Application de la méthode BDq dans les écosystèmes tropicaux à forêt mixte complexe au Nigeria

##plugins.themes.bootstrap3.article.main##

Friday Nwabueze OGANA
José Javier GORGOSO-VARELA
Alfred Ossai ONEFELI

Résumé

L'absence de pratiques de gestion et de traitements sylvicoles dans les forêts tropicales mixtes complexes du Nigeria conduit à leur exploitation incontrôlée et au déclin de leur biodiversité. Pour assurer le maintien de la production, de la protection et de la conservation de ces peuplements mixtes complexes, la présente étude propose l'application d'une méthode de sélection, dite méthode BDq (B : surface terrière ; D : diamètre maximal ; q-ratio) pour leur gestion. Un essai pilote a porté sur deux strates, comportant 15 parcelles pour la strate 1 et 7 parcelles pour la strate 2, chacune avec une superficie de 0,25 ha. Seuls les arbres avec un diamètre à hauteur de poitrine D ≥ 10,0 cm ont été pris en compte pour cette étude. La récolte de bois avec la méthode BDq a été quantifiée selon l'intensité d'exploitation, avec B à 20 m2, 25 m2 et 30 m2/ha correspondant respectivement à un régime intensif, modéré et peu intense, pour un diamètre D à 65 cm. Le q-ratio a été calculé pour chacune des parcelles. Les résultats montrent que les trois régimes BDq prescrits (intensif, modéré et peu intense) permettent des intensités d'abattage (FI) raisonnables, en pourcentage du volume extrait (Vext) et de la biomasse (Wext). Vext et FI pour la strate 1 varient entre 39,94-62,30 m3/ha et 11,22-18,18 % et entre 30,44-51,33 m3/ha et 10,02-17,57 % pour la strate 2. Pour la biomasse, Wext et FI varient entre 18,46-29,82 t/ha et 9,40-15,95 % pour la strate 1 et entre 14,16-24,82 t/ha et 9,73-17,50 % pour la strate 2. Ces constats indiquent que l'application de la méthode BDq dans les forêts tropicales mixtes et complexes du Nigeria permettrait d'obtenir des peuplements intéressants.

