Description of the Cirad wood collection in Montpellier, France, representing eight thousand identified species

Authors

Patrick Langbour
CIRAD UPR BioWooEB 34398 Montpellier France BioWooEB Univ Montpellier, CIRAD Montpellier France
Sébastien Paradis
CIRAD UPR BioWooEB 34398 Montpellier France BioWooEB Univ Montpellier, CIRAD Montpellier France
LMGC Univ Montpellier CNRS Montpellier France thibaut.bernard0158@orange.fr

DOI:

https://doi.org/10.19182/bft2019.339.a31709

Keywords


xiloteca, especies, géneros, familias, proveniencia, densidad de la madera, colección de madera, base de datos de madera, especies tropicales, Francia

Abstract

The Cirad wood collection, which was first awarded funding 80 years ago, now consists of specimens from 34,395 trees, 235 families, 2,160 genera and 8,385 species (of which 60% are represented by more than one specimen per tree) from 123 countries. Tropical species from Africa, Asia and South America make up 85% of the collection. Botanical descriptions have been made of the dominant families, genera and species in the ten geographical regions for which there are large enough collections (1,000+ specimens). These regions include nine tropical or subtropical regions and a large entity called “Northern Cold Climate” (NCC), which covers all northern hemisphere countries with a cold season (boreal, alpine temperate and Mediterranean climate). The nine tropical and subtropical regions have more or less the same dominant families but different dominant genera, while dominant families in the NCC entity differ widely. The collection is described in a specific data base: wood specimens, sections and photographs with their name and provenance. Specific Gravity (SG) has been measured in two thirds of all the specimens (6,750 species). Overall, SG values have a near normal distribution ranging from 0.04 to 1.36, with a median value of 0.72 and a 28% coefficient of variation (CV). The difference between regions in specific gravity distribution is quite small (mean values 0.66 to 0.76) with a consistently high CV (26% to 32%). Looking at the best represented families, genera and species, the mean CV for families (26%) is similar across regions and much lower for genera (18%) and species (13%). The SG range increases from family to genus to species (0.53 to 0.86, 0.46 to 0.95, 0.23 to 1.07 respectively). The different current and potential uses of the wood collection are discussed.

Downloads

Download data is not yet available.

References

Baker T. R., Phillips O. L., Malhi S., Almeida S., Arroyo L., Di Fiore A., Erwin T., et al., 2004. Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10: 545-562. http://www.rainfor.org/upload/publication-store/itm_70/Baket%20TR%20et%20al%20GCB%202004.pdf

Beeckmann H., 2016. Wood anatomy and trait-based ecology. IAWA journal, 37 (2): 127-151. https://doi.org/10.1163/22941932-20160127

Bossu J., Beauchêne J., Estevez Y., Duplais C., Clair B., 2016. New Insights on Wood Dimensional Stability Influenced by Secondary Metabolites: The Case of a Fast-Growing Tropical Species Bagassa guianensis Aubl. Plos One. https://doi.org/10.1371/journal.pone.0150777

Bouriaud O., Bréda N., Le Moguédec G., Nepveu G., 2004. Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees, 18: 264-276. https://doi.org/10.1007/s00468-003-0303-x

Bouriaud O., Leban J.-M., Bert D., Deleuze C., 2005. Intra-annual variations in climate influence growth and wood density of Norway spruce. Tree Physiology, 25: 651-660. https://doi.org/10.1093/treephys/25.6.651

Chave J., Muller-Landau H. C., Baker T. R., Easdale T. A., Ter Steege H., Webb C. O., 2006. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecological Applications, 16: 2356-2367. https://doi.org/10.1890/1051-0761(2006)016[2356:RAPVOW]2.0.CO;2

Cornisch C., Gasson P., Nesbitt M., 2014. The wood collection (xylarium) of the Royal botanic gardens, Kew. IAWA journal, 35: 85-104. https://doi.org/10.1163/22941932-00000050

Détienne P., Chanson B., 1996. L’éventail de la densité du bois des feuillus. Bois et forêt des tropiques, 250 : 19-30. http://revues.cirad.fr/index.php/BFT/article/view/19859

