Comparación de la resistencia a la descomposición de la madera de teca (Tectona grandis L.f.) de plantación y de crecimiento natural

Autores/as

Forestry and Forest Products Research Institute 1 Matsunosato, Tsukuba, Ibaraki, 305-8687 Japan

DOI:

https://doi.org/10.19182/bft2023.358.a37246

Palabras clave


Tectona grandis, duramen, durabilidad natural, resistencia a la descomposición, procedencia, madera de teca, plantación tropical, Indonesia, Myanmar.

Resumen

La teca (Tectona grandis L.f.) es una de las especies de madera tropical más populares por su durabilidad natural. Se ensayó la resistencia a la descomposición (una componente importante de la durabilidad natural) de la albura, el duramen exterior, intermedio e interior y la médula de la teca de plantación de Indonesia y de la teca crecida naturalmente en Myanmar. Para ello se realizó un ensayo de descomposición acelerada según JIS Z 2101 (1994) utilizando un hongo de pudrición blanca (Trametes versicolor) y un hongo de pudrición parda (Fomitopsis palustris). Los bloques de madera de talla 20x20x10 mm se cortaron de discos a lo largo del radio del tronco. El porcentaje de pérdida de masa causada por la descomposición en cada bloque se obtuvo después de doce semanas de incubación con estos hongos. Las pérdidas de masa medias debidas a T. versicolor fueron respectivamente las siguientes para teca crecida en plantación, crecida naturalmente (nº 1), y crecida naturalmente (nº 2): albura 21,4 %, 7,1 %, “sin datos”; duramen exterior 0,6 %, 3,6 %, 6,6 %; duramen intermedio 2,3 %, 6,5 %, 5,7 %; duramen interno 10,3 %, 9,6 %, 6,0 %; médula 13,0 %, 15,3 %, 8,2 %. Las pérdidas debidas a F. palustris fueron, respectivamente: albura 7,5 %, 3,0 %, 7,5 %; duramen exterior 0,0 %, 2,5 %, 2,7 %; duramen intermedio 0,0 %, 2,2 %, 2,3 %; duramen interno 4,9 %, 2,0 %, 3,4 %; médula 13,6 %, 8,4 %, 8,0 %. La durabilidad fue clasificada en referencia a Osborne (1970), según el porcentaje medio de pérdida de peso del duramen causada por descomposición fúngica. Solamente el duramen externo e intermedio eran generalmente duraderos tanto en ejemplares de teca provenientes de plantación como en ejemplares de teca de crecimiento natural. El duramen interno era moderadamente duradero, pero la durabilidad de la médula era baja. No se encontraron diferencias claras entre la resistencia a la descomposición de la teca proveniente de plantación o crecida naturalmente.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

ASTM D 2017-05, 2005. Standard test method of accelerated laboratory test of natural decay resistance of woods. ASTM International.

https://www.astm.org/d2017-05.html

AWPA E7-21, 2023. Standard field test for evaluation of wood preservatives to be used in ground contact (UC4A, UC4B, UC4C); Stake test. AWPA Book of Standards. https://standards.globalspec.com/std/14381077/E7

AWPA E9-21, 2023. Standard field test for evaluation of wood preservatives to be used above ground (UC3A and UC3B); L-joint test. 2023 AWPA Book of Standards. https://www.techstreet.com/standards/awpa-e9-21?product_id=2227103

Bhat K. M., 1998. Properties of fast-growing teak wood: impact on end-user’s requirements. Journal of Tropical Forest Products, 4 (1): 1-10.

Bhat K. M., Priya P. B., Rugmini P., 2001.Characterisation of juvenile wood in teak. Wood Science and Technology, 34: 517–532.

Bhat K. M., Thulasidas P. K., Maria Florence E. J., Jayaraman K., 2005. Wood durability of home-garden teak against brown-rot and white-rot fungi. Trees,19: 654-660.

Bryant R. L., 2013. Branding natural resources: science, violence and marketing in the making of teak. Transactions of the Institute of British Geographers, 38 (4): 517-530. https://www.jstor.org/stable/24582484

Chudnoff M., 1984. Tropical timbers of the world, Agriculture handbook, No.607. U. S. Dept. of Agriculture, Forest Service, Verlag Kessel, 472 p.

Da Costa E.W.B., Rudman P., Gay F.J., 1961. Relationship of growth rate and related factors to durability in Tectona grandis. Empire Forestry Review, 40 (4): 308-319.

Eddowes P. J., 1977. Commercial timbers of Papua New Guinea Their properties and uses. Forest Products Research Centre, Forest Industries Council of Papua New Guinea, 205 p.