##plugins.themes.bootstrap3.article.details##

Rubrique
ARTICLES SCIENTIFIQUES

Références

Akindele S. O., LeMay V. M., 2006. Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria. Forest Ecology and Management, 226 (1-3): 41-48. https://doi.org/10.1016/j.foreco.2006.01.022
Baker J. B., Cain M. D., Guldin J. M., Murphy P. A., Shelton M. G., 1996. Uneven-aged silviculture for the loblolly and shortleaf pine forest cover types. In: General Technical Report Southern Research Station, USDA Forest Service, S0-118: iv, 65 p. U.S. Department of Agriculture, Forest Service, Southern Forest Experiment Station. https://doi.org/10.2737/so-gtr-118
Brzeziecki B., Kornat A., 2011. Application of the BDq method in uneven-aged stands silviculture. Sylwan, 155 (9): 589-598. https://www.cabdirect.org/cabdirect/abstract/20113395708
Cancino J., von Gadow K., 2002. Stem number guide curves for uneven-aged forests development and limitations. In: von Gadow K., Nagel J., Saborowski J. (eds). Continuous Cover Forestry. Managing Forest Ecosystems, vol. 4, 163-174. Dordrecht, Netherlands, Springer. https://doi.org/10.1007/978-94-015-9886-6_13
Chave J., Réjou-Méchain M., Búrquez A., Chidumayo E., Colgan M. S., Delitti W. B. C., et al., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20 (10): 3177-3190. https://doi.org/10.1111/gcb.12629
Davies O., Haufe J., Pommerening A., 2008. Silvicultural principles of continuous cover forestry: a guide to best practice. Forestry Commission Wales, England, 111 p.
Drozdowski S., Bielak K., Buraczyk W., Gawron L., Jaros R., Zybura H., 2014. Silvicultural planning in complex structures of silver fir by means of the BDq method in Zagnańsk Forest District. Sylwan, 158 (9): 651-660. https://www.researchgate.net/profile/Stanislaw_Drozdowski2/publication/286935815_Silvicultural_planning_in_complex_structures_of_silver_fir_by_means_of_the_BDq_method_in_Zagnansk_Forest_District/links/56715f2408ae0d8b0cc2f0a0.pdf
Dubey S. D., 1967. Some Percentile Estimators for Weibull Parameters. Technometrics, 9 (1): 119-129. https://doi.org/10.1080/00401706.1967.10490445
Dupuy B., Maitre H.-F., Amsallem I., 1999. Tropical forest management techniques: a review of the sustainability of forest management practices in tropical countries. Working Paper, FAO/FPIRS/04. http://www.fao.org/3/a-x4110e.pdf
von Gadow K., Zhang C. Y., Wehenkel C., Pommerening A., Corral-Rivas J., Korol M., et al., 2012. Forest Structure and Diversity. In: Pukkala T., von Gadow K. (eds). Continuous Cover Forestry. Managing Forest Ecosystems, vol. 23, 29-83. Dordrecht, Netherlands, Springer. https://doi.org/10.1007/978-94-007-2202-6_2
Gerald C. F., Wheatley P. O., 1989. Applied numerical analysis. 4th edition. Reading, MA, USA, Addison-Wesley Publishing Co.
Gorgoso-Varela J. J., Rojo-Alboreca A., 2014. Use of Gumbel and Weibull functions to model extreme values of diameter distributions in forest stands. Annals of Forest Science, 71: 741-750. https://doi.org/10.1007/s13595-014-0369-1
Gorgoso-Varela J. J., Ogana F. N., Ige P. O., 2020. A comparison between derivative and numerical optimization methods used for diameter distribution estimation. Scandinavian Journal of Forest Research, 35 (3-4): 156-164. https://doi.org/10.1080/02827581.2020.1760343
Graz F. P., von Gadow K., 2005. Application of a ‘stem number guide curve’ for sustainable harvest control in the dry woodland savanna of northern Namibia. Southern African Forestry Journal, 204 (1): 37-44. https://doi.org/10.2989/10295920509505225
Guldin J. M., 1991. Uneven-aged BDq regulation of Sierra Nevada mixed conifers. Western Journal of Applied Forestry, 6 (2): 27-32. https://doi.org/10.1093/wjaf/6.2.27
Guldin J. M., 2011. Experience with the selection method in pine stands in the southern United States, with implications for future application. Forestry, 84 (5): 539-546. https://doi.org/10.1093/forestry/cpr035
Hutchinson J., Datziel J. M., Keay R. W. J., Hepper F. N., 2014. Flora of West Tropical Africa. Vol.1, Part 2. London, UK, Royal Botanical Gardens, Kew, 330 p.
Mason B., Kerr G., Simpson J., 1999. What is continuous cover forestry? Forestry Commission Information, Note 29. Forestry Commission, Edinburgh.
Ogana F. N., 2020. An evaluation of ten estimators for fitting two-parameter weibull function to Nigerian forest stands. Eurasian Journal of Forest Science, 8 (2): 129-139. https://doi.org/10.31195/ejejfs.712992
Ogana F. N., Gorgoso-Varela J. J., 2015. Comparison of estimation methods for fitting Weibull distribution to the natural stand of Oluwa forest reserve, Ondo State, Nigeria. Journal of Research in Forestry, Wildlife and Environment, 7 (2): 81-90. https://www.ajol.info/index.php/jrfwe/article/view/125077
Ogana F. N., Osho J. S. A., Gorgoso-Varela J. J., 2015. Comparison of beta, gamma Weibull distributions for characterising tree diameter in Oluwa forest reserve, Ondo State, Nigeria. Journal of Natural Sciences Research, 5 (4): 28-36. https://iiste.org/Journals/index.php/JNSR/article/view/20167
Pogoda P., Ochał W., Orzeł S., 2020. Performance of Kernel estimator and Johnson SB function for modeling diameter distribution of black alder (Alnus glutinosa (L.) Gaertn.) stands. Forests, 11 (6). https://doi.org/10.3390/F11060634
SAS Institute Inc., 2004. SAS/STAT 9.1 User’s Guide (Vol. 1-7). Cary, NC, USA, SAS Institute Inc. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=1625989
Schütz J. P., Pukkala T., Donoso P. J., von Gadow K., 2012. Historical emergence and current application of CCF. In: Pukkala T., von Gadow K. (eds). Continuous Cover Forestry. Managing Forest Ecosystems, vol. 23, 1-28. Dordrecht, Netherlands, Springer. https://doi.org/10.1007/978-94-007-2202-6_1
Schütz J. P., Saniga M., Diaci J., Vrska T., 2016. Comparing close-to-nature silviculture with processes in pristine forest: lessons from Central Europe. Annals of Forest Science, 73: 911-921. https://doi.org/10.1007/s13595-016-0579-9
Sharma A., Bohn K., Jose S., Cropper W. P., 2014. Converting even-aged plantations to uneven-aged stand conditions: A simulation analysis of silvicultural regimes with slash pine (Pinus elliottii Engelm.). Forest Science, 60 (5): 893-906. https://doi.org/10.5849/forsci.13-097
Sun S., Cao Q. V., Cao T., 2019. Characterizing diameter distributions for uneven-aged pine-oak mixed forests in the Qinling Mountains of China. Forests, 10 (7): 596. https://doi.org/10.3390/f10070596
Temesgen H., Zhang C. H., Zhao X. H., 2014. Modelling tree height-diameter relationships in multi-species and multi-layered forests: A large observational study from Northeast China. Forest Ecology and Management, 316: 78-89. https://doi.org/10.1016/j.foreco.2013.07.035
Turner I. M., 2001. The Ecology of Trees in the Tropical Rain Forest. In: The Ecology of Trees. Cambridge Tropical Biology Series, Cambridge University Press, 298 p. https://doi.org/10.1017/cbo9780511542206
Vanha-Majamaa I., Jalonen J., 2001. Green tree retention in Fennoscandian forestry. Scandinavian Journal of Forest Research, 16 (1): 79-90. https://doi.org/10.1080/028275801300004433
Vinet L., Zhedanov A., 2011. A “missing” family of classical orthogonal polynomials. Journal of Physics A: Mathematical and Theoretical, 44: 085201. https://doi.org/10.1088/1751-8113/44/8/085201
Zanne A. E., Lopez-Gonzalez G., Coomes D. A., Ilic J., Jansen S., Lewis S. L., et al., 2009. Data from: Towards a worldwide wood economics spectrum. Global wood density database. Dryad, Dataset. https://doi.org/10.5061/dryad.234