Study of the technological properties of a wood-plastic composite developed in Benin

Authors

Togbé Armel AMADJI
Université d'Abomey-Calavi Laboratoire d’énergétique et de mécanique appliquée (LEMA) 01 BP 2009 Cotonou Bénin
Edmond Codjo ADJOVI
Université nationale des sciences, technologies, ingénierie et mathématique d'Abomey ESTBR BP 2282, Goho Abomey Bénin
CIRAD UPR BioWooEB 34398 Montpellier France -- BioWooEB Univ Montpellier, CIRAD Montpellier France
Jonathan BARÉS
LMGC Univ Montpellier CNRS Montpellier France
Vincent HUON
LMGC Univ Montpellier CNRS Montpellier France

DOI:

https://doi.org/10.19182/bft2021.348.a36750

Keywords


wood waste, polystyrene, recycling, composite material, physical properties, mechanical properties, Benin

Abstract

In Benin, very little reuse of waste from timber processing occurs within the wood industry. Few studies in the international literature address technologies for processing these by-products that are economically accessible to populations in developing countries. In this study, the aim was to characterise a material made of teak sawdust mixed with recycled polystyrene pulp using an easily implemented low-tech technology. Our results show that the properties of this composite material vary significantly with the grain size of the sawdust used. The material's bulk density ranges from 686 to 826 kg/m3, the moisture absorption rate is below 15% and thickness swell is below 5% after soaking for 24 hours. A high correlation was observed between its physical properties and its porosity, which varies from 34-43% depending on the grain size of the sawdust used. The composite material has a tensile modulus of elasticity ranging from 582 to 1057 MPa, tensile strength from 2 to 3 MPa and a Poisson coefficient ranging from 0.14-0.24. The compression modulus of elasticity ranges from 270-470 MPa and compressive strength from 6 to 9 MPa. This composite material can thus be considered for use as a wood substitute for non-load-bearing products such as shuttering for light construction.

 

Downloads

Download data is not yet available.