Elias P., Boucher D., 2014. Planting for the future How demand for wood products could be friendly to tropical forests. Union of Concerned Scientists, 40 p. https://www.ucsusa.org/resources/planting-future

EN 350, 2016. Durability of wood and wood-based products – testing and classification of the durability to biological agents of wood and wood-based materials. European committee for standardization (CEN). Brussels, Belgium, 67 p. https://standards.iteh.ai/catalog/standards/cen/b02d18a7-87ce-4a20-84c7-c0de641a2780/en-350-2016

FAO, 2022. The State of the World’s Forests 2022. Forest pathways for green recovery and building inclusive, resilient and sustainable economies. Food and Agriculture Organization of the United Nations, Rome, 166 p. https://www.fao.org/3/cb9360en/cb9360en.pdf

Fernández-Sólis D., Berrocal A., Moya R., 2018. Heartwood formation and prediction of heartwood parameters in Tectona grandis L.f. trees growing in forest plantations in Costa Rica, Bois et Forêts des Tropiques, 335: 25-37. https://doi.org/10.19182/bft2018.335.a31499

Foxworthy F. W., 1930. Durability Malayan timbers, Malayan Forest Records, No.8, 60 p.

Giam X., 2017. Global biodiversity loss from tropical deforestation. PNAS, 114 (23): 5775-5777. https://doi.org/10.1073/pnas.1706264114

Gérard J., Guibal D., Paradis S., Cerre J. C., 2017. Tropical Timber Atlas. Quæ Publisher, 1002 p. https://www.itto.int/files/itto_project_db_input/3028/Technical/E-TMT-SDP-010-12-R1-M-Tropical%20Timber%20Atlas.pdf

Hamza K. F. S., 1997. The effect of age and rate of growth on heartwood proportion in stems of Tectona grandis L.F. grown at Mtibwa, Tanzania, Proceedings of International Conference on Tropical Timber, 16-19 June 1997, Kuala Lumpur.

Hansen O. K., Changtragoon S., Ponoy B., Lopez J., Richard J., Kjær E. D., 2017. Worldwide translocation of teak – origin of landraces and present genetic base. Tree Genetics & Genomes 13 (87): 16 p. https://link.springer.com/article/10.1007/s11295-017-1170-8

Hartshorn G. S., Peralta R. L., 2013. Teak - the most important tropical hardwood. World Teak Congress, 25-30 March 2013, Bangkok, Thailand, 20 p. https://www.researchgate.net/profile/Gary_Hartshorn/publication/294427275_Teak--The_Most_Important_Tropical_Hardwood/links/56c0ba5608ae44da37fc0329

Haupt M., Leithoff H., Meier D., Puls J., Richter H. G., Faix O., 2003. Heartwood extractives and natural durability of plantation-grown teakwood (Tectona grandis L.) - a case study. Holz als Roh- und Werkstoff, 61 (6): 473-474. https://link.springer.com/article/10.1007/s00107-003-0428-z

Held C., Meier-Landsberg E., Alonso V., 2021. Tropical timber 2050: An analysis of the future supply of and demand for tropical timber and its contributions to a sustainable economy. ITTO, Technical Series, 49, 78 p. https://www.itto.int/direct/topics/topics_pdf_download/topics_id=6750&no=1&disp=inline

Hong L. T., Yamamoto K., 1990. A note on a laboratory method for estimating durability of some tropical hardwoods. Journal of Tropical Forest Science, 2 (2): 167-170.

ITTO, 2021. Doubling of world resource consumption by 2050 shows need for sustainable tropical timber - new report. ITTO, online. https://www.itto.int/news/2021/07/02/doubling_of_world_resource_consumption_by_2050_shows_need_for_sustainable_tropical_timber_new_report/

JIS Z 2101, 1994. Methods of test for woods. Japanese Industrial Standard, 36 p. https://archive.org/details/jis.z.2101.j.1994

Kokutse A. D., Akpenè A. D., Monteuuis O., Akossou A., Langbour P., Guibal D., et al., 2016. Selection of plus trees for genetically improved teak varieties produced in Benin and Togo. Bois et Forêts des Tropiques, 328 (2): 55-66. https://revues.cirad.fr/index.php/BFT/article/view/ID-BFT-151104

Kollert W., Kleine M. (eds), 2017. The global teak study Analysis, evaluation and future potential of teak resources. IUFRO World Series Volume 36, 107 p. https://www.iufro.org/download/file/26730/153/ws36_pdf/

Lukmandaru G., Falaah A. N., Listyanto.T., Rodiana D., 2021. Extractive content and colour properties of 11-year-old superior teak wood, Wood Research Journal (Indonesian Wood Research Society), 12(1): 10-16. http://ejournalmapeki.org/index.php/wrj/article/view/530

