Quantifier les dimensions des houppiers à l’aide d’images aériennes à haute résolution pour estimer l’accroissement diamétrique des arbres dans les forêts d’Afrique centrale

##plugins.themes.bootstrap3.article.main##

Jean-Baptiste Ndamiyehe Ncutirakiza
Philippe Lejeune
Sylvie Gourlet-Fleury
Adeline Fayolle
Léopold Ndjele Mianda-Bungi
Gauthier Ligot

Résumé

Caractériser la dynamique d’une forêt est essentiel pour la gestion forestière. Les houppiers des arbres forment un élément clé de cette dynamique ; mais, en forêt tropicale, les mesurer n’est pas simple. Cette étude teste l’utilisation d’images aériennes à haute résolution pour estimer la croissance diamétrique des arbres, en intégrant des mesures fines des houppiers détectés. Des ortho-images de 10 cm/pixel de résolution ont été obtenues à l’aide d’un drone à aile fixe sur une parcelle de 9 ha, installée dans la forêt de Yoko en République démocratique du Congo. Les inventaires menés sur les arbres de DHP ≥ 10 cm en 2008 et en 2016 ont permis d’avoir accès à différentes caractéristiques dendrométriques individuelles, dont le diamètre des arbres et leur tempérament, et de calculer des accroissements diamétriques. Des modèles linéaires mixtes ont été calibrés pour prédire l’accroissement de 163 arbres identifiés à la fois sur le terrain et sur les ortho-images en utilisant les variables quantifiées uniquement sur le terrain et/ou à partir de variables mesurées sur les ortho-images. Les images aériennes ont permis de détecter 23,4 % des arbres de DHP ≥ 10 cm inventoriés au sol, et représentant 75,1 % de la biomasse aérienne du peuplement. La probabilité de détection des arbres a varié en fonction de leur DHP : de 0,09 pour les arbres de DHP < 30 cm à 0,97 pour les arbres de DHP ≥ 60 cm. Les variables quantifiées par télédétection ajoutées aux variables de terrain ont permis d’améliorer significativement la prédiction de l’accroissement diamétrique. Les meilleurs modèles d’estimation des accroissements diamétriques contiennent notamment un terme caractérisant la dimension du houppier des arbres qui n’a pu être mesuré que par télédétection. Parmi les variables déterminées par télédétection, la superficie convexe du houppier est apparue la plus performante dans les modèles, et s’avère ainsi être la mesure la plus intéressante pour décrire la compétition entre les houppiers. Ces résultats ouvrent des perspectives pour construire de nouveaux outils d’acquisition de données au service de l’aménagement forestier.

##plugins.themes.bootstrap3.article.details##

Rubrique
ARTICLE SCIENTIFIQUE

Références

Références bibliographiques / References / Referencias bibliografícas

Asner G. P., Palace M., Keller M., Pereira Jr. R., Silva J. N. M., Zweede J. C., 2002. Estimating Canopy Structure in an Amazon Forest from Laser Range Finder and IKONOS Satellite Observations. Biotropica, 34 (4): 483-492. https://doi.org/10.1646/0006-3606(2002)034[0483:ECSIAA]2.0.CO;2

Aubry-Kientz M., Dutrieux R., Ferraz A., Saatchi S., Hamraz H., Williams J., et al., 2019. A Comparative assessment of the performance of individual tree crowns delineation Algorithms from ALS data in tropical forests. Remote Sensing, 11 (9): 1086. https://doi.org/10.3390/rs11091086

Augusto Da Cunha T., Guimarães Finger C. A., Hasenauer H., 2016. Tree basal area increment models for Cedrela, Amburana, Copaifera and Swietenia growing in the Amazon rain forests. Forest Ecology and Management, 365: 174-183. https://doi.org/10.1016/j.foreco.2015.12.031

Baker T. R., Swaine M. D., Burslem D. F. R. P., 2003. Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspectives in Plant Ecology, Evolution and Systematics, 6: 21-36. https://doi.org/10.1078/1433-8319-00040

Bastin J. F., Rutishauser E., Kellner J. R., Saatchi S., Pélissier R., Hérault B., et al., 2018. Pan‐tropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 27: 1366-1383. https://doi.org/10.1111/geb.12803

Bates D., Mächler M., Bolker B., Walker S., 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67 (1): 1-48. https://doi.org/10.18637/jss.v067.i01

Bénédet F., Doucet J.-L., Fayolle A., Gillet J.-F., Gourlet-Fleury S., Vincke D., 2013. CoForTraits, base de données d’information sur les traits des espèces d’arbres africaines. Version 1.0. 2018.