Détienne P., Jacquet P., 1983. Atlas d’identification des bois de l’Amazonie et des régions voisines. Centre technique forestier tropical (CTFT, Cirad), Nogent/Marne, France. http://agritrop.cirad.fr/172150/

Détienne P., Jacquet P., Mariaux A.,1982. Manuel d’identification des bois Tropicaux – tome 3 : Guyane française. Centre technique forestier tropical (CTFT, Cirad), Nogent/Marne, France. http://agritrop.cirad.fr/322998/

Forest Products Laboratory, 2010. Wood handbook Wood as an engineer¬ing material. General Technical Report FPL-GTR-190. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, 508 p. https://doi.org/10.2737/FPL-GTR-190

Gasson P., 2011. How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially CITES. IAWA journal, 32: 137-154. https://doi.org/10.1163/22941932-90000049

Gérard G., Narboni P., 1996. Une base de données sur les propriétés technologiques des bois tropicaux – Schéma d’organisation. Bois et forêt des tropiques, 248 : 65-69. http://revues.cirad.fr/index.php/BFT/article/view/19885

Gibson L. J., 2005. Biomechanics of cellular solids. Journal of Biomechanics 38: 377-399. https://doi.org/10.1016/j.jbiomech.2004.09.027

Langbour P., Paradis S., Thibaut B., 2018. CIRAD wood collection - Dataset. CIRAD Dataverse, V3. https://doi.org/10.18167/DVN1/CDHU51

Le Bras G., Pignal M., Jeanson M. L., Muller S., Cécile Aupic C., Carré B., et al., 2017. Data Descriptor: The French Muséum national d’histoire naturelle vascular plant herbarium collection dataset. Scientific Data, 4:170016. https://doi.org/10.1038/sdata.2017.16

Lens F., 2016. Modern Index Xylariorum. https://globaltimbertrackingnetwork.org/products/iawa-index-xylariorum/

Nock C. A., Geihofer D., Grabner M., Baker P. J., Bunyavejchewin S., Hietz P., 2009. Wood density and its radial variation in six canopy tree species differing in shade-tolerance in western Thailand. Annals of Botany, 104: 297-306. https://doi.org/10.1093/aob/mcp118

Normand D., 1972. Manuel d’identification des bois commerciaux – tome 1. Centre technique forestier tropical (CTFT, Cirad), Nogent/Marne, France. http://agritrop.cirad.fr/310716/

Normand D., Paquis J., 1976. Manuel d’identification des bois commerciaux – tome 2 : Afrique guinéo-congolaise. Centre technique forestier tropical (CTFT, Cirad), Nogent/Marne, France. http://agritrop.cirad.fr/322997/

Normand D., Mariaux A., Détienne P., Langbour P., 2017. CIRAD’s wood collection. CIRAD. https://doi.org/10.18167/xylotheque

Stern W. L., 1988. Index Xylariorum. Institutional wood collections of the world. 3. IAWA Bulletin n.s., 9 (3): 203-252. https://doi.org/10.1163/22941932-90001072

Stevens P. F., 2017. Angiosperm Phylogeny Website. Version 14, July 2017. http://www.mobot.org/MOBOT/research/APweb/

Wheeler E. A., Baas P., 1998. Wood identification – A review. IAWA journal, 19: 241-264. https://doi.org/10.1163/22941932-90001528

Wiemann M. C., Williamson G. B., 1988. Extreme radial changes in wood specific gravity in some tropical pioneers. Wood and Fiber Science, 20: 344-349. https://wfs.swst.org/index.php/wfs/article/view/1938

Issue

Section

ARTICLES OF SCIENCE
Metrics
Views/Downloads
  • Abstract
    1370
  • PDF (Français)
    382

Received

2019-03-26

Accepted

2019-03-26

Published

2019-04-17

How to Cite

Langbour, P., Paradis, S., & Thibaut, B. (2019). Description of the Cirad wood collection in Montpellier, France, representing eight thousand identified species. BOIS & FORETS DES TROPIQUES, 339, 7–16. https://doi.org/10.19182/bft2019.339.a31709

Most read articles by the same author(s)

1 2 > >>