Effet des couches de nanoparticules d’oxyde de graphène dans la résistance du papier d’emballage, ses propriétés de barrière et son activité antibactérienne
DOI :
https://doi.org/10.19182/bft2019.342.a31796Mots-clés
oxyde de nanographène, activité antibactérienne, propriétés physiques et mécaniques, IranRésumé
L’objectif de cette étude était d’évaluer la performance des nanoparticules d’oxyde de graphène dans des formulations de papier d’emballage pour améliorer les propriétés antibactériennes, physiques et mécaniques du carton. Le papier était recouvert avec des nanoparticules d’oxyde de graphène de concentrations de 100 et 200 ppm enduites avec 5 % d’amidon cationique (poids sec) comme aide à la rétention et pour un positionnement plus homogène des particules d'oxyde de nanographène sur la surface du papier. Les surfaces du papier enduites de particules d’oxyde de nanographène ont été caractérisées à l’aide des méthodes ATR-FTIR et SEM. Le test antibactérien a été réalisé selon la méthode de la turbidité. Pour les tests antibactériens des feuilles de papier, Escherichia coli et Staphylococcus aureus ont été utilisés comme bactéries à Gram-négatif et à Gram-positif, respectivement. Les résultats ont montré que l’absorption d’UV a été réduite et que la réduction la plus grande a été obtenue en utilisant des particules d’oxyde de nanographène de 200 ppm. La turbidité dans les échantillons qui incluent S. aureus était aussi plus basse. Le taux de croissance des bactéries S. aureus dans le contrôle et dans les échantillons de papier enduits d’oxyde de nanographène 200 ppm était de 89 % et de 24 %, respectivement. La densité et l’épaisseur des feuilles de papier ont augmenté dans le papier enduit d’amidon cationique et de nanoparticules, en comparaison avec le papier non enduit. Les nanoparticules n’ont pas d’effet significatif dans l’épaisseur des papiers enduits. L’ajout de particules d’oxyde de nanographène a amélioré la résistance à l’air et les propriétés de barrière des feuilles de papier. Les index de résistance à l’éclatement et la déchirure ont augmenté dans le papier enduit d’amidon et de particules d’oxyde de nanographène.
Téléchargements
Références
Références bibliographiques / References / Referencias bibliográficas
Afra E., Yousefi H., Hadilam M. M., Nishino T., 2013. Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. Carbohydrate Polymers, 97 (2): 725-730. https://doi.org/10.1016/j.carbpol.2013.05.032
Akhtari M., Nicholas D., 2013. Evaluation of particulate zinc and copper as wood preservatives for termite control. European Journal of Wood and Wood Products, 71 (3): 395-396. https://doi.org/10.1007/s00107-013-0690-7
Al-Thani R. F., Patan N., Al-Maadeed M., 2014. Graphene oxide as antimicrobial against two gram-positive and two-negative bacteria in addition to one fungus. Journal of Biological Sciences, 14 (3): 230-239. https://doi.org/10.3844/ojbsci.2014.230.239
Alves O. L., Ana D., Moraes C. M., Simoes M. B., Fonseca L. C., Nascimento R. O., 2014. Nanomaterials. In: Duran N., Guterres S. S., Alves O. L. (eds). Nanomedicine and Nanotoxicology. Springer, USA, 1-29. https://doi.org/10.1007/978-1-4614-8993-1_1
Campbell W. B., 1947. Academic aspects of paper stock preparation. Technical Association of the Pulp and Paper Industry Journal (TAPPI), 30 (6): 177-180.
Davison R. W., 1980. Theory of dry strength development. In: Reynolds W. F. (ed.). Dry Strength Additives. TAPPI Press, USA, 1-31.
De Faria A. F., Moraes A. M., Alves O. L., 2014. Toxicity of nanomaterials to microorganisms: Mechanisms, methods, and new perspectives. In: Duran N., Guterres S. S., Alves O. L. (eds). Nanomedicine and Nanotoxicology. Springer, USA, 363-405. https://doi.org/10.1007/978-1-4614-8993-1_17
Denga J., Lib W., Tangc J., Wud R., Zhou X., 2012. Antibacterial Activity of Nano Silver and Its Application in Antibacterial Paper. Applied Mechanics and Materials, 200: 393-396. https://doi.org/10.4028/www.scientific.net/amm.200.393
Duran N., Marcato P. D., De Souza G. H., Alves O. L., Esposito E., 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of Biomedical Nanotechnology, 3 (2): 203-208. https://doi.org/10.1166/jbn.2007.022
Farouk E., Hosseiny L., Dwight A., 1999. Effect of fiber length and coarseness on the burst strength of paper. Technical Association of the Pulp and Paper Industry Journal, 83 (5): 202-203.
Fowkes F. M., 1983. Acid-base interactions in polymer adhesion. In: Mittal K. L. (ed.). Physicochemical Aspects of Polymer Surfaces. Penum, USA, 583-603.