Birdsey R., Angeles-Perez G., Kurz W. A., Lister A., Olguin M., Pan Y., et al., 2013. Approaches to monitoring changes in carbon stocks for REDD+. Carbon Management, 4 (5): 519-537. https://doi.org/10.4155/cmt.13.49

Blanchard E., Birnbaum P., Ibanez T., Boutreux T., Antin C., Ploton P., et al., 2016. Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees - Structure and Function, 30 (6) : 1953-1968. https://doi.org/10.1007/s00468-016-1424-3

Bourgoin C., Betbeder J., Couteron P., Blanc L., Le Roux R., Cornu G., et al., 2020. UAV-based canopy textures assess degraded structures in human-modified Amazonian forest. Ecological Indicators, 1-29. (in press)

Broadbent E. N., Asner G. P., Peña-Claros M., Palace M., Soriano M., 2008. Spatial partitioning of biomass and diversity in a lowland Bolivian forest: Linking field and remote sensing measurements. Forest Ecology and Management, 255: 2602-2616. https://doi.org/10.1016/j.foreco.2008.01.044

Carrillo G., 2015. vec2dtransf: 2D Cartesian Coordinate Transformation. R package version 1.1. https://rdrr.io/cran/vec2dtransf/man/vec2dtransf-package.html

Chamberlain M. S., Hollister J., Herlocker M., 2019. lawn: Client for “Turfjs” for “Geospatial” Analysis. R package version 0.5.0. https://cran.r-project.org/package=lawn

Chave J., Réjou-Méchain M., Burquez A., Chidumayo E., Colgan M. S., Delitti W. B. C., et al., 2014. Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20 (10): 3177-3190. https://doi.org/10.1111/gcb.12629

Clark D. A., Clark D. B., 1992. Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecological Monographs, 62 (3): 315-344. https://doi.org/10.2307/2937114

Clark D. B., Castro C. S., Alvarado L. D. A., Read J. M., 2004a. Quantifying mortality of tropical rain forest trees using high-spatial-resolution satellite data. Ecology Letters, 7 (1): 52-59. https://doi.org/10.1046/j.1461-0248.2003.00547.x

Clark D. B., Read J. M., Clark M. L., Cruz A. M., Dotti M. F., Clark D. A., 2004b. Application of 1-m and 4-m resolution satellite data to ecological studies of tropical rain forests. Ecological Applications, 14 (1): 61-74. https://doi.org/10.1890/02-5120

Cole W. G., Lorimer C. G., 1994. Predicting tree growth from crown variables in managed northern hardwood stands. Forest Ecology and Management, 67: 159-175. https://doi.org/10.1016/0378-1127(94)90014-0

Couteron P., Barbier N., Gautier D., 2006. Textural ordination based on Fourier spectral decomposition: A method to analyze and compare landscape patterns. Landscape Ecology, 21 (4): 555-567. https://doi.org/10.1007/s10980-005-2166-6

Dawkins H. C., 1958. The management of natural tropical high-forest with special reference to Uganda. Imperial Forestry Institute, University of Oxford, Institute Paper 34, 155 p.

