Caractéristiques de la litière et de la biomasse de certains combustibles de sous-étage marocains dominants dans cinq régions forestières sujettes au feu

Auteurs

Institut Agronomique et Vétérinaire Hassan IIU.R. Gestion conservatoire des eaux et des solsBP 6202, Rabat-Instituts Rabat 10000MoroccoÉcole Nationale Forestière d’IngénieursDépartement du Développement ForestierBP 511, Tabriquet Salé 11015Morocco
M'hamed HACHMI
École Nationale Forestière d’IngénieursDépartement du Développement ForestierBP 511, Tabriquet Salé 11015Morocco
Mohammed YESSEF
Institut Agronomique et Vétérinaire Hassan IIDépartement des Ressources Naturelles et EnvironnementBP 6202, Rabat-Instituts Rabat 10000Morocco
Mohammed DEHHAOUI
Institut Agronomique et Vétérinaire Hassan IIDépartement de Statistique et d’Informatique AppliquéesBP 6202, Rabat-Instituts Rabat 10000Morocco
Abdessadek SESBOU
École Nationale Forestière d’IngénieursDépartement du Développement ForestierBP 511, Tabriquet Salé 11015Morocco

DOI :

https://doi.org/10.19182/bft2019.342.a31588

Mots-clés


masse volumique apparente, biomasse en fonction de la taille, combustible fin, buissons, incendies, risque d’incendie, modélisation, Maroc

Résumé

Au Maroc, des efforts ont été faits pour prévenir les feux de forêt, même si les résultats ont été limités parce que les propriétés pyrotechniques des combustibles forestiers n’ont pas été quantifiées de façon adéquate. Pour corriger ce manque, les masses volumiques apparentes de litière, d'arbustes individuels et de biomasse par classe de taille ont été évaluées dans cinq régions forestières propices aux incendies. L’étude a couvert un ensemble de 35 sites, sur des pentes exposées au nord et au sud des régions suivantes : Plateau central, Moyen Atlas (occidental et oriental), Rif occidental et pré-Rif. Les profondeurs de la litière vont de 1,1 (Ononis natrix L.) à 7,5 cm (Daphne laureola L.), et la masse volumique apparente des buissons individuels varie entre 0,35 (D. laureola) et 4,64 mg/cm3 (Thymelaea tartonraira L.). La plus basse masse volumique apparente de combustible fin a été trouvée pour D. laureola (0,22 kg/m3), et la plus haute pour T. tartonraira (4,05 kg/m3). Quant à la masse volumique apparente des buissons individuels, aucune différence intraespèce significative n’a été trouvée entre les régions étudiées, sauf pour Arbutus unedo L., alors que l’effet de la région sur la biomasse du combustible fin n’était pas significatif pour toutes les espèces. Des fonctions linéaires ont été utilisées pour ajuster la biomasse du combustible fin pour l’effet du volume de buissons individuels. Ces ajustements seront très utiles pour les gestionnaires forestiers, parce qu’ils permettent d’estimer la biomasse de combustible fin contenue dans un buisson à l’aide de mesures simples et indépendantes de la taille du buisson. L’intégration des données sur des traits structurels des combustibles dans des systèmes de prédiction du comportement du feu facilitera les estimations du risque d’incendie dans les régions étudiées, et guidera les décideurs dans leurs tâches de protection des ressources humaines et naturelles.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Références

Références bibliographiques / References / Referencias bibliográficas

Anderson, H.E., 1970. Forest Fuel Ignitibility. Fire Technol. 312–319.

Andrews, P.L., 2014. Current status and future needs of the BehavePlus Fire Modeling System. Int. J. Wildl. Fire 23, 21–33.

