Le stress thermique environnemental dans l’espèce bovine : 4. Moyens de lutte
DOI :
https://doi.org/10.19182/remvt.37495Mots-clés
Bovin, stress thermique, conduite d’élevage, alimentation, logement des animaux, sélectionRésumé
Contexte : Le stress thermique a un impact significatif sur le bien-être des animaux d’élevage, affectant leur santé physique ainsi que des paramètres zootechniques tels que la productivité et le rendement, ce qui a des conséquences directes sur la rentabilité des exploitations. De nombreuses recherches sont menées dans le but d’évaluer et d’améliorer les méthodes de lutte contre le stress thermique. Objectifs : Cette revue de littérature récapitule les méthodes de lutte contre le stress thermique. Celles-ci peuvent être regroupées en quatre catégories, qui sont l’amélioration de l’environnement physique des animaux, la gestion de l’alimentation, l’approche par sélection génétique et la gestion de la reproduction. Méthode : Cette revue de littérature s’est d’abord appuyée sur des articles de synthèse issus de la base PubMed, puis a été enrichie par l’examen des références citées dans ces articles. Résultats : Il n’existe pas de solution unique pour atténuer les effets d’un stress thermique chez les animaux. Au contraire, les diverses solutions apparaissent comme étant complémentaires et doivent être choisies en fonction du contexte de l’élevage. La première méthode de lutte se concentre sur des adaptations de l’environnement des animaux ciblant la ventilation, le choix des matériaux de construction, et les systèmes de refroidissement. La deuxième méthode de lutte vise une gestion plus rigoureuse de l’alimentation. La troisième méthode de lutte repose sur plusieurs approches complémentaires : la sélection génétique factorielle, la sélection génomique, ainsi que le croisement et l’hybridation. Enfin, la quatrième catégorie de solutions explore l’utilisation des biotechnologies de la reproduction et des traitements hormonaux. Conclusions : La recommandation principale est de combiner plusieurs méthodes, en privilégiant les adaptations environnementales et nutritionnelles, tout en intégrant progressivement une stratégie de sélection génétique adaptée à chaque système d’élevage.
Téléchargements
Références
Abreu, A. S., Fischer, V., Stumpf, M. T., McManus, C. M., González, F. H. D., Da Silva, J. B. S., & Heisler, G. (2020). Natural tree shade increases milk stability of lactating dairy cows during the summer in the subtropics. Journal of Dairy Research, 87(4), 444–447. DOI: https://doi.org/10.1017/S0022029920000916
Aggarwal, A., & Upadhyay, R. (2012). Shelter management for alleviation of heat stress in cows and buffaloes. Heat Stress and Animal Productivity, 169-183. DOI: https://doi.org/10.1007/978-81-322-0879-2_7
Ahmad Para, I., Ahmad Dar, P., Ahmad Malla, B., Punetha, M., Rautela, A., Maqbool, I., Mohd, A., et al. (2018). Impact of heat stress on the reproduction of farm animals and strategies to ameliorate it. Biological Rhythm Research, 51(4), 616-632. DOI: https://doi.org/10.1080/09291016.2018.1548870
Al-Katanani, Y., Drost, M., Monson, R., Rutledge, J., Krininger, C., Block, J., Thatcher, W., & Hansen, P. (2002). Pregnancy rates following timed embryo transfer with fresh or vitrified in vitro produced embryos in lactating dairy cows under heat stress conditions. Theriogenology, 58(1), 171-182. DOI: https://doi.org/10.1016/S0093-691X(02)00916-0
Alamer, M. (2009). Effect of water restriction on lactation performance of Aardi goats under heat stress conditions. Small Ruminant Research, 84(1-3), 76-81. DOI: https://doi.org/10.1016/j.smallrumres.2009.06.009
An-Qiang, L., Zhi-Sheng, W., & An-Guo, Z. (2009). Effect of chromium picolinate supplementation on early lactation performance, rectal temperatures, respiration rates and plasma biochemical response of Holstein cows under heat stress. Pakistan Journal of Nutrition, 8, 940-945.
