Diversité génétique de dix peuplements de Tetraclinis articulata au Maroc révélée par marqueurs microsatellites (ISSR)

##plugins.themes.bootstrap3.article.main##

Meryem MAKKAOUI
Younes ABBAS
Salwa EL ANTRY-TAZY
Leila MEDRAOUI
Mohammed ALAMI
Selouka RABANI
Abdelkarim FILALI-MALTOUF

Résumé

Tetraclinis articulata (Vahl) Masters est une des essences forestières les plus importantes pour le Maroc. Elle se trouve ponctuellement à Malte et en Espagne, ce qui témoigne d'une capacité significative d'adaptation à différentes conditions bioclimatiques. Cependant, cette essence est menacée par la fragmentation anthropogène, l'exploitation forestière et sa marginalisation par les pouvoirs publics, ce qui risque de conduire à la perte irrémédiable de cette ressource. La présente étude évalue la diversité génétique et la structure génétique de dix peuplements marocains de T. articulata à l'aide de quinze marqueurs microsatellites (ISSR). Ceux-ci ont généré 271 fragments polymorphes avec une moyenne de 18,06 par amorce et révèlent un polymorphisme à 79,59 %. Les 129 individus montrent un niveau de diversité génétique élevé (Hs = 0,221 ; Ht = 0,254) et 85 % de variation génétique au sein des peuplements. Cependant, le niveau de différenciation génétique est faible (Gst = 0,13), ce qui correspond à l'absence de corrélation entre les distances génétiques et géographiques révélées par le test de Mantel, qui se traduit par un flux génique élevé (Nm = 3,294). Les méthodes PCoA et neighbour-joining produisent un classement des dix peuplements sous l'effet d'un climat continental ou marin. Comparé à d'autres conifères, la diversité génétique actuelle et la structure populationnelle de T. articulata indiquent un patrimoine génétique important qui nécessite des stratégies de conservation efficaces.