Dorner B., Lertzman K., Fall J., 2002. Landscape pattern in topographically complex landscapes: issues and techniques for analysis. Landscape Ecology, 17 (8): 729-743. https://doi.org/10.1023/a:1022944019665

Durrieu de Madron L., Nasi R., Détienne P., 2000. Accroissements diamétriques de quelques essences en forêt dense africaine. Bois et Forêts des Tropiques, 263 : 63-73. https://revues.cirad.fr/index.php/BFT/article/view/20062

Foli E. G., Alder D., Miller H. G., Swaine M. D., 2003. Modelling growing space requirements for some tropical forest tree species. Forest Ecology and Management, 173: 79-88. https://doi.org/10.1016/s0378-1127(01)00815-5

Franc A., Gourlet-Fleury S., Picard N., 2000. Une introduction à la modélisation des forêts hétérogènes. Nancy, France, Engref, 292 p.

Genet H., Bréda N., Dufrêne E., 2010. Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiology, 30 (2): 177-192. https://doi.org/10.1093/treephys/tpp105

Getzin S., Wiegand K., Schöning I., 2012. Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods in Ecology and Evolution, 3 (2): 397-404. https://doi.org/10.1111/j.2041-210x.2011.00158.x

Goodman R. C., Phillips O. L., Baker T. R., 2014. The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications, 24 (4): 680-698. https://doi.org/10.1890/13-0070.1

Gourlet-Fleury S., 1998. Indices de compétition en forêt dense tropicale humide : étude de cas sur le dispositif sylvicole expérimental de Paracou (Guyane française). Annales des Sciences Forestières, 55 (6) : 623-654. https://doi.org/10.1051/forest:19980601

Gourlet-Fleury S., Houllier F., 2000. Modelling diameter increment in a lowland evergreen rain forest in French Guiana. Forest Ecology and Management, 131: 269-289. https://doi.org/10.1016/s0378-1127(99)00212-1

Hansen M. C., Potapov P. V., Moore R., Hancher M., Turubanova S. A., Tyukavina A., et al., 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342 (6160): 850-853. https://doi.org/10.1126/science.1244693

Hérault B., Bachelot B., Poorter L., Rossi V., Bongers F., Chave J., et al., 2011. Functional traits shape ontogenetic growth trajectories of rain forest tree species. Journal of Ecology, 99 (6): 1431-1440. https://doi.org/10.1111/j.1365-2745.2011.01883.x

Iida Y., Poorter L., Sterck F., Kassim A. R., 2014. Linking size-dependent growth and mortality with architectural traits across 145 co-occurring tropical tree species. Ecology, 95 (2): 353-363. https://doi.org/10.1890/11-2173.1

Jucker T., Caspersen J., Chave J., Antin C., Barbier N., Bongers F., et al., 2017. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Global Change Biology, 23 (1): 177-190. https://doi.org/10.1111/gcb.13388

Kariuki M., Rolfe M., Smith R. G. B., Vanclay J. K., Kooyman R. M., 2006. Diameter growth performance varies with species functional-group and habitat characteristics in subtropical rainforests. Forest Ecology and Management, 225: 1-14. https://doi.org/10.1016/j.foreco.2005.07.016

Kuznetsova A., Brockhoff P. B., Bojesen R. H., 2017. lmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82 (13): 1-26. https://doi.org/10.18637/jss.v082.i13

Lebrun J., Gilbert G., 1954. Une classification écologique des forêts du Congo. Bruxelles, Belgique, Publications de l’INEAC, Série scientifique, n° 63, 89 p.

Lisein J., Pierrot-Deseilligny M., Bonnet S., Lejeune P., 2013. A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests 4 (4): 922-944. https://doi.org/10.3390/f4040922

Messinger M., Asner G. P., Silman M., 2016. Rapid Assessments of Amazon Forest Structure and Biomass Using Small Unmanned Aerial Systems. Remote Sensing, 8 (8): 615. https://doi.org/10.3390/rs8080615

Meyer V., Saatchi S., Clark D. B., Keller M., Vincent G., Ferraz A., et al., 2018. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes. Biogeosciences, 15: 3377-3390. https://doi.org/10.5194/bg-15-3377-2018

Moravie M.-A., Durand M., Houllier F., 1999. Ecological meaning and predictive ability of social status, vigour and competition indices in a tropical rain forest (India). Forest Ecology and Management, 117: 221-240. https://doi.org/10.1016/s0378-1127(98)00480-0