Ghule K., Ghule A. V., Chen B. J., Ling Y. C., 2006. Preparation and characterization of ZnO nanoparticles coated paper and its antibacterial activity study. Green Chemistry, 8 (12): 1034-1041. https://doi.org/10.1039/b605623g
Giang H. S., Manolaches S., 2004. Plasma-enhanced deposition of silver nanoparticles onto polymer metal surfaces for the generation of antimicrobial characteristics. Journal of Applied Polymer Science, 93 (3): 1411-1421. https://doi.org/10.1002/app.20561
Hong Y., Tang L. Z., 2014. Research on properties of antibacterial paper sprayed by nano-chitosan. Advanced Materials Research, 926-930: 214-217. https://doi.org/10.4028/www.scientific.net/amr.926-930.214
Hu A. W., Fu Z. H., 2003. Nanotechnology and its application in packaging and packaging machinery. Packaging Engineering, 24 (4): 22-24.
Hu W., Peng C., Luo W., Lv M., Li X., Huang Q., et al., 2010. Graphene-based antibacterial paper. ACS Nano, 4 (7): 4317-4323. https://doi.org/10.1021/nn101097v
Hubbe M., 2006. Bonding between cellulosic fibers in the absence and presence of dry-strength agent – A review. Bioresources, 1 (2): 281-318.
Imani R., Talaiepour M., Dutta J., Ghobadinezhad M., Hemmasi A., Nazhad M., 2011. Production of antibacterial filter paper from wood cellulose. BioResources, 6 (1): 891-900.
Janković‐Častvan I., Lazarevic S., Stojanovic D., Zivkovic P., Petrovic R., Janackovic D., 2014. Improvement of the mechanical properties of paper by starch coatings modified with sepiolite nanoparticles. Starch – Starke, 67 (3-4): 373-380. https://doi.org/10.1002/star.201400171
Krishnamoorthy K., Mohan R., Kim S. J., 2011. Graphene oxide as a photocatalytic material. Applied Physics Letters, 98 (24): 111-121. https://doi.org/10.1063/1.3599453
Krishnamoorthy K., Veerapandian M., Mohan R., Kim S. J., 2012. Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Springer, Applied Physics A: Materials Science & Processing, 106 (4): 501-506. https://doi.org/10.1007/s00339-011-6720-6
Kalambur S. H., Rizvi S., 2006. An overview of starch based plastic blends from reactive extrusion. Journal of Plastic Film and Sheeting, 22 (1): 39-58. https://doi.org/10.1177/8756087906062729
Levlin J.-E., Söderhjelm L., 1999. General physical properties of paper and board. In: Fapet O. (ed). Papermaking Science and Technology. Book 17. Pulp and Paper Testing. Aalto University, Finland, 136-161. https://www.puunjalostusinsinoorit.fi/site/assets/files/4218/vol17_pulp_and_paper_testing_toc.pdf
Li H., Cui R., Peng L., Cai Sh., Li P., Lan T., 2018. Preparation of antibacterial cellulose paper using layer-by-layer assembly for cooked beef preservation at ambient temperature. Polymers Journal, 10 (1): 15-30. https://doi.org/10.3390/polym10010015
Lindqvist R., 2006. Estimation of Staphylococcus aureus growth parameters from turbidity data: Characterization of strain variation and comparison of methods. Applied and Enviromental Microbiology, 72 (7): 4862-4870. https://doi.org/10.1128/aem.00251-06
Ling Y., Luo Y., Luo J., Wang X., Sun R., 2013. Novel antibacterial paper based on quaternized carboxymethylchitosan/organic montmorillonite/Ag NP nanocomposites. Industrial Crops and Products, 51 (2): 470-479. https://doi.org/10.1016/j.indcrop.2013.09.040
Liu R., Yu H., Huang Y., 2005. Structure and morphology of cellulose. Cellulose, 12 (4): 25-34.
Majidi R., 2016. Electronic properties of graphyne nanotubes filled with small fullerenes: A density functional theory study. Journal of Computational Electronics, 15 (4): 1263-1268. https://doi.org/10.1007/s10825-016-0925-z
Mauyer H., 1998. Opportunities and challenges for starch in the paper industry. Starch –Starke, 50 (9): 396-402. https://doi.org/10.1002/(sici)1521-379x(199809)50:9<396::aid-star396>3.0.co;2-8
Pang X., Yun Z., Chen J., Zheng J. Z., 2015. Study on the antibacterial paper coated by ZnO/MFC for food packaging. Applied Mechanics and Materials, 731: 457-461. https://doi.org/10.4028/www.scientific.net/amm.731.457
Park S. I., Zhao Y., 2004. Incorporation of a high concentration of mineral or vitamin into chitosan-based films. Journal of Agricultural and Food Chemistry, 52 (7): 1933-1942. https://doi.org/10.1021/jf034612p
Pierce F. T., 1930. The mechanism of growth in the cotton hair. Transactions of the Faraday Society, 26: 809-813.
