Lannoy G. J. M., Koster R. D., Reichle R. H., Mahanama S. P., Bleuten W., et al., 2019. PEAT‐CLSM: A specific treatment of peatland hydrology in the NASA Catchment Land Surface Model. Journal of Advances in Modelling Earth Systems, 11: 2130-2162. https://doi.org/10.1029/2018MS001574

Betbeder J., Gond V., Frappart F., Baghdadi N. N., Briant G., Bartholomé E., 2014. Mapping of Central Africa Forested Wetlands Using Remote Sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7 (2): 521-542. https://doi.org/10.1109/JSTARS.2013.2269733

Bocko Y. E., Dargie G., Ifo S. A., Yoka J., Loumeto J. J., 2016. Répartition spatiale de la richesse floristique des forêts marécageuses de la Likouala, Nord-Congo. Afrique Science, 12 (4) : 200-212.

Bocko Y. E., Ifo S. A., Loumeto J. J., 2017. Quantification des stocks de carbone de trois pools clés de carbone en Afrique centrale : cas de la forêt marécageuse de La Likouala (Nord Congo). European Scientific Journal, 13 (5) : 438-456. https://doi.org/10.19044/esj.2017.v13n5p438

Bonnefille R., Chalie F., 2000. Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr BP. Global and Planetary Change, 26: 25-50. https://doi.org/10.1016/S0921-8181(00)00032-1

Bouillon S., Yambélé A., Gillikin D. P., Teodoru C., Darchambeau F., Lambert T., et al., 2014. Contrasting biogeochemical characteristics of the Oubangui River and tributaries (Congo River basin). Scientific Reports, 4: 5402. https://doi.org/10.1038/srep05402

Brncic T. M., Willis K. J., Harris D. J., Telfer M. W., Bailey R. M., 2009. Fire and climate change impacts on lowland forest composition in northern Congo during the last 2,580 years from palaeoecological analyses of a seasonally flooded swamp. Holocene, 19: 79-89. https://doi.org/10.1177/0959683608098954

Brncic T. M., Willis K. J., Harris D. J., Washington R., 2007. Culture or climate? The relative influences of past processes on the composition of the lowland Congo rainforest. Philosophical Transactions of the Royal Society B-Biological Sciences, 362: 229-242. https://doi.org/10.1098/rstb.2006.1982

Bwangoy J.-R. B., Hansen M. C., Roy D. P., De Grandi G., Justice C. O., 2010. Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sensing of Environment, 114: 73-86. https://doi.org/10.1016/j.rse.2009.08.004

Carr A. B., Trigg M. A., Tshimanga R. M., Borman D. J., Smith M. W., 2019. Greater water surface variability revealed by new Congo River field data: Implications for satellite altimetry measurements of large rivers. Geophysical Research Letters, 46: 8093-8101. https://doi.org/10.1029/2019GL083720

Climate Watch, 2019. Global Historical Emissions. Washington DC, World Resources Institute, online observatory. (date accessed: October 2020). https://www.climatewatchdata.org/ghg-emissions?end_year=2016&start_year=1990

Cobb A. R., Dommain R., Tan F., Heng N.H.E., Harvey C.F., 2020. Carbon storage capacity of tropical peatlands in natural and artificial drainage networks. Environmental Research Letters, 15: 114009. https://dx.doi.org/10.1088/1748-9326/aba867

Cobb A. R., Hoyt A. M., Gandois L., Eri J., Dommain R., Salim K. A., et al., 2017. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proceedings of the National Academy of Sciences, 114: E5187-E5196. https://doi.org/10.1073/pnas.1701090114

Cole L. E. S., Willis K. J., Bhagwat S. A., 2021. The future of Southeast Asia's tropical peatlands: Local and global perspectives. Anthropocene, 34: 100292. https://doi.org/10.1016/j.ancene.2021.100292

Cooper H. V., Evers S., Aplin P., Crout N., Dahalan M. P. B., Sjögersten S., 2020. Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation. Nature Communications, 11: 407. https://doi.org/10.1038/s41467-020-14298-w

Couwenberg J., Dommain R., Joosten H., 2010. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Global Change Biology, 16 (6): 1715-1732. https://doi.org/10.1111/j.1365-2486.2009.02016.x

Creese A., Washington R., Jones R., 2019. Climate change in the Congo Basin: processes related to wetting in the December-February dry season. Climate Dynamics, 53: 3583-3602. https://doi.org/10.1007/s00382-019-04728-x

