Comparaison de la résistance à la pourriture du bois de teck de plantation et du bois de teck naturel (Tectona grandis L.f.)

Auteurs

Forestry and Forest Products Research Institute 1 Matsunosato, Tsukuba, Ibaraki, 305-8687 Japan

DOI :

https://doi.org/10.19182/bft2023.358.a37246

Mots-clés


Tectona grandis, duramen, durabilité naturelle, résistance à la pourriture, provenance, bois de teck, plantation tropicale, Indonésie, Myanmar.

Résumé

Le teck (Tectona grandis L.f.) est une des essences tropicales les plus largement utilisées en raison de sa durabilité naturelle. L'aubier, le duramen externe, moyen et interne et la moelle du teck de plantation (Indonésie) et du teck naturel (Myanmar) ont été testés pour leur résistance à la pourriture (composante majeure de la durabilité naturelle des bois), en appliquant un test de pourriture accélérée conformément à la norme JIS Z 2101 (1994) en présence de pourriture blanche (Trametes versicolor) et de pourriture brune (Fomitopsis palustris). Des blocs de bois de 20 × 20 × 10 mm ont été découpés dans des disques prélevés sur le rayon de la tige. Le pourcentage de perte de masse dû à la pourriture dans chaque bloc a été obtenu après 12 semaines d'incubation avec ces champignons. Les pertes de masse moyennes dues à T. versicolor sont les suivantes pour, respectivement, le teck de plantation, le teck naturel (n° 1) et le teck naturel (n° 2) : aubier 21,4 %, 7,1 % et « absence de données » ; duramen extérieur 0,6 %, 3,6 %, 6,6 % ; duramen moyen 2,3 %, 6,5 %, 5,7 % ; duramen intérieur 10,3 %, 9,6 %, 6,0 % ; moelle 13,0 %, 15,3 %, 8,2 %. Les pertes dues à F. palustris sont, respectivement : aubier 7,5 %, 3,0 %, 7,5 % ; duramen externe 0,0 %, 2,5 %, 2,7 % ; duramen moyen 0,0 %, 2,2 %, 2,3 % ; duramen interne 4,9 %, 2,0 %, 3,4 % ; moelle 13,6 %, 8,4 %, 8,0 %. La durabilité a été classée en référence à Osborne (1970), en se basant sur le pourcentage moyen de perte de masse du duramen due à la pourriture fongique. Dans l’ensemble, parmi les échantillons de teck de plantation et de teck naturel, seuls les duramen externe et moyen étaient durables. La durabilité pour le duramen interne est modérée, mais faible pour la moelle. Aucune différence nette de résistance à la pourriture n'a été constatée entre le teck de plantation et le teck naturel.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

ASTM D 2017-05, 2005. Standard test method of accelerated laboratory test of natural decay resistance of woods. ASTM International.

https://www.astm.org/d2017-05.html

AWPA E7-21, 2023. Standard field test for evaluation of wood preservatives to be used in ground contact (UC4A, UC4B, UC4C); Stake test. AWPA Book of Standards. https://standards.globalspec.com/std/14381077/E7

AWPA E9-21, 2023. Standard field test for evaluation of wood preservatives to be used above ground (UC3A and UC3B); L-joint test. 2023 AWPA Book of Standards. https://www.techstreet.com/standards/awpa-e9-21?product_id=2227103

Bhat K. M., 1998. Properties of fast-growing teak wood: impact on end-user’s requirements. Journal of Tropical Forest Products, 4 (1): 1-10.

Bhat K. M., Priya P. B., Rugmini P., 2001.Characterisation of juvenile wood in teak. Wood Science and Technology, 34: 517–532.

Bhat K. M., Thulasidas P. K., Maria Florence E. J., Jayaraman K., 2005. Wood durability of home-garden teak against brown-rot and white-rot fungi. Trees,19: 654-660.

Bryant R. L., 2013. Branding natural resources: science, violence and marketing in the making of teak. Transactions of the Institute of British Geographers, 38 (4): 517-530. https://www.jstor.org/stable/24582484

Chudnoff M., 1984. Tropical timbers of the world, Agriculture handbook, No.607. U. S. Dept. of Agriculture, Forest Service, Verlag Kessel, 472 p.

Da Costa E.W.B., Rudman P., Gay F.J., 1961. Relationship of growth rate and related factors to durability in Tectona grandis. Empire Forestry Review, 40 (4): 308-319.

Eddowes P. J., 1977. Commercial timbers of Papua New Guinea Their properties and uses. Forest Products Research Centre, Forest Industries Council of Papua New Guinea, 205 p.