Pornasir N., Peyghambardoost J., Peyghambardoost H., 2016. The study of physical, mechanical and antibacterial properties of nanobio-composite films based on starch containing silver, oxide and copper oxide nanoparticles. Journal of New Food Technologies, 14 (4): 64-69.
Retulainen E., Nurminen I., 1993. Effects of sodium chlorite delignification and alkaline extraction on bonding of CTMP fibers and the efficiency of dry strength additives. Paperi ja Puu (Paper and Timber), 75 (7): 499-504.
Robinson J. V., 1980. Fiber bonding. In: Casey J. P. (ed). Pulp and Paper: Chemistry and Chemical Technology. John Wiley & Sons, USA, 915-963.
Samyn P., Deconinck M., Schoukens G., Vanden A. H., 2010. Modifications of paper and paperboard surfaces with a nanostructured polymer coating. Progress in Organic Coatings, 69 (4): 442-454. https://doi.org/10.1016/j.porgcoat.2010.08.008
Santos C. M., Mangadlao J., Ahmed F., Leon A., Advincula R. C., 2012. Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology, 23 (4): 39-51. https://doi.org/10.1088/0957-4484/23/39/395101
Sondi I., Salopek-Sondi B., 2004. Silver nanoparticles as antimicrobial agent: A case study on E. coli and model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275 (1): 177-182. https://doi.org/10.1016/s0021-9797(04)00163-8
Stratton R. A., 1991. Characterisation of fiber-fiber bond strength from paper mechanical properties. TAPPI International Paper Physics Conference, Kona, Hawaii, Atlanta, 561-577.
Taghiyari H. R., Kalantari A., Kalantri A., Avramidis S., 2019. Effect of wollastonite nanofibers and exposure to Aspergillus niger fungus on air flow rate in paper. Measurement, 136: 307-313. https://doi.org/10.1016/j.measurement.2018.12.109
Tang J., Chen Q., Xu L., Zhang S., Feng L., 2013. Graphene oxide-silver nanocomposite as a highly effective antibacterial agent with species specific mechanisms. ACS Applied Materials and Interfaces, 5: 3867-3874. https://doi.org/10.1021/am4005495
Tassou C. C., Nychas G. J., 1995. Antimicrobial activity of the essential oil of mastic fun on gram-positive and gram-negative bacteria in broth and model food systems. International Biodeterioration & Biodegradation Journal, 36 (2): 411-420. https://doi.org/10.1016/0964-8305(95)00103-4
Testova L., 2006. Hemicelluloses extraction from birch wood prior to kraft cooking, Extraction optimization and pulp properties investigation. Master’s thesis, Lulea University of Technology, Sweden, 70 p.
Tran P. A., Webster T. J., 2011. Selenium nanoparticles inhibit Staphylococcus aureus growth. International Journal of Nanomedicine, 6: 1553-1558. https://doi.org/10.2147/ijn.s21729
Tunc S., Angellier H., Cahyana Y., Chalier P., Gontard N., Gastaldi E., 2007. Functional properties of wheat gluten/montmorillonite nanocomposite films processed by casting. Journal of Membrane Science, 289 (1): 159-168. https://doi.org/10.1016/j.memsci.2006.11.050
Wang H., Jing Y., 2016. Effects of a Chitosan Coating Layer on the Surface Properties and Barrier Properties of Kraft Paper. BioResources, 11 (1): 1868-1881. https://doi.org/10.15376/biores.11.1.1868-1881
Werner O., Wagberg L., Lindstrom T., 2005. Wetting of structured hydrophobic surfaces by water droplets. Langmuir, 21: 12235-12243. https://doi.org/10.1021/la052415+
Wu T., Farnood R., 2014. Cellulose fibre networks reinforced with carboxymethyl cellulose/chitosan complex layer-by-layer. Carbohydrate Polymers, 114 (C): 500-505. https://doi.org/10.1016/j.carbpol.2014.08.053
Xia T., Kovochich M., Nel A. E., 2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2 (10): 2121-2134. https://doi.org/10.1021/nn800511k
Yazdani O., Asadpour Gh., Rasooly E., Imani R., 2014. Effect of cationic polyacrylamide and antibacterial nanosilver on bank-note paper properties. Lignocellulose, 3 (1): 3-14.
Zhou N., Menga N., Ma Y., Liao X., Zhang J., Li L., et al., 2009. Evaluation of antithrombogenic and antibacterial activities of a graphite oxide/heparin–benzalkonium chloride composite. Carbon, 47 (5): 1343-1350. https://doi.org/10.1016/j.carbon.2009.01.025
Téléchargements
Numéro
Rubrique
-
Résumé1397
-
PDF 1358
Reçu
Accepté
Publié
Comment citer
Licence
(c) Tous droits réservés CIRAD - Bois et Forêts des Tropiques 2022
Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .
Les articles sont publiés en Accès libre. Ils sont régis par le Droit d'auteur et par les licenses créative commons. La license utilisée est Attribution (CC BY 4.0).