##plugins.themes.bootstrap3.article.details##

Rubrique
ARTICLE SCIENTIFIQUE

Références

Allnutt T. R., Newton A. C., Premoli A., Lara A., 2003. Genetic variation in the threatened South American conifer Pilgerodendron uviferum (Cupressaceae), detected using RAPD markers. Biological Conservation, 114 (2): 245-253. https://doi.org/10.1016/S0006-3207(03)00044-2
Aravanopoulos F. A. 2016. Conservation and monitoring of tree genetic resources in temperate forests. Current Forestry Reports, 2: 119-129. https://doi.org/10.1007/s40725-016-0038-8
Benabid A. 1984. Étude phytoécologique des peuplements forestiers et préforestiers du Rif centro-occidental (Maroc). Rabat, Maroc, Université Mohammed V, Travaux de l'Institut scientifique, Série Botanique, 34, 64 p.
Bennett K. D., Haberle S. G., Lumley S. H., 2000. The Last Glacial-Holocene Transition in Southern Chile. Science, 290 (5490): 325-328. https://doi.org/10.1126/science.290.5490.325
Bourkhiss M., Hnach M., Bourkhiss B., Ouhssine M., Chaouch A., 2007. Composition chimique et propriétés antimicrobiennes de l’huile essentielle extraite des feuilles de Tetraclinis articulata (Vahl) du Maroc. Afrique Science, 3 (2): 232-242. http://www.afriquescience.info/docannexe.php?id=813M
Buhagiar J., Podestà M. T. C., Cioni P. L., Flamini G., Morelli I., 2000. Essential oil composition of different parts of Tetraclinis articulata. Journal of Essential Oil Research, 12 (1): 29-32. https://doi.org/10.1080/10412905.2000.9712034
Chung J. D., Lin T. P., Tan Y. C., Lin M. Y., Hwang S. Y., 2004. Genetic diversity and biogeography of Cunninghamia konishii (Cupressaceae), an island species in Taiwan: a comparison with Cunninghamia lanceolata, a mainland species in China. Molecular Phylogenetics and Evolution, 33 (3): 791-801. https://doi.org/10.1016/j.ympev.2004.08.011
Dagher-Kharrat M. B., Mariette S., Lefèvre F., Fady B., Grenier-de March G., et al., 2007. Geographical diversity and genetic relationships among Cedrus species estimated by AFLP. Tree Genetics & Genomes, 3 (3): 275-285. https://doi.org/10.1007/s11295-006-0065-x
Douaihy B., Vendramin G. G., Boratyński A., Machon N., Dagher-Kharrat M. B., 2011. High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region. AoB Plants, 2011: plr003. https://doi.org/10.1093/aobpla/plr003
Esteve-Selma M. A., Martínez-Fernández J., Hernández I., Montávez J. P., Lopez J. J., Calvo J. F., et al., 2010. Effects of climatic change on the distribution and conservation of Mediterranean forests: the case of Tetraclinis articulata in the Iberian Peninsula. Biodiversity and Conservation, 19 (13): 3809-3825. https://doi.org/10.1007/s10531-010-9928-4
Esteve-Selma M. A., Martínez-Fernández J., Hernández-García I., Montávez J. P., López-Hernández J. J., Calvo J. F., 2012. Potential effects of climatic change on the distribution of Tetraclinis articulata, an endemic tree from arid Mediterranean ecosystems. Climatic Change, 113 (3-4): 663-678. https://doi.org/10.1007/s10584-011-0378-0
Evanno G., Regnaut S., Goudet J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14 (8): 2611-20. https://doi.org/10.1111/j.1365-294x.2005.02553.x
Excoffier L., Smouse P. E., Quattro J. M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131 (2): 479-91. https://pubmed.ncbi.nlm.nih.gov/1644282/
Falk D. A., Holsinger K. E., 1991. Genetics and Conservation of Rare Plants. Oxford, UK, Oxford University Press, 302 p.
Fidah A., Rahouti M., Kabouchi B., Ziani M., El Bouhtoury-Charrier F., Famiri A., 2015. Natural durability of Tetraclinis articulata (Vahl) Masters woods against wood decay fungi: Laboratory test. Wood Research, 60 (6): 865-872. http://www.centrumdp.sk/wr/201506/02.pdf
Ge S., Hong D.-Y., Wang H.-Q., Liu Z.-Y., Zhang C.-M., 1998. Population genetic structure and conservation of an endangered conifer, Cathaya argyrophylla (Pinaceae). International Journal of Plant Sciences, 159 (2): 351-357. https://doi.org/10.1086/297556
Godwin I. D., Aitken E. A. B., Smith L. W., 1997. Application of inter simple sequence repeat (ISSR) markers to plant genetics. Electrophoresis, 18: 1524-1528. https://doi.org/10.1002/elps.1150180906