Dargie G. C., Lawson I. T., Rayden T. J., Miles L., Mitchard E. T. A., Page S. E., et al., 2019. Congo Basin peatlands: threats and conservation priorities. Mitigation and Adaptation Strategies for Global Change, 24 (4): 669-686. https://doi.org/10.1007/s11027-017-9774-8

Dargie G., Lewis S., Lawson I., Mitchard E. T. A, Page S. E., Bocko Y. E., et al., 2017. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature, 542: 86-90. https://doi.org/10.1038/nature21048

Davenport I. J., McNicol I., Mitchard E. T. A., Dargie G. C., Ifo S. A., Milongo B., et al., 2020. First Evidence of Peat Domes in the Congo Basin using LiDAR from a Fixed-Wing Drone. Remote Sensing, 12 (14): 2196. https://doi.org/10.3390/rs12142196

Dosio A., Jones R. G., Jack C., Lennard C., Nikulin G., Hewitson B., 2019. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Climate Dynamics, 53: 5833-5858. https://doi.org/10.1007/s00382-019-04900-3

Elenga H., Schwartz D., Vincens A., 1994. Pollen evidence of late Quaternary vegetation and inferred climate changes in Congo. Palaeogeography, Palaeoclimatology, Palaeoecology, 109: 345-356. https://doi.org/10.1016/0031-0182(94)90184-8

Elenga H., de Namurb C., Vincensa A., Rouxb M., Schwartz D., 2000. Use of plots to define pollen-vegetation relationships in densely forested ecosystems of Tropical Africa. Review of Palaeobotany and Palynology, 112: 79-96. https://doi.org/10.1016/S0034-6667(00)00036-1

Elenga H., Vincens A., Schwartz D., Fabing A., Bertaux J., Wirrmann D., et al., 2001. Le marais estuarien de la Songolo (Sud Congo) à l'Holocène moyen et récent. Bulletin de la Société Géologique de France, 172 : 359-366. https://doi.org/10.2113/172.3.359

Evrard C., 1968. Recherches écologiques sur le peuplement forestier des sols hydromorphes de la Cuvette centrale congolaise. Bruxelles, Belgique, Publications de l'Institut national pour l'étude agronomique du Congo (INEAC), Série scientifique, n° 110, 295 p.

Farmer J., Matthews R., Smith J. U., Smith P., Singh B. K., 2011. Assessing existing peatland models for their applicability for modelling greenhouse gas emissions from tropical peat soils. Current Opinion in Environmental Sustainability, 3 (5): 339-349. https://doi.org/10.1016/j.cosust.2011.08.010

Gallego-Sala A. V., Charman D. J., Brewer S., Page S. E., Prentice I. C., Friedlingstein P., et al., 2018. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nature Climate Change, 8: 907-913. https://doi.org/10.1038/s41558-018-0271-1

Garcin Y., Deschamps P., Ménot G., de Saulieu G., Schefuss E., Sebag D., et al., 2018. Early anthropogenic impact on Western Central African rainforests 2,600 y ago. PNAS, 115 (13): 3261-3266. https://doi.org/10.1073/pnas.1715336115

Giresse P., Maley J., Chepstow-Lusty A., 2020. Understanding the 2,500 yr BP rainforest crisis in West and Central Africa in the framework of the Late Holocene: Pluridisciplinary analysis and multi-archive reconstruction. Global and Planetary Change, 192: 103257. https://doi.org/10.1016/j.gloplacha.2020.103257

Girkin N. T., Turner B. L., Ostle N., Craigon J., Sjögersten S., 2018. Root exudate analogues accelerate CO2 and CH4 production in tropical peat. Soil Biology and Biochemistry, 117: 48-55. https://doi.org/10.1016/j.soilbio.2017.11.008

Girkin N. T., Vane C. H., Turner B. L., Ostle N. J., Turner B. L., Sjögersten S., 2020. Root oxygen mitigates methane fluxes in tropical peatlands. Environmental research, 15: 064013. https://iopscience.iop.org/article/10.1088/1748-9326/ab8495

Gumbricht T., Roman‐Cuesta R. M., Verchot L., Herold M., Wittmann F., Householder E., et al., 2017. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Global Change Biology, 23 (9): 3581-3599. https://doi.org/10.1111/gcb.13689

Haraguchi A., 2016. Discharged Sulfuric Acid from Peatland to River System. In: Tropical Peatland Ecosystems, Eds Osaki M., Tsuji N. Tokyo, Japan, Springer, 297-311. https://doi.org/10.1007/978-4-431-55681-7_19