Martha R., Mubarok M., Akong F. O., George B., Gérardin C., Dumarçay S., et al., 2022. The effect of sapwood and heartwood differences on durability of short rotation teak wood. Proceedings IRG Annual Meeting, Document No: IRG/WP 22-10991, 12 p. https://www.researchgate.net/publication/367531786_The_effect_of_sapwood_and_heartwood_differences_on_durability_of_short_rotation_teak_wood

Matsuoka S., 1970. The properties of tropical woods. 14. Relative durability of Bangkirai, White Meranti and thirteen other wood species grown in Kalimantan, and Keruing grown in Malaya. Bulletin of the Government Forest Experiment Station, No. 230: 165-176. https://www.cabidigitallibrary.org/doi/full/10.5555/19700605027

Niamke F. B., Amusant N., Adima A. A., Kadio A. A., Chaix G., Jay-Allemand C., 2018. Wood chemistry completes natural durability as criteria for shorting best provenances in the improvement of teakwood quality: case of five provenances from Ivorian Séguié’s trial. Proceedings IRG Annual meeting, IRG/WP 18-10920, 8 p.

Osborne L. D.,1970. Decay resistance of south-west pacific rain-forest timbers. Division of Forest Products Technological Paper, No. 56: CSIRO, Australia.

Peng L., Searchinger T. D., Zionts J. Waite R., 2023. The carbon costs of global wood harvests. Nature, 620: 110-115. https://doi.org/10.1038/s41586-023-06187-1

Pirard R., Secco L. D., Warman R., 2016. Do timber plantations contribute to forest conservation? Environmental Science & Policy, 57: 122-130. https://doi.org/10.1016/j.envsci.2015.12.010

Rodríguez-Anda R., Koch G., Richter H.-G., Talavera F. J. F., Guzmán J. A. S., Satyanarayana K. G., 2019. Formation of heartwood, chemical composition of extractives and natural durability of plantation-grown teak wood from Mexico. Holzforschung, 73 (6): 547-557. https://doi.org/10.1515/hf-2018-0109

Rowe J. W., 1989. Natural products of woody plants; Chemicals extraneous to the lignocellulosic cell wall, Springer-Verlag Berlin. https://link.springer.com/book/10.1007/978-3-642-74075-6

Rudman P., Da Costa E.W.B., Gay F.J., 1967. Wood quality in plus trees of teak (Tectona grandis L.f.), Silvae Genetica,16(3): 101-105. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1967/Vol._16_Heft_3/16_3_102.pdf

Sawyer J., 1993. Plantations in the tropics: Environmental concerns.IUCN, Gland, Switzerland and Cambridge, UK in collaboration with UNEP and WWF.

Thulasidas P. K., Baillères H., 2017. Wood quality for advanced uses of teak from natural and planted forests. In: Kollert W., Kleine M. (eds.), 2017. The global teak study Analysis, evaluation and future potential of teak resources. IUFRO World Series Volume 36, Vienna. 73-81. https://www.iufro.org/publications/series/world-series/article/2017/06/21/world-series-vol-36-the-global-teak-study-analysis-evaluation-and-future-potential-of-teak-reso/

Timber Research and Development Association, 1979. Timbers of the world, Vol.1. The Construction Press, England.

Trockenbrodt M., Josue J., 1999. Wood properties and utilization potential of plantation teak (Tectona grandis) in Malaysia – A critical review. Journal of Tropical Forest Products, 5 (1): 58-70.

United Nations, 2017.United Nations strategic plan for forests 2017-2030. United Nations strategic plan for forest, Advance Unedited Version, p. 13. https://www.un.org/esa/forests/wp-content/uploads/2016/12/UNSPF_AdvUnedited.pdf

Verkerk P.J., Hassegawa M., Van Brusselen J., Cramm M., Chen X., Maximo Y. I., et al., 2022. Forest products in the global bioeconomy, Enabling substitution by wood-based products and contributing to the Sustainable Development Goals, Food and Agriculture Organization of the United Nations, 168 p. https://www.fao.org/documents/card/en?details=cb7274en

Vincent J. R., 1992. The tropical timber trade and sustainable development, Science, 256: 1651-1655. https://doi.org/10.1126/science.256.5064.1651

Número

Sección

ARTÍCULOS DE CIENCIA
Metrics
Vistas/Descargas
  • Resumen
    283
  • Scientific article - PDF
    666

Recibido

2023-09-06

Aceptado

2023-11-22

Publicado

2023-12-25

Cómo citar

YAMAMOTO, K. (2023). Comparación de la resistencia a la descomposición de la madera de teca (Tectona grandis L.f.) de plantación y de crecimiento natural. BOIS & FORETS DES TROPIQUES, 358, 31–38. https://doi.org/10.19182/bft2023.358.a37246

Artículos similares

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.