Ota T., Ogawa M., Shimizu K., Kajisa T., Mizoue N., Yoshida S., et al., 2015. Aboveground biomass estimation using structure from motion approach with aerial photographs in a seasonal tropical forest. Forests, 6: 3882-3898. https://doi.org/10.3390/f6113882

Palace M., Keller M., Asner G. P., Hagen S., Braswell B., 2008. Amazon forest structure from IKONOS satellite data and the automated characterization of forest canopy properties. Biotropica, 40 (2): 141-150. https://doi.org/10.1111/j.1744-7429.2007.00353.x

PhotoScan, 2015. Agisoft PhotoScan : Manuel de l’utilisateur. Professional Edition, version 1.1.

Picard N., Gourlet-Fleury S., 2008. Manuel de référence pour l’installation de dispositifs permanents en forêt de production dans le Bassin du Congo. Cirad-Comifac, 270 p.

Ploton P., Barbier N., Momo S. T., Réjou-Méchain M., Boyemba B. F., Chuyong G., et al., 2016. Closing a gap in tropical forest biomass estimation: Taking crown mass variation into account in pantropical allometries. Biogeosciences, 13 (5): 1571-1585. https://doi.org/10.5194/bg-13-1571-2016

Prévosto B., 2005. Les indices de compétition en foresterie : exemples d’utilisation, intérêts et limites. Revue Forestière Française, 57 (5) : 413-430. https://doi.org/10.4267/2042/5062

QGIS Development Team, 2017. QGIS Geographic Information System. Open Source Geospatial Foundation. http://www.qgis.org

R Core Team, 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing. https://www.R-project.org/

Read J. M., Clark D. B., Venticinque E. M., Moreira M. P., 2003. Application of merged 1-m and 4-m resolution satellite data to research and management in tropical forests. Journal of Applied Ecology, 40: 592-600. https://doi.org/10.1046/j.1365-2664.2003.00814.x

Réjou-Méchain M., Tanguy A., Piponiot C., Chave J., Hérault B., 2017. BIOMASS: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods in Ecology and Evolution, 8 (9): 1163-1167. https://doi.org/10.1111/2041-210x.12753

Rutishauser E., Barthélémy D., Blanc L., Nicolini E.-A., 2011. Crown fragmentation assessment in tropical trees: Method, insights and perspectives. Forest Ecology and Management, 261 (3): 400-407. https://doi.org/10.1016/j.foreco.2010.10.025

Rutishauser E., Wagner F., Hérault B., Nicolini E.-A., Blanc L., 2010. Contrasting above-ground biomass balance in a Neotropical rain forest. Journal of Vegetation Science, 21 (4): 672-682. https://doi.org/10.1111/j.1654-1103.2010.01175.x

Ryan M. G., Yoder B. J., 1997. Hydraulic limits to tree height and tree growth. Bioscience, 47 (4): 235-242. https://doi.org/10.2307/1313077

Sépulchre F., Daïnou, K., Doucet J.-L., 2008. Étude de la vulnérabilité de 18 essences ligneuses commerciales d’Afrique centrale reprises sur la liste rouge IUCN. Nature+, ATIBT, Faculté universitaire des sciences agronomiques de Gembloux, 51 p.

Slik J. W. F., Paoli G., McGuire K., Amaral I., Barroso J., Bastian M., et al., 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology & Biogeography, 22: 1261-1271. https://doi.org/10.1111/geb.12092

Sprinz P. T., Burkhart H. E., 1987. Relationships between tree crown, stem, and stand characteristics in unthinned loblolly pine plantations. Revue Canadienne de Recherche Forestière, 17 (6): 534-538. https://doi.org/10.1139/x87-089

Vaglio G., Chen Q., Lindsell J. A., Coomes D. A., Del Frate F., Guerriero L., et al., 2014. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing, 89: 49-58. https://doi.org/10.1016/j.isprsjprs.2014.01.001

Wyckoff P. H., Clark J. S., 2005. Tree growth prediction using size and exposed crown area. Revue Canadienne de Recherche Forestière, 35 (1): 13-20. https://doi.org/10.1139/x04-142