Baeza, M.., De Luı́s, M., Raventós, J., Escarré, A., 2002. Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. J. Environ. Manage. 65, 199–208. https://doi.org/10.1006/jema.2002.0545

Behm, A.L., Duryea, M.L., Long, A.J., Zipperer, W.C., 2004. Flammability of native understory species in pine flatwood and hardwood hammock ecosystems and implications for the wildland-urban interface. Int. J. Wildl. Fire 13, 355–365. https://doi.org/10.1071/WF03075

Bond, W.J., Wilgen, B., 1996. Fire and Plants, First edit. ed. Chapman & Hall, London. https://doi.org/10.1007/978-94-009-1499-5

Bradstock, R.A., Auld, T.D., 1995. Soil Temperatures During Experimental Bushfires in Relation to Fire Intensity: Consequences for Legume Germination and Fire Management in South-Eastern Australia. J. Appl. Ecol. 32, 76–84. https://doi.org/Doi 10.2307/2404417

Brown, JK; Oberhew, RD; Johnson, C., 1982. Inventorying Surface Fuels and Biomass in the Interior West. General Technical Report INT-129. Ogden, UT, USA.

Butler, B.W., Cohen, J., Latham, D.J., Schuette, R.D., Sopko, P., Shannon, K.S., et al. 2004. Measurements of radiant emissive power and temperatures in crown fires. Can. J. For. Res. 34, 1577–1587. https://doi.org/10.1139/x04-060

Chandler, C., Cheney, P., Thomas, P., Trabaud, L., Williams, D., 1983. Fire in Forestry. John Wiley & Sons, New York, NY, USA.

Desta, F., Colbert, J.J., Rentch, J.S., Gottschalk, K.W., 2004. Aspect Induced Differences in Vegetation, Soil, and Microclimatic Characteristics of an Appalachian Watershed. Castanea 69, 92–108. https://doi.org/10.2179/0008-7475(2004)069<0092:AIDIVS>2.0.CO;2

Dimitrakopoulos, A.P., Panov, P.I., 2001. Pyric properties of some dominant Mediterranean vegetation species. Int. J. Wildl. Fire 10, 23–27.

Dimitrakopoulos, A.P., Papaioannou, K.K., 2001. Flammability assessment of Mediterranean forest fuels. Fire Technol. 37, 143–152. https://doi.org/10.1023/A:1011641601076

Doran, J.D., Randall, C.K., Long, A.J., 2004. Fire in the Wildland-Urban Interface : Selecting and Maintaining Firewise Plants for Landscaping. Univ. Florida, Inst. Food Agric. Serv. Florida Coop. Ext. Serv. Circ. 1445. (Gainesville, FL).

Etlinger, M.G., Beall, F.C., 2004. Development of a laboratory protocol for fire performance of landscape plants of landscape plants. Int. J. Wildl. Fire 13, 479–488. https://doi.org/10.1071/WF04039

Fernandes, M.P., Cruz, M.G., 2012. Plant flammability experiments offer limited insight into vegetation – fire dynamics interactions. New Phytol. 194, 606–609. https://doi.org/10.1111/j.1469-8137.2012.04065.x

Fernandes, P.M., Rego, F.C., 1998. A New Method to Estimate Fuel Surface Area-to-Volume Ratio Using Water Immersion. Int. J. Wildl. Fire 8, 121–128.

Finney, M.A., 1998. FARSITE : Fire Area Simulator — Model Development and Evaluation, USDA Forest Service Rocky Mountain Research Station Research Paper RMRS-RP-4 Revised. Ogden, UT, USA. https://doi.org/U.S. Forest Service Research Paper RMRS-RP-4 Revised

Fowler, C., 2003. Human Health Impacts of Forest Fires in the Southern United States: A Literature Review. J. Ecol. Anthropol. 7, 39–63. https://doi.org/10.5038/2162-4593.7.1.3

Ganteaume, A., Jappiot, M., Lampin, C., Guijarro, M., 2013. Flammability of Some Ornamental Species in Wildland – Urban Interfaces in Southeastern France : Laboratory Assessment at Particle Level. Int. J. Wildl. Fire 52, 467–480. https://doi.org/10.1007/s00267-013-0067-z

Gill, A.M., Moore, P.H.R., 1996. Ignitability of Australian Plants. Canberra, ACT 2601, Australia.