Hatano R., Toma Y., Hamada Y., Arai H., Susilawati H. L., Inubushi K., 2016. Methane and Nitrous Oxide Emissions from Tropical Peat Soil. In: Osaki M., Tsuji N. (eds). Tropical Peatland Ecosystems. Tokyo, Japan, Springer, 339-351. https://doi.org/10.1007/978-4-431-55681-7_22

Hubau W., Van den Bulcke J., Kitin P., Mees F., Baert G., Verschuren D., et al., 2013. Ancient charcoal as a natural archive for paleofire regime and vegetation change in the Mayumbe, Democratic Republic of the Congo. Quaternary Research, 80 (2): 326-340. https://doi.org/10.1016/j.yqres.2013.04.006

Hubau W., Van den Bulcke J., Van Acker J., Beeckman H., 2015. Charcoal‐inferred Holocene fire and vegetation history linked to drought periods in the Democratic Republic of Congo. Global Change Biology, 21 (6): 2296-2308. https://doi.org/10.1111/gcb.12844

Hubau W., Lewis S. L., Phillips O. L., Affum-Baffoe K., Beeckman H., Cuní-Sanchez A., et al., 2020. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579: 80-87. https://doi.org/10.1038/s41586-020-2035-0

Hughes R. H., Hughes J. S., 1992. A Directory of African Wetlands. Cambridge, UK, IUCN, 820 p. https://www.iucn.org/content/a-directory-african-wetlands

Inogwabini B., Nzala A. B., Bokika J. C., 2013. People and bonobos in the southern Lake Tumba landscape, Democratic Republic of Congo. American Journal of Human Ecology, 2 (2): 44-53. https://worldscholars.org/index.php/ajhe/article/view/0202_1

Jung H. C., Hamski J., Durand M., Alsdorf D. E., Hossain F., Lee H., et al., 2010. Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers. Earth Surface Processes and Landforms, 35: 294-304. https://doi.org/10.1002/esp.1914

Kelly T. J., Lawson I. T., Roucoux K. H., Baker T. R., Coronado E. N. H., 2020. Patterns and drivers of development in a west Amazonian peatland during the late Holocene. Quaternary Science Reviews, 230: 106168. https://doi.org/10.1016/j.quascirev.2020.106168

Kim D., Lee H., Laraque A., Tshimanga R. M., Jung H. C., Beighley E., et al., 2017. Mapping spatio-temporal water level variations over the central Congo River using PALSAR ScanSAR and Envisat altimetry data. International Journal of Remote Sensing, 38 (23): 7021-7040. https://doi.org/10.1080/01431161.2017.1371867

Koplitz S. N., Mickley L. J., Marlier M. E., Buonocore J. J., Kim P. S., Liu T., et al., 2016. Public health impacts of the severe haze in Equatorial Asia in September-October 2015: Demonstration of a new framework for informing fire management strategies to reduce downwind smoke exposure. Environmental Research Letters, 11 (9): 094023. https://doi.org/10.1088/1748-9326/11/9/094023

Kurnianto S., Warren M., Talbot J., Kauffman B., Murdiyarso D., Frolking S., 2015. Carbon accumulation of tropical peatlands over millennia: a modeling approach. Global Change Biology, 21 (1): 431-444. https://doi.org/10.1111/gcb.12672

Le Monde/AFP, 2019. Découverte de pétrole onshore au Congo. Le Monde Afrique, 12 août. https://www.lemonde.fr/afrique/article/2019/08/12/decouverte-de-petrole-onshore-au-congo_5498706_3212.html (date accessed: 29 October 2020)

Lebrun J., Gilbert G., 1954. Une classification écologique des forêts du Congo. Bruxelles, Belgique, Institut national pour l'étude agronomique du Congo belge (INEAC), 89 p.

Lee H., Beighley R. E., Alsdorf D., Jung H. C., Shum C. K., Duan J., et al., 2011. Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sensing of Environment, 115: 3530-3538. https://doi.org/10.1016/j.rse.2011.08.015

Lee H., Yuan T., Jung H. C., Beighley E., 2015. Mapping wetland water depths over the central Congo Basin using PALSAR ScanSAR, Envisat altimetry, and MODIS VCF data. Remote Sensing of Environment, 159: 70-79. https://doi.org/10.1016/j.rse.2014.11.030

Loisel J., Gallego-Sala A. V., Amesbury M. J., Magnan G., Anshari G., Beilman D. W., et al., 2021. Expert assessment of future vulnerability of the global peatland carbon sink. Nature Climate Change, 11: 70-77. https://doi.org/10.1038/s41558-020-00944-0

Lunt M. F., Palmer P. I., Feng L., Taylor C. M., Boesch H., Parker R. J., 2019. An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data. Atmospheric Chemistry and Physics Discussions. 19: 14721-14740. https://doi.org/10.5194/acp-19-14721-2019

Miettinen J., Shi C., Liew S. C., 2016. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation, 6: 67-78. https://doi.org/10.1016/j.gecco.2016.02.004

Miettinen J., Shi C., Liew S. C., 2017. Fire distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with special emphasis on peatland fires. Environmental Management, 60 (4): 747-757.