Hamrick J. L., Godt M. J. W., Sherman-Broyles S. L., 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests, 6: 95-124. https://doi.org/10.1007/BF00120641
Hou L., Cui Y., Li X., Chen W., Zhang Z., Pang X., Li Y., 2018. Genetic evaluation of natural populations of the endangered conifer Thuja koraiensis using microsatellite markers by restriction-associated DNA sequencing. Genes (Basel), 9 (4): 218. https://doi.org/10.3390/genes9040218
Huh M. K., Hong W. H., 2000. Genetic diversity and population structure of Juniperus rigida (Cupressaceae) and Juniperus coreana. Evolutionary Ecology, 14 (2): 87-98. https://doi.org/10.1023/A:1011090013749
Jubrael J. M., Udupa S. M., Baum M., 2005. Assessment of AFLP-based genetic relationships among date palm (Phoenix dactylifera L.) varieties of Iraq. Journal of American Society for Horticultural Science, 130 (3): 442-447. https://doi.org/10.21273/JASHS.130.3.442
Kim E.-H., Shin J.-K., Jeong K.-S., Lee C.-S., Chung J.-M., 2018. Genetic variation and structure of Juniperus chinensis L. (Cupressaceae) in Korea. Journal of Ecology and Environment, 42 (1): 14. https://doi.org/10.1186/s41610-018-0073-4
Lanner R. M., 1966. Needed: a new approach to the study of pollen dispersion. Silvae Genetica, 15: 50-52. https://www.thuenen.de/media/institute/fg/PDF/Silvae_Genetica/1966/Vol._15_Heft_2/15_2_50.pdf
Li F., Xia N., 2005. Population structure and genetic diversity of an endangered species, Glyptostrobus pensilis (Cupressaceae). Botanical Bulletin of Academia Sinica, 46: 155-162. https://ejournal.sinica.edu.tw/bbas/content/2005/2/Bot462-09.pdf
Liu J., Shi S., Chang E., Yang W., Jiang Z., 2013. Genetic diversity of the critically endangered Thuja sutchuenensis revealed by ISSR markers and the implications for conservation. International Journal of Molecular Science, 14 (7): 14860-14871. https://doi.org/10.3390/ijms140714860
Liu Z.-J., Chen Y., Peng Z., Wu C., Ma Z., Ding G., et al., 2017. Genetic diversity and variation of Chinese fir from Fujian province and Taiwan, China, based on ISSR markers. Plos One, 12 (4): e0175571. https://doi.org/10.1371/journal.pone.0175571
Loveless M. D., Hamrick J. L., 1984. Ecological determinants of genetic structure in plant populations. Annual Review of Ecology and Systematics, 15: 65-95. https://doi.org/10.1146/annurev.es.15.110184.000433
Mantel N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Research, 27 (2 Part 1): 209-220. https://cancerres.aacrjournals.org/content/27/2_Part_1/209
Meloni M., Perini D., Filigheddu R., Binelli G., 2006. Genetic variation in five Mediterranean populations of Juniperus phoenicea as revealed by inter-simple sequence repeat (ISSR) markers. Annals of Botany, 97 (2): 299-304. https://dx.doi.org/10.1093%2Faob%2Fmcj024
Morte M. A., Honrubia M., 1996. Tetraclinis articulata (Cartagena Cypress). In: Bajaj Y. P. S. (ed.). Trees IV. Heidelberg, Germany, Springer-Verlag. https://link.springer.com/chapter/10.1007/978-3-662-10617-4_24
Nei M., 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, 70 (12): 3321-3323. https://doi.org/10.1073/pnas.70.12.3321
Ng W. L., Tan S. G., 2015. Inter-Simple Sequence Repeat (ISSR) markers: Are we doing it right? ASM Science Journal, 9 (1): 30-39. https://www.researchgate.net/publication/283256624_Inter-Simple_Sequence_Repeat_ISSR_markers_Are_we_doing_it_right
Nybom H., 2004. Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13 (5): 1143-55. https://doi.org/10.1111/j.1365-294X.2004.02141.x
Nybom H., Bartish I. V., 2000. Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspectives in Plant Ecology, Evolution and Systematics, 3 (2): 93-114. https://doi.org/10.1078/1433-8319-00006
Pandey M., Rajora O. P., 2012. Genetic diversity and differentiation of core vs. peripheral populations of eastern white cedar, Thuja occidentalis (Cupressaceae). American Journal of Botany, 99 (4): 690-699. https://doi.org/10.3732/ajb.1100116
Porth I., El-Kassaby Y., 2014. Assessment of the genetic diversity in forest tree populations using molecular markers. Diversity, 6 (2): 283-295. https://doi.org/10.3390/d6020283
Powell W., Morgante M., Chaz A., Hanafey M., Vogel J., Tingey S., et al., 1996. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular Breeding, 2 (3): 225-238. https://doi.org/10.1007/BF00564200