Gratani, L., Ghia, E., 2002. Changes in morphological and physiological traits during leaf expansion of Arbutus unedo. Environ. Exp. Bot. 48, 51–60. https://doi.org/10.1016/S0098-8472(02)00010-2

Grootemaat, S., Wright, I.J., van Bodegom, P.M., Cornelissen, J.H.C., 2017. Scaling up flammability from individual leaves to fuel beds. Oikos. https://doi.org/10.1111/oik.03886

Grootemaat, S., Wright, I.J., van Bodegom, P.M., Cornelissen, J.H.C., Cornwell, W.K., 2015. Burn or rot: Leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 29, 1486–1497. https://doi.org/10.1111/1365-2435.12449

Hardy, C., Ottmar, R., Peterson, J., Core, J., Seamon, P., 2001. Smoke management guide for prescribed and wildland fire, 2001 editi. ed. National Wildfire Coordination Group, Boise, ID.

Hiers, J.K., Gordon, D.R., Mitchell, R.J., Brien, J.J.O., Service, U.F., 2005. Duff Consumption and Southern Pine Mortality - Project: JFSP 01-1-3-11. Thomasville, GA, USA.

Johnston, C., Groffman, P., Breshears, D., Cardon, Z., Currie, W., Emanuel, W., et al. 2004. Carbon cycling in soil. Front. Ecol. Environ 2(10), 522-528. https://doi.org/10.1890/1540-9295(2004)002[0522:CCIS]2.0.CO;2

Kazanis, D., Xanthopoulos, G., Arianoutsou, M., 2012. Understorey fuel load estimation along two post-fire chronosequences of Pinus halepensis Mill. forests in Central Greece. J. For. Res. 17, 105–109. https://doi.org/10.1007/s10310-011-0250-0

Keane, R., 2015. Wildland Fuels Fundamentals and Applications. Springer. https://doi.org/10.1007/978-3-319-09015-3

Keane, R.E., Reinhardt, E.D., Scott, J., Gray, K., Reardon, J., 2005. Estimating forest canopy bulk density using six indirect methods. Can. J. For. Res. 35, 724–739. https://doi.org/10.1139/x04-213

Kimball, S., E. Lulow, M., R. Balazs, K., Huxman, T.E., 2017. Predicting drought tolerance from slope aspect preference in restored plant communities. Ecol. Evol. 7, 3123–3131. https://doi.org/10.1002/ece3.2881

Linn, R., Reisner, J., Colman, J.J., Winterkamp, J., 2002. Studying wildfire behavior using FIRETEC. Int. J. Wildl. Fire 11, 233. https://doi.org/10.1071/WF02007

Liodakis, S., Vorisis, D., Agiovlasitis, I.P., 2005. A method for measuring the relative particle fire hazard properties of forest species. Thermochim. Acta 437, 150–157. https://doi.org/10.1016/j.tca.2005.07.001

Martin, R.E., Gordon, D.A., Gutierrez, M.A., Lee, D.S., Molina, D.E., Schroeder, R.A., et al. 1994. Assessing the flammability of domestic and wildland vegetation, in: Proceedings of the 12th Conference on Fire and Forest Meteorology, Society of American Foresters, Bethesda, MD, Jekyll Island, GA, 26–28 October. pp. 130–137.

Narog, M.G., Paysen, T.E., Koonce, A.L., Burke, G.M., 1991. Burning irrigated and unirrigated chamise, in: Proceedings 11th Conference on Fire and Forest Meteorology, 16–19 April 1991, Missoula, MT. Society of American Foresters: Bethesda, MD, pp. 352–356.

Ottmar, R., Andreu, A., 2007. Litter and Duff Bulk Densities in the Southern United States, Final report, JFSP project.

Papió, C., Trabaud, L., 1990. Structural characteristics of fuel components of five Meditarranean shrubs. For. Ecol. Manage. 35, 249–259. https://doi.org/10.1016/0378-1127(90)90006-W

Pausas, J.G., Alessio, G.A., Moreira, B., Corcobado, G., 2012. Fires enhance flammability in Ulex parviflorus. New Phytol. 193, 18–23. https://doi.org/10.1111/J.1469-8137.2011.03945.X

Pausas, J.G., Keeley, J.E., Schwilk, D.W., 2017. Flammability as an ecological and evolutionary driver. J. Ecol. 105, 289–297. https://doi.org/10.1111/1365-2745.12691