Elias P., Boucher D., 2014. Planting for the future How demand for wood products could be friendly to tropical forests. Union of Concerned Scientists, 40 p. https://www.ucsusa.org/resources/planting-future

EN 350, 2016. Durability of wood and wood-based products – testing and classification of the durability to biological agents of wood and wood-based materials. European committee for standardization (CEN). Brussels, Belgium, 67 p. https://standards.iteh.ai/catalog/standards/cen/b02d18a7-87ce-4a20-84c7-c0de641a2780/en-350-2016

FAO, 2022. The State of the World’s Forests 2022. Forest pathways for green recovery and building inclusive, resilient and sustainable economies. Food and Agriculture Organization of the United Nations, Rome, 166 p. https://www.fao.org/3/cb9360en/cb9360en.pdf

Fernández-Sólis D., Berrocal A., Moya R., 2018. Heartwood formation and prediction of heartwood parameters in Tectona grandis L.f. trees growing in forest plantations in Costa Rica, Bois et Forêts des Tropiques, 335: 25-37. https://doi.org/10.19182/bft2018.335.a31499

Foxworthy F. W., 1930. Durability Malayan timbers, Malayan Forest Records, No.8, 60 p.

Giam X., 2017. Global biodiversity loss from tropical deforestation. PNAS, 114 (23): 5775-5777. https://doi.org/10.1073/pnas.1706264114

Gérard J., Guibal D., Paradis S., Cerre J. C., 2017. Tropical Timber Atlas. Quæ Publisher, 1002 p. https://www.itto.int/files/itto_project_db_input/3028/Technical/E-TMT-SDP-010-12-R1-M-Tropical%20Timber%20Atlas.pdf

Hamza K. F. S., 1997. The effect of age and rate of growth on heartwood proportion in stems of Tectona grandis L.F. grown at Mtibwa, Tanzania, Proceedings of International Conference on Tropical Timber, 16-19 June 1997, Kuala Lumpur.

Hansen O. K., Changtragoon S., Ponoy B., Lopez J., Richard J., Kjær E. D., 2017. Worldwide translocation of teak – origin of landraces and present genetic base. Tree Genetics & Genomes 13 (87): 16 p. https://link.springer.com/article/10.1007/s11295-017-1170-8

Hartshorn G. S., Peralta R. L., 2013. Teak - the most important tropical hardwood. World Teak Congress, 25-30 March 2013, Bangkok, Thailand, 20 p. https://www.researchgate.net/profile/Gary_Hartshorn/publication/294427275_Teak--The_Most_Important_Tropical_Hardwood/links/56c0ba5608ae44da37fc0329

Haupt M., Leithoff H., Meier D., Puls J., Richter H. G., Faix O., 2003. Heartwood extractives and natural durability of plantation-grown teakwood (Tectona grandis L.) - a case study. Holz als Roh- und Werkstoff, 61 (6): 473-474. https://link.springer.com/article/10.1007/s00107-003-0428-z

Held C., Meier-Landsberg E., Alonso V., 2021. Tropical timber 2050: An analysis of the future supply of and demand for tropical timber and its contributions to a sustainable economy. ITTO, Technical Series, 49, 78 p. https://www.itto.int/direct/topics/topics_pdf_download/topics_id=6750&no=1&disp=inline

Hong L. T., Yamamoto K., 1990. A note on a laboratory method for estimating durability of some tropical hardwoods. Journal of Tropical Forest Science, 2 (2): 167-170.

ITTO, 2021. Doubling of world resource consumption by 2050 shows need for sustainable tropical timber - new report. ITTO, online. https://www.itto.int/news/2021/07/02/doubling_of_world_resource_consumption_by_2050_shows_need_for_sustainable_tropical_timber_new_report/

JIS Z 2101, 1994. Methods of test for woods. Japanese Industrial Standard, 36 p. https://archive.org/details/jis.z.2101.j.1994

Kokutse A. D., Akpenè A. D., Monteuuis O., Akossou A., Langbour P., Guibal D., et al., 2016. Selection of plus trees for genetically improved teak varieties produced in Benin and Togo. Bois et Forêts des Tropiques, 328 (2): 55-66. https://revues.cirad.fr/index.php/BFT/article/view/ID-BFT-151104

Kollert W., Kleine M. (eds), 2017. The global teak study Analysis, evaluation and future potential of teak resources. IUFRO World Series Volume 36, 107 p. https://www.iufro.org/download/file/26730/153/ws36_pdf/

Lukmandaru G., Falaah A. N., Listyanto.T., Rodiana D., 2021. Extractive content and colour properties of 11-year-old superior teak wood, Wood Research Journal (Indonesian Wood Research Society), 12(1): 10-16. http://ejournalmapeki.org/index.php/wrj/article/view/530