Avendaño-Reyes, L., Álvarez-Valenzuela, F., Correa-Calderón, A., Algándar-Sandoval, A., Rodríguez-González, E., Pérez-Velázquez, R., Macías-Cruz, U., et al. (2010). Comparison of three cooling management systems to reduce heat stress in lactating Holstein cows during hot and dry ambient conditions. Livestock Science, 132(1-3), 48-52. DOI: https://doi.org/10.1016/j.livsci.2010.04.020
Bagath, M., Krishnan, G., Devaraj, C., Rashamol, V., Pragna, P., Lees, A., & Sejian, V. (2019). The impact of heat stress on the immune system in dairy cattle: A review. Research in Veterinary Science, 126, 94-102. DOI: https://doi.org/10.1016/j.rvsc.2019.08.011
Barendse, W. (2017). Climate adaptation of tropical cattle. Annual Review of Animal Biosciences, 5(1), 133-150. DOI: https://doi.org/10.1146/annurev-animal-022516-022921
Baruselli, P. S., Ferreira, R. M., Filho, M. F., Nasser, L. F., Rodrigues, C. A., & Bó, G. A. (2010). Bovine embryo transfer recipient synchronisation and management in tropical environments. Reproduction, Fertility and Development, 22(1), 67. DOI: https://doi.org/10.1071/RD09214
Baruselli, P. S., Ferreira, R. M., Vieira, L. M., Souza, A. H., Bó, G. A., & Rodrigues, C. A. (2020). Use of embryo transfer to alleviate infertility
caused by heat stress. Theriogenology, 155, 1-11.
Bastian, K. R., Gebremedhin, K. G., & Scott, N. R. (2003). A finite difference model to determine conduction heat loss to a water-filled mattress for dairy cows. Transactions of the ASAE, 46(3). DOI: https://doi.org/10.13031/2013.13592
Becker, C., & Stone, A. (2020). Graduate student literature review: Heat abatement strategies used to reduce negative effects of heat stress in dairy cows. Journal of Dairy Science, 103(10), 9667-9675. DOI: https://doi.org/10.3168/jds.2020-18536
Beltran, M., & Vasconcelos, J. (2008). Conception rate in Holstein cows treated with GnRH or hCG on the fifth day post artificial insemination during summer. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 60(3), 580-586. DOI: https://doi.org/10.1590/S0102-09352008000300009
Berman, A., & Horovitz, T. (2012). Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle. Journal of Dairy Science, 95(6), 3021-3031. DOI: https://doi.org/10.3168/jds.2011-4844
Berman, A. (2011). Invited review: Are adaptations present to support dairy cattle productivity in warm climates? Journal of Dairy Science, 94(5), 2147-2158. DOI: https://doi.org/10.3168/jds.2010-3962
Berman, A., Folman, Y., Kaim, M., Mamen, M., Herz, Z., Wolfenson, D., Arieli, A., et al. (1985). Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate. Journal of Dairy Science, 68(6), 1488-1495. DOI: https://doi.org/10.3168/jds.S0022-0302(85)80987-5
Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., & Nardone, A. (2014). The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science, 97(1), 471-486. DOI: https://doi.org/10.3168/jds.2013-6611
Bionaz, M., Chen, S., Khan, M. J., & Loor, J. J. (2013). Functional role of PPARs in ruminants: Potential targets for fine-tuning metabolism during growth and lactation. PPAR Research, 684159, 1-28. DOI: https://doi.org/10.1155/2013/684159
Bin-Jumah, M., Abd El-Hack, M. E., Abdelnour, S. A., Hendy, Y. A., Ghanem, H. A., Alsafy, S. A., Khafaga, A. F., et al. (2020). Potential use of chromium to combat thermal stress in animals: A review. Science of The Total Environment, 707, 135996. DOI: https://doi.org/10.1016/j.scitotenv.2019.135996
Blackburn, H. D., Krehbiel, B., Ericsson, S. A., Wilson, C., Caetano, A. R., & Paiva, S. R. (2017). A fine structure genetic analysis evaluating ecoregional adaptability of a Bos Taurus breed (Hereford). PLOS ONE, 12(5), e0176474. DOI: https://doi.org/10.1371/journal.pone.0176474
Blackshaw, J., & Blackshaw, A. (1994). Heat stress in cattle and the effect of shade on production and behaviour: A review. Australian Journal of Experimental Agriculture, 34(2), 285-295. DOI: https://doi.org/10.1071/EA9940285
Bland, I. M., DiGiacomo, K., Williams, S. R. O., Leury, B. J., Dunshea, F. R., Moate, P. J. (2013, April 17). The use of infra-red thermography to measure flank temperatures of dairy cows fed wheat- or maize-based diets. In: Proceedings of the British Society of Animal Science Annual Conference; Nottingham, UK, 182 p.