Miles L., Raviliousa C., García-Rangela S., de Lamoa X., Dargie G., Lewis S., 2017. Carbone, biodiversité et utilisation des terres dans les tourbières de la Cuvette Centrale du Congo. Cambridge, UK, UN Environment World Conservation Monitoring Centre, 12 p. https://www.unredd.net/documents/global-programme-191/multiple-benefits/studies-reports-and-publications-1364/16502-carbone-biodiversite-et-utilisation-des-terres-dans-les-tourbieres-de-la-cuvette-centrale-du-congo-high-res-fr.html?path=global-programme-191/multiple-benefits/studies-reports-and-publications-1364

NASA, 2020. SWOT Surface Water and Topography. (date accessed: 29 October 2020). https://swot.jpl.nasa.gov/

Niang I., Ruppel O. C., Abdrabo M. A., Essel A., Lennard C., Padgham J., et al., 2014. Africa. In: Barros V. R., Field C. B., Dokken D. J., Mastrandrea M. D., Mach K. J., Bilir T. E., et al. (eds). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and New York, USA, Cambridge University Press, 1199-1265.

Nicholson S. E., Klotter D., Zhou L., Hua W., 2019. Validation of Satellite Precipitation Estimates over the Congo Basin. Journal of Hydrometeorology, 20: 631-656. https://doi.org/10.1175/JHM-D-18-0118.1.

Page S. E., Rieley J. O., Banks C. J., 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology, 17: 798-818. https://doi.org/10.1111/j.1365-2486.2010.02279.x

Pangala S. R., Enrich-Prast A., Basso L. S., Peixoto R. B., Bastviken D., Hornibrook E. R. C., et al., 2017. Large emissions from floodplain trees close the Amazon methane budget. Nature, 552: 230-234. https://doi.org/10.1038/nature25191

Parish F., Sirin A., Charman D., Joosten H., Minayeva T., Silvius M., et al. (Eds.), 2008. Assessment on Peatlands, Biodiversity and Climate Change: Main Report. Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen, 206 p. http://www.imcg.net/media/download_gallery/books/assessment_peatland.pdf

Pärn J., Verhoeven J. T. A., Butterbach-Bahl K., Dise N. B., Ullah S., Aasa A., et al., 2018. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nature Communications, 9 (1): 1135. https://doi.org/10.1038/s41467-018-03540-1

Qiu C., Zhu D., Ciais P., Guenet B., Peng S., Krinner G., et al., 2019. Modelling northern peatland area and carbon dynamics since the Holocene with the ORCHIDEE-PEAT land surface model (SVN r5488). Geoscientific Model Development, 12: 2961-2982. https://doi.org/10.5194/gmd-12-2961-2019

Rainey H. J., Iyenguet F. C., Malanda G.-A. F., Madzoke B., Dos Santos D., Stokes E. J., et al., 2010. Survey of Raphia swamp forest, Republic of Congo, indicates high densities of Critically Endangered western lowland gorillas Gorilla gorilla gorilla. Oryx, 44: 124-132. https://doi.org/10.1017/S003060530999010X

Riley J., Huchzermeyer F. W., 1999. African dwarf crocodiles in the Likouala swamp forests of the Congo Basin: Habitat, density, and nesting. Copeia, 1999 (2): 313-320. https://www.jstor.org/stable/1447477

Rosenqvist Å., Birkett C. M., 2002. Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo river basin. International Journal of Remote Sensing, 23 (7): 1283-1302. https://doi.org/10.1080/01431160110092902

Samba G., Nganga D., 2012. Rainfall variability in Congo-Brazzaville: 1932-2007. International Journal of Climatology, 32: 854-873. https://doi.org/10.1002/joc.2311

Schefuss E., Eglinton T., Spencer-Jones C., et al., 2016. Hydrologic control of carbon cycling and aged carbon discharge in the Congo River basin. Nature Geoscience, 9: 687-690. https://doi.org/10.1038/ngeo2778