Martha R., Mubarok M., Akong F. O., George B., Gérardin C., Dumarçay S., et al., 2022. The effect of sapwood and heartwood differences on durability of short rotation teak wood. Proceedings IRG Annual Meeting, Document No: IRG/WP 22-10991, 12 p. https://www.researchgate.net/publication/367531786_The_effect_of_sapwood_and_heartwood_differences_on_durability_of_short_rotation_teak_wood

Matsuoka S., 1970. The properties of tropical woods. 14. Relative durability of Bangkirai, White Meranti and thirteen other wood species grown in Kalimantan, and Keruing grown in Malaya. Bulletin of the Government Forest Experiment Station, No. 230: 165-176. https://www.cabidigitallibrary.org/doi/full/10.5555/19700605027

Niamke F. B., Amusant N., Adima A. A., Kadio A. A., Chaix G., Jay-Allemand C., 2018. Wood chemistry completes natural durability as criteria for shorting best provenances in the improvement of teakwood quality: case of five provenances from Ivorian Séguié’s trial. Proceedings IRG Annual meeting, IRG/WP 18-10920, 8 p.

Osborne L. D.,1970. Decay resistance of south-west pacific rain-forest timbers. Division of Forest Products Technological Paper, No. 56: CSIRO, Australia.

Peng L., Searchinger T. D., Zionts J. Waite R., 2023. The carbon costs of global wood harvests. Nature, 620: 110-115. https://doi.org/10.1038/s41586-023-06187-1

Pirard R., Secco L. D., Warman R., 2016. Do timber plantations contribute to forest conservation? Environmental Science & Policy, 57: 122-130. https://doi.org/10.1016/j.envsci.2015.12.010

Rodríguez-Anda R., Koch G., Richter H.-G., Talavera F. J. F., Guzmán J. A. S., Satyanarayana K. G., 2019. Formation of heartwood, chemical composition of extractives and natural durability of plantation-grown teak wood from Mexico. Holzforschung, 73 (6): 547-557. https://doi.org/10.1515/hf-2018-0109

Rowe J. W., 1989. Natural products of woody plants; Chemicals extraneous to the lignocellulosic cell wall, Springer-Verlag Berlin. https://link.springer.com/book/10.1007/978-3-642-74075-6

Rudman P., Da Costa E.W.B., Gay F.J., 1967. Wood quality in plus trees of teak (Tectona grandis L.f.), Silvae Genetica,16(3): 101-105. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1967/Vol._16_Heft_3/16_3_102.pdf

Sawyer J., 1993. Plantations in the tropics: Environmental concerns.IUCN, Gland, Switzerland and Cambridge, UK in collaboration with UNEP and WWF.

Thulasidas P. K., Baillères H., 2017. Wood quality for advanced uses of teak from natural and planted forests. In: Kollert W., Kleine M. (eds.), 2017. The global teak study Analysis, evaluation and future potential of teak resources. IUFRO World Series Volume 36, Vienna. 73-81. https://www.iufro.org/publications/series/world-series/article/2017/06/21/world-series-vol-36-the-global-teak-study-analysis-evaluation-and-future-potential-of-teak-reso/

Timber Research and Development Association, 1979. Timbers of the world, Vol.1. The Construction Press, England.

Trockenbrodt M., Josue J., 1999. Wood properties and utilization potential of plantation teak (Tectona grandis) in Malaysia – A critical review. Journal of Tropical Forest Products, 5 (1): 58-70.

United Nations, 2017.United Nations strategic plan for forests 2017-2030. United Nations strategic plan for forest, Advance Unedited Version, p. 13. https://www.un.org/esa/forests/wp-content/uploads/2016/12/UNSPF_AdvUnedited.pdf

Verkerk P.J., Hassegawa M., Van Brusselen J., Cramm M., Chen X., Maximo Y. I., et al., 2022. Forest products in the global bioeconomy, Enabling substitution by wood-based products and contributing to the Sustainable Development Goals, Food and Agriculture Organization of the United Nations, 168 p. https://www.fao.org/documents/card/en?details=cb7274en

Vincent J. R., 1992. The tropical timber trade and sustainable development, Science, 256: 1651-1655. https://doi.org/10.1126/science.256.5064.1651

Numéro

Rubrique

ARTICLES SCIENTIFIQUES
Métriques
Vues/Téléchargements
  • Résumé
    118
  • Scientific article - PDF
    478

Reçu

2023-09-06

Accepté

2023-11-22

Publié

2023-12-25

Comment citer

YAMAMOTO, K. (2023). Comparaison de la résistance à la pourriture du bois de teck de plantation et du bois de teck naturel (Tectona grandis L.f.). BOIS & FORETS DES TROPIQUES, 358, 31–38. https://doi.org/10.19182/bft2023.358.a37246