References

Abdel Mohsen R. A. A., 2014. Investigation of Reinforced Polystyrene Foam Waste with Natural or Synthetic Fibers. Master of Science in Environmental Engineering, The American University in Cairo, School of Sciences and Engineering, Egypt, 85 p. http://dar.aucegypt.edu/bitstream/handle/10526/3803/thesis%208.pdf?sequence=1
Agoua E., Allognon-Houessou E., Adjovi E., Togbedji B., 2013. Thermal conductivity of composites made of wastes of wood and expanded polystyrene. Construction and Building Materials, 41: 557-562. https://doi.org/10.1016/j.conbuildmat.2012.12.016
Almusawi A. M., 2017. Mise en œuvre et optimisation des propriétés d’une structure sandwich en matériaux biosourcés (fibres et bois de chanvre) avec une matrice en polystyrène expansé pour le bâtiment. Thèse de doctorat, spécialité Matériaux, Université de technologie de Belfort-Montbéliard, France, 198 p. https://www.researchgate.net/publication/327541397_Mise_en_oeuvre_et_optimisation_des_proprietes_d%27une_structure_sandwich_en_materiaux_biosources_fibres_et_bois_de_chanvre_avec_une_matrice_en_polystyrene_expanse_pour_le_batiment
ASTM, 2012. Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle Panel Materials. Norme ASTM D1037-12, 32 p.
Atindogbé G., Fonton N. H., Lejeune P., 2013. Évaluation de la ressource en teck, Tectona grandis L.f., des plantations privées du Sud-Bénin. Bois et Forêts des Tropiques, 316 (2) : 93-103. https://doi.org/10.19182/bft2013.316.a20533
Binhussain M. A., El-Tonsy M. M., 2013. Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials 47: 1431-1435. https://doi.org/10.1016/j.conbuildmat.2013.06.031
Borsoi C., Berwig K. H., Scienza L. C., Zoppas B. C. D. A., Brandalise R. N., Zattera A. J., 2013. Behavior in simulated soil of recycled expanded polystyrene/waste cotton composites. Materials Research, 17 (1): 275-283. https://doi.org/10.1590/S1516-14392013005000167
Chanhoun M., Padonou S., Adjovi E. C., Olodo E., Doko V., 2018. Study of the implementation of waste wood, plastics and polystyrenes for various applications in the building industry. Construction and Building Materials, 167: 936-941. https://doi.org/10.1016/j.conbuildmat.2018.02.080
Chindaprasirt P., Hiziroglu S., Waisurasingha C., Kasemsiri P., 2015. Properties of wood flour/expanded polystyrene waste composites modified with diammonium phosphate flame retardant. Polymer Composites, 36 (4): 604-612. https://doi.org/10.1002/pc.22977
Claire D., Hild F., Roux S., 2003. De la corrélation d’images numériques à l’identification de champs de propriétés. Bulletin de la Société Française de Physique, 139 : 29-31. https://hal.archives-ouvertes.fr/hal-00002926
Flores-Hernández M., Gonzáles I. R., Lomeli-Ramirez M., Fuentes-Talavera F., Silva-Guzmán J., Cerpa-Gallegos M., et al., 2013. Physical and mechanical properties of wood plastic composites polystyrene-white oak wood flour. Journal of Composite Materials, 48 (2): 209-217. https://doi.org/10.1177/0021998312470149
Gérard J. (coord.), Guibal D., Paradis S., Cerre J.-C., et al., 2016. Atlas des bois tropicaux. Caractéristiques technologiques et utilisations. Versailles, France, Éditions Quæ, coll. Guide pratique, 1 000 p. http://www.quae.com/fr/r4976-atlas-des-bois-tropicaux.html
Harper C. A. (ed.), 1999. Modern Plastics Handbook. Technology Seminars, Inc., Lutherville, Maryland, USA, Mc Graw-Hill, 1231 p. https://mmsallaboutmetallurgy.com/wp-content/uploads/2019/08/Modern-Plastics-Handbook.pdf
Hwang G.-C., Kim B. K., Bae S. Y., Yi S. C., Kumazawa H., 1999. Degradation of polystyrene in supercritical acetone. Journal of Industrial and Engineering Chemistry, 5 (2): 150-154. https://www.cheric.org/PDF/JIEC/IE05/IE05-2-0150.pdf
Kuo P.-Y., Wang S.-Y., Chen J.-H., Hsueh H.-C., Tsa M.-J., 2009. Effects of material compositions on the mechanical properties of wood–plastic composites manufactured by injection molding. Materials & Design, 30 (9): 3489-3496. https://doi.org/10.1016/j.matdes.2009.03.012
Lahmar M. A., 2016. Caractérisation d’un composite bois-polymère pour utilisation en plaques de bardage par l’extérieur. Thèse de doctorat, spécialité Génie civil, Université Claude Bernard Lyon 1, France, 175 p. https://tel.archives-ouvertes.fr/tel-01587799/file/TH2016LAHMARMOHAMEDALI.pdf
Madsen B., Hoffmeyer P., Thomsen A. B., Lilholt H., 2007. Hemp yarn reinforced composites – I. Yarn characteristics. Composites Part A: Applied Science and Manufacturing, 38 (10): 2194-2203. https://doi.org/10.1016/j.compositesa.2007.06.001
Maldas D., Kokta B. V., Raj R. G., Daneault C., 1988. Improvement of the mechanical properties of sawdust wood fibre-polystyrene composites by chemical treatment. Polymer, 29 (7): 1255-1265. https://doi.org/10.1016/0032-3861(88)90053-5
Manikandan Nair K. C., Diwan S. M., Thomas S., 1996. Tensile properties of short sisal fiber reinforced polystyrene composites. Journal of Applied Polymer Science, 60 (9): 1483-1497. https://doi.org/10.1002/(SICI)1097-4628(19960531)60:9<1483::AID-APP23>3.0.CO;2-1
Masri T., Ounis H., Sedira L., Kaci A., Benchabane A., 2018. Characterization of new composite material based on date palm leaflets and expanded polystyrene wastes. Construction and Building Materials, 164 (4): 410-418. https://doi.org/10.1016/j.conbuildmat.2017.12.197
Pihlatie M., Kaiser A., Mogensen M., 2009. Mechanical Properties of NiO/Ni-YSZ Composites Depending on Temperature, Porosity and Redox Cycling. Journal of the European Ceramic Society, 29 (9): 1657-1664. https://doi.org/10.1016/j.jeurceramsoc.2008.10.017.
Poletto M., Zeni M., Zattera A. J., 2011. Effects of wood flour addition and coupling agent content on mechanical properties of recycled polystyrene/wood flour composites. Journal of Thermoplastic Composite Materials, 25 (7): 821-833. https://doi.org/10.1177/0892705711413627
Sales C., 2003. Innovation technologique et valorisation des sous-produits des filières bois. Bois et Forêts des Tropiques, 277 (3) : 35-43. https://revues.cirad.fr/index.php/BFT/article/view/20182
Sarmiento A. M., Guzmán H. L., Morales G., Romero D. E., Pataquiva-Mateus A. Y., 2016. Expanded Polystyrene (EPS) and Waste Cooking Oil (WCO): From Urban Wastes to Potential Material of Construction. Waste and Biomass Valorization 7, 1245-1254. https://doi.org/10.1007/s12649-016-9511-7
Stark N. M., Berger M. J., 1997. Effect of Particle Size on Properties of Wood-Flour Reinforced Polypropylene Composites. In: Proceedings of the Fourth International Conference on Wood fiber–Plastic Composites, Forest Products Society, Madison, WI, Proceedings No. 7277, 134-143. https://www.fpl.fs.fed.us/documnts/pdf1997/stark97d.pdf
Taghiyari H. R., Ghamsari F. A., Salimifard E., 2018. Effects of adding nano-wollastonite, date palm prunings and two types of resins on the physical and mechanical properties of medium-density fibreboard (MDF) made from wood fibres. Bois et Forêts des Tropiques, 335 : 49-57. http://dx.doi.org/10.19182/bft2018.335.a31517
UEMOA, 2013. Étude sur la gestion des déchets plastiques dans l’espace UEMOA. Rapport final. Politique commune d’amélioration de l’environnement, 253 p. http://etudes.uemoa.int/upload/etude%20sur%20la%20gestion%20des%20dechets%20plastiques%20dans%20l%27espace%20uemoa.pdf
Vu T. L., Barés J., Mora S., Nezamabadi S., 2019. Numerical simulations of the compaction of assemblies of rubberlike particles: A quantitative comparison with experiments. Physical Review E 99, 062903. https://link.aps.org/doi/10.1103/PhysRevE.99.062903
Metrics
Views/Downloads
  • Abstract
    995
  • PDF (Français)
    351

Published

2021-07-05

How to Cite

AMADJI, T. A. ., ADJOVI, E. C. ., GÉRARD, J. ., BARÉS, J. ., & HUON, V. . (2021). Study of the technological properties of a wood-plastic composite developed in Benin. BOIS & FORETS DES TROPIQUES, 348, 49–63. https://doi.org/10.19182/bft2021.348.a36750

Most read articles by the same author(s)

<< < 1 2 3 > >>