Block, J., Chase, C. C. Jr., Hansen, P. J. 2002. Inheritance of resistance of bovine preimplantation embryos to heat shock: relative importance of the maternal vs paternal contribution. Molecular Reproduction and Developement, 63, 32-37. DOI: https://doi.org/10.1002/mrd.10160
Bó, G., Baruselli, P., Moreno, D., Cutaia, L., Caccia, M., Tríbulo, R., Tríbulo, H., et al. (2002). The control of follicular wave development for self-appointed embryo transfer programs in cattle. Theriogenology, 57(1), 53-72. DOI: https://doi.org/10.1016/S0093-691X(01)00657-4
Bonnefoy, J. M., & Noordhuizen, J. (2011). Maîtriser le stress thermique chez la vache laitière. Bulletin des groupements techniques vétérinaires, 60(1), 77–86.
Bouglé, L. (2022). Rafraîchissement des vaches en période chaude à l’aide d’un matelas de logette à eau refroidie : effets sur l’incidence et la persistance des boiteries et la production laitière de vaches laitières hautes productrices. [Thèse de doctorat, Oniris - École nationale vétérinaire de Nantes, agroalimentaire et de l’alimentation], HAL open science. https://dumas.ccsd.cnrs.fr/dumas-03857898v1/file/N-2022-061.pdf
Bousquet, D., Twagiramungu, H., Morin, N., Brisson, C., Carboneau, G., & Durocher, J. (1999). In vitro embryo production in the cow: An effective alternative to the conventional embryo production approach. Theriogenology, 51(1), 59-70. DOI: https://doi.org/10.1016/S0093-691X(98)00231-3
Camargo, L. S., Saraiva, N. Z., Oliveira, C. S., Carmickle, A., Lemos, D. R., Siqueira, L. G., & Denicol, A. C. (2022). Perspectives of gene editing for cattle farming in tropical and subtropical regions. Animal Reproduction, 19(4). DOI: https://doi.org/10.1590/1984-3143-ar2022-0108
Campos, I. L., Chud, T. C., Junior, G. A., Baes, C. F., Cánovas, Á., & Schenkel, F. S. (2022). Estimation of genetic parameters of heat tolerance for production traits in Canadian holsteins cattle. Animals, 12(24), 3585. DOI: https://doi.org/10.3390/ani12243585
Carvalho, P., Santos, V., Giordano, J., Wiltbank, M., & Fricke, P. (2018). Development of fertility programs to achieve high 21-day pregnancy rates in high-producing dairy cows. Theriogenology, 114, 165-172. DOI: https://doi.org/10.1016/j.theriogenology.2018.03.037
Carabaño, M. J., Ramón, M., Menéndez-Buxadera, A., Molina, A., & Díaz, C. (2019). Selecting for heat tolerance. Animal Frontiers, 9(1), 62-68. DOI: https://doi.org/10.1093/af/vfy033
Chaiyabutr, N., Buranakarl, C., Muangcharoen, V., Loypetjra, P., & Pichaicharnarong, A. (1987). Effects of acute heat stress on changes in the rate of liquid flow from the rumen and turnover of body water of swamp buffalo. The Journal of Agricultural Science, 108(3), 549-553. DOI: https://doi.org/10.1017/S0021859600079934
Chebel, R., Demétrio, D., & Metzger, J. (2008). Factors affecting success of embryo collection and transfer in large dairy herds. Theriogenology, 69(1), 98-106. DOI: https://doi.org/10.1016/j.theriogenology.2007.09.008