Schulz C., Martín Brañas M., Nuñez Pérez C., Del Aguila Villacorta M., Laurie N., Lawson I. T., et al., 2019. Uses, cultural significance, and management of peatlands in the Peruvian Amazon: Implications for conservation. Biological Conservation, 235: 189-198. https://doi.org/10.1016/j.biocon.2019.04.005

Sumarga E., Hein L., Hooijer A., Vernimmen R., 2016. Hydrological and economic effects of oil palm cultivation in Indonesian peatlands. Ecology and Society, 21 (2): 52.

http://dx.doi.org/10.5751/ES-08490-210252

Tathy J. P., Cros B., Delmas R. A., Marenco A., Servant J., Labat, M., 1992. Methane emission from flooded forest in central Africa. Journal of Geophysical Research, 97 (D6): 6159-6168. https://doi.org/10.1029/90JD02555

Tovar I. C., 2015. Central African Lowland Forest Resilience to Fire Disturbance and Climate Change: Answers from the Past. PhD thesis, University of Oxford, Oxford, UK, 187 p. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.712422

Tovar C., Harris D. J., Breman E., Brncic T., Willis K. J., 2019. Tropical monodominant forest resilience to climate change in Central Africa: A Gilbertiodendron dewevrei forest pollen record over the past 2,700 years. Journal of Vegetation Science, 30 (3): 575-586. https://doi.org/10.1111/jvs.12746

United Nations Environment Programme, 2018. Declaration de Brazzaville. Third Meeting of the Partners of the Global Peatlands Initiative, Brazzaville, 23 March 2018, 10 p. https://www.unep.org/fr/node/21464

Washington R., James R., Pearce H., Pokam W. M., Moufouma-Okia W., 2013. Congo Basin rainfall climatology: can we believe the climate models? Philosophical Transactions of the Royal Society B-Biological Sciences, 368: 20120296. http://doi.org/10.1098/rstb.2012.0296

World Bank, 2016. The cost of fire: An economic analysis of Indonesia’s 2015 fire crisis. Indonesia Sustainable Landscapes Knowledge Note No. 1. Jakarta, Indonesia, World Bank, 12 p. https://openknowledge.worldbank.org/handle/10986/23840

WCS, 2019a. Days per week hh collect natural resources per landscape Lac Télé [data file]. CARPE Open Data Portal. (date accessed: 29 October 2020). https://carpe-worldresources.opendata.arcgis.com/datasets/e1aa6275b70a42d49c142e791460309b_2

WCS, 2019b. Days per week hh collect natural resources per landscape Salonga-Lukenie-Sankuru [data file]. Available from: CARPE Open Data Portal. (date accessed: 29 October 2020). https://carpe-worldresources.opendata.arcgis.com/datasets/b40b920dbfca4ff09e6c44e9e45b9935_2

Xu J., Morris P. J., Junguo L., Holden J., 2018. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena, 160: 134-140. https://doi.org/10.1016/j.catena.2017.09.010

Yu Z., Loisel J., Brosseau D. P., Beilman D. W., Hunt S. J., 2010. Global peatland dynamics since the Last Glacial Maximum. Geophysical Research Letters, 37 (13): L13402. https://doi.org/10.1029/2010GL043584

Yuan T., Lee H., Jung H. C., Aierken A., Beighley E., Alsdorf D. E., et al., 2017. Absolute water storages in the Congo River floodplains from integration of InSAR and satellite radar altimetry. Remote Sensing of Environment, 201: 57-72. https://doi.org/10.1016/j.rse.2017.09.003

Téléchargements

Numéro

Rubrique

ARTICLES SCIENTIFIQUES
Métriques
Vues/Téléchargements
  • Résumé
    1377
  • PDF
    725

Reçu

2020-12-24

Accepté

2021-12-07

Publié

2022-01-04

Comment citer

BIDDULPH, G. E. ., BOCKO, Y. E. ., BOLA, P. ., CREZEE, B. ., DARGIE, G. C., EMBA, O. ., GEORGIOU, S. ., GIRKIN, N. ., HAWTHORNE, D. ., JOVANI-SANCHO, J. ., KANYAMA T., J., MAMPOUYA, W. E. ., MBEMBA, M. ., SCIUMBATA, M. ., & TYRRELL, G. . (2022). Connaissances actuelles sur le complexe de tourbières de la Cuvette Centrale et orientations futures pour la recherche. BOIS & FORETS DES TROPIQUES, 350, 3–14. https://doi.org/10.19182/bft2021.350.a36288

Articles les plus lus par le même auteur ou la même autrice