Pausas, J.G., Moreira, B., 2012. Flammability as a biological concept. New Phytol. 194, 610–613. https://doi.org/10.1111/j.1469-8137.2012.04132.x

Pereira, J., Sequeira, N., Carreiras, J., 1995. Structural-Properties and Dimensional Relations of Some Mediterranean Shrub Fuels. Int. J. Wildl. Fire 5, 35–42. https://doi.org/10.1071/WF9950035

Pickett, B.M., Isackson, C., Wunder, R., Fletcher, T.H., Butler, B.W., Weise, D.R., 2009. Flame interactions and burning characteristics of two live leaf samples. Int. J. Wildl. Fire 18, 865–874. https://doi.org/10.1071/WF08143

Pyne, S.J., Andrews, P.L., Laven, R.D., 1996. Introduction to Wildland Fire, 2nd editio. ed. John Wiley & Sons, New York, New York.

Rothermel, R.C., 1972. A mathematical model for predicting fire spread in wild land fuels. USDA For. Serv. Res. Pap. INT-115.

Rothermel, R.C., Anderson, H.E., 1966. Fire spread characteristics determined in the laboratory. USDA For. Serv. Intermt. For. Range Exp. Stn. Res. Pap. INT-30 34 p.

Rundel, P., 1981. Structural and chemical components of flammability. In ‘Proceedings of the Conference on Fire Regimes and Ecosystems Properties’. Honolulu (HI).

Santana, V.M., Baeza, M.J., Vallejo, V.R., 2011. Fuel structural traits modulating soil temperatures in different species patches of Mediterranean Basin shrublands. Int. J. Wildl. Fire 20, 668–677. https://doi.org/10.1071/WF10083

Scarff, F.R., Westoby, M., 2006. Leaf litter flammability in some semi-arid Australian woodlands. Funct. Ecol. 20, 745–752. https://doi.org/10.1111/j.1365-2435.2006.01174.x

Schwilk, D.W., 2015. Dimensions of plant flammability. New Phytol. 206, 486–488. https://doi.org/10.1111/nph.13372

Schwilk, D.W., 2003. Flammability is a niche construction trait: canopy architecture affects fire intensity. Am. Nat. 162, 725–733. https://doi.org/10.1086/379351

Tachajapong, W., Lozano, J., Mahalingam, S., Zhou, X., Weise, D.R., 2008. An investigation of crown fuel bulk density effects on the dynamics of crown fire initiation in Shrublands. Combust. Sci. Technol. 180, 593–615. https://doi.org/10.1080/00102200701838800

Thomas, P.H., 1971. Rates of spread of some wind-driven fires. Forestry 44, 155–175. https://doi.org/10.1093/forestry/44.2.155

Weise, D.R., White, R.H., Beall, F.C., Etlinger, M., 2005. Use of the cone calorimeter to detect seasonal differences in selected combustion characteristics of ornamental vegetation. Int. J. Wildl. Fire 14, 321–338. https://doi.org/10.1071/WF04035

Wilson, A., 1992. Assessing fire hazard on public lands in Victoria: fire management needs and practical research objectives. Crown, Victoria, Australia.

Zylstra, P., Bradstock, R.A., Bedward, M., Penman, T.D., Doherty, M.D., Weber, R.O., et al. 2016. Biophysical mechanistic modelling quantifies the effects of plant traits on fire severity: Species, not surface fuel loads, determine flame dimensions in eucalypt forests. PLoS One 11, 1–24. https://doi.org/10.1371/journal.pone.0160715

Téléchargements

Numéro

Rubrique

ARTICLES SCIENTIFIQUES
Métriques
Vues/Téléchargements
  • Résumé
    649
  • PDF
    535
  • Figure 1
    535
  • Untitled
    535

Reçu

2018-06-18

Accepté

2019-08-28

Publié

2019-10-30

Comment citer

ESSAGHI, S., HACHMI, M., YESSEF, M., DEHHAOUI, M., & SESBOU, A. (2019). Caractéristiques de la litière et de la biomasse de certains combustibles de sous-étage marocains dominants dans cinq régions forestières sujettes au feu. BOIS & FORETS DES TROPIQUES, 342, 3–16. https://doi.org/10.19182/bft2019.342.a31588