Chen, S., Wang, J., Peng, D., Li, G., Chen, J., & Gu, X. (2018). Exposure to heat-stress environment affects the physiology, circulation levels of cytokines, and microbiome in dairy cows. Scientific Reports, 8(1). DOI: https://doi.org/10.1038/s41598-018-32886-1
Cheruiyot, E. K., Haile-Mariam, M., Cocks, B. G., & Pryce, J. E. (2022). Improving Genomic selection for heat tolerance in dairy cattle: Current opportunities and future directions. Frontiers in Genetics, 13. DOI: https://doi.org/10.3389/fgene.2022.894067
Collier, R., Eley, R., Sharma, A., Pereira, R., & Buffington, D. (1981). Shade management in subtropical environment for milk yield and composition in Holstein and Jersey cows. Journal of Dairy Science, 64(5), 844-849. DOI: https://doi.org/10.3168/jds.S0022-0302(81)82656-2
Coon, R., Duffield, T., & DeVries, T. (2018). Effect of straw particle size on the behavior, health, and production of early-lactation dairy cows. Journal of Dairy Science, 101(7), 6375-6387. DOI: https://doi.org/10.3168/jds.2017-13920
Cummins, K. (1998). Bedding plays role in heat abatement. Dairy Herd Management, 35(6), 20.
CVB Table Booklet Feeding of Ruminants. 2022. Nutrient requirements for cattle, sheep and goats and nutritional values of feeding ingredients for ruminants. CVB-series no 66; Stichting CVB, Lelystad, the Netherlands, 2022. Consulté en janvier 2024 sur https://fr.scribd.com/document/735837153/Cvb-Table-Booklet-Feeding-of-Ruminants-2022
Da Silva, W. C., Silva, J. A., Camargo-Júnior, R. N., Silva, É. B., Santos, M. R., Viana, R. B., Silva, A. G., et al. (2023). Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Frontiers in Veterinary Science, 10. DOI: https://doi.org/10.3389/fvets.2023.1083469
Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9(3), 260-268. DOI: https://doi.org/10.14202/vetworld.2016.260-268
Davis, S. R., Spelman, R. J., & Littlejohn, M. D. (2017). Breeding and genetics Symposium: Breeding heat tolerant dairy cattle: The case for introgression of the “Slick” prolactin receptor variant into Bos Taurus dairy breeds. Journal of Animal Science, 95(4), 1788-1800. DOI: https://doi.org/10.2527/jas.2016.0956
De la Sota, R., Burke, J., Risco, C., Moreira, F., DeLorenzo, M., & Thatcher, W. (1998). Evaluation of timed insemination during summer heat stress in lactating dairy cattle. Theriogenology, 49(4), 761-770. DOI: https://doi.org/10.1016/S0093-691X(98)00025-9
Demetrio, D., Santos, R., Demetrio, C., & Vasconcelos, J. M. (2007). Factors affecting conception rates following artificial insemination or embryo transfer in lactating Holstein cows. Journal of Dairy Science, 90(11), 5073-5082. DOI: https://doi.org/10.3168/jds.2007-0223
Dikmen, S., Cole, J. B., Null, D. J., & Hansen, P. J. (2013). Genome-wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in Holstein cattle. PLoS ONE, 8(7), e69202. DOI: https://doi.org/10.1371/journal.pone.0069202
Dikmen, S., Khan, F., Huson, H., Sonstegard, T., Moss, J., Dahl, G., & Hansen, P. (2014). The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. Journal of Dairy Science, 97(9), 5508-5520. DOI: https://doi.org/10.3168/jds.2014-8087
Do Amaral, B., Connor, E., Tao, S., Hayen, J., Bubolz, J., & Dahl, G. (2009). Heat-stress abatement during the dry period: Does cooling improve transition into lactation? Journal of Dairy Science, 92(12), 5988-5999. DOI: https://doi.org/10.3168/jds.2009-2343
Drost, M., Ambrose, J., Thatcher, M., Cantrell, C., Wolfsdorf, K., Hasler, J., & Thatcher, W. (1999). Conception rates after artificial insemination or embryo transfer in lactating dairy cows during summer in Florida. Theriogenology, 52(7), 1161-1167. DOI: https://doi.org/10.1016/S0093-691X(99)00208-3
Durosaro, S., Iyasere, O., Ilori, B., Oyeniran, V., & Ozoje, M. (2023). Molecular regulation, breed differences and genes involved in stress control in farm animals. Domestic Animal Endocrinology, 82, 106769. DOI: https://doi.org/10.1016/j.domaniend.2022.106769
Eberhardt, B. G., Satrapa, R. A., Capinzaiki, C. R., Trinca, L. A., & Barros, C. M. (2009). Influence of the breed of bull (Bos Taurus indicus vs. Bos Taurus Taurus) and the breed of cow (Bos Taurus indicus, Bos Taurus Taurus and crossbred) on the resistance of bovine embryos to heat. Animal Reproduction Science, 114(1-3), 54-61. DOI: https://doi.org/10.1016/j.anireprosci.2008.09.008
Efimova, I. O., Zagidullin, L. R., Khisamov, R. R., Akhmetov, T. M., Shaidullin, R. R., Tyulkin, S. V., & Gilmanov, K. K. (2020). Assessment on milk productivity and milk quality in cattle with different genotypes by HSP70.1 gene. IOP Conference Series: Earth and Environmental Science, 604(1), 012016. DOI: https://doi.org/10.1088/1755-1315/604/1/012016
EFSA, European Food Safety Authority. (2024). Qualified presumption of safety (QPS): Microorganisms (MOs) in QPS. https://www.efsa.europa.eu/en/applications/qps-assessment#:~:text=What%20does%20it%20mean%20if,have%20the%20same%20QPS%20status
Farooq, U., Samad, H. A., Shehzad, F., Qayyum, A. (2010). Physiological responses of cattle to heat stress. World Applied Sciences Journal, 8, 38-43.
Ferag, A., Gherissi, D. E., Khenenou, T., Boughanem, A., Moussa, H. H., & Maamour, A. (2024a). Reproduction efficiency of native and imported Algerian cattle under challenging climatic conditions. The 9th International Seminar (MGIBR) Management and Genetic Improvement of Biological Ressources, 13. DOI: https://doi.org/10.3390/blsf2024036013
Ferag, A., Gherissi, D. E., Khenenou, T., Boughanem, A., Moussa, H. H., Kechroud, A. A., & Fares, M. A. (2024b). Heat stress effect on fertility of two imported dairy cattle breeds from different Algerian agro-ecological areas. International Journal of Biometeorology, 68(12), 2515-2529. DOI: https://doi.org/10.1007/s00484-024-02761-y
Ferreira, R., Ayres, H., Chiaratti, M., Ferraz, M., Araújo, A., Rodrigues, C., Watanabe, Y., et al. (2011). The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. Journal of Dairy Science, 94(5), 2383-2392. DOI: https://doi.org/10.3168/jds.2010-3904