Prevost A., Wilkinson M. J., 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theoretical and Applied Genetics, 98 (1): 107-112. https://doi.org/10.1007/s001220051046
Pritchard J. K., Stephens M., Donnelly P., 2000. Inference of population structure using multilocus genotype data. Genetics, 155 (2): 945-59. https://www.genetics.org/content/155/2/945
Rocha J. A., Santelmo V., Meneses da Silva F. M., Jurkiewicz M. A., Souza Silva M. F., et al., 2014. ISSR Primer Selection for Genetic Variability Analyses with Jaborandi (Pilocarpus microphyllus Stapf ex Wardlew., Rutaceae). Forest Research: Open Access, 03 (04). https://doi.org/10.4172/2168-9776.1000126
Roldán-Ruiz I., Dendauw J., Van Bockstaele E., Depicker A., De Loose M., 2000. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Molecular Breeding, 6 (2): 125-134. https://doi.org/10.1023/A:1009680614564
Rourke J. P., 1991. Tetraclinis articulata, a hitherto unrecorded naturalised alien conifer in South Africa. Bothalia, 21 (1): 62-64. https://doi.org/10.4102/abc.v21i1.2015
Sánchez-Gómez P., Jiménez J., Vera J., Sánchez-Saorín F., Martínez J., Buhagiar J., 2013. Genetic structure of Tetraclinis articulata, an endangered conifer of the western Mediterranean basin. Silva Fennica, 47 (5): 1073. https://www.readcube.com/articles/10.14214/sf.1073
Schaal B. A., Hayworth D. A., Olsen K. M., Rauscher J. T., Smith W. A., 1998. Phylogeographic studies in plants: problems and prospects. Molecular Ecology, 7: 465-474. https://doi.org/10.1046/j.1365-294x.1998.00318.x
Shannon C. E., Weaver W., 1964. The mathematical theory of communication. Urbana, IL, USA, University of Illinois Press, 131 p. https://pure.mpg.de/rest/items/item_2383164/component/file_2383163/content
Tam N. M., Hoa N. T., 2006. Genetic variation in threatened conifer Cunninghamia lanceolata var. konishii using ISSR markers: Implications for conservation. Tap chi Sinh hoc, 31 (2): 66-72. https://tailieuxanh.com/vn/tlID2186218_genetic-variation-in-threatened-conifer-cunninghamia-lanceolata-var-konishii-using-issr-markers-implications-for-conservation.html
Terrab A., Schonswetter P., Talavera S., Vela E., Stuessy T. F.. 2008. Range-wide phylogeography of Juniperus thurifera L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene. Molecular Phylogenetics and Evolution, 48 (1): 94-102. https://doi.org/10.1016/j.ympev.2008.03.018
Tonk F. A., Tosum M., Ilker E., Istipliler D., Tatar O., 2014. Evaluation and comparison of ISSR and RAPD markers for assessment of genetic diversity in triticale genotypes. Bulgarian Journal of Agricultural Science, 20 (6): 1413-1420. https://acikerisim.ege.edu.tr/xmlui/handle/11454/17532
Vashishtha A., Jehan T., Lakhanpaul S., 2013. Genetic diversity and population structure of Butea monosperma (Lam.) Taub.- a potential medicinal legume tree. Physiology and Molecular Biology of Plants, 19 (3): 389-397. https://dx.doi.org/10.1007%2Fs12298-013-0170-x
Vijayan K., 2005. Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis. International Journal of industrial Entomology, 10 (2): 79-86. http://www.koreascience.or.kr/article/JAKO200502637383451.page
Wang D.-L., Li Z.-C., Hao G., Chiang T.-Y., Ge X.-J., 2004. Genetic diversity of Calocedrus macrolepis (Cupressaceae) in southwestern China. Biochemical Systematics and Ecology, 32 (9): 797-807. https://doi.org/10.1016/j.bse.2003.12.003
Xia T., Meng L., Mao K., Tian B., Miehe G., Liu J., 2008. Genetic Variation in the Qinghai-Tibetan Plateau Endemic and Endangered Conifer Cupressus gigantea, Detected Using RAPD and ISSR Markers. Silvae Genetica, 57 (1-6): 85-92. https://doi.org/10.1515/sg-2008-0014
Zhang Z.-Y., Chen Y.-Y., Li D.-Z., 2005. Detection of Low Genetic Variation in a Critically Endangered Chinese Pine, Pinus squamata, Using RAPD and ISSR Markers. Biochemical Genetics, 43 (5-6): 239-249. https://doi.org/10.1007/s10528-005-5215-6
Zietkiewicz E., Rafalski A., Labuda D., 1994. Genomic fingerprinting by Simple Sequence Repeat (SSR) anchored polymerase chain reaction amplification. Genomics, 20 (2): 176-183. https://doi.org/10.1006/geno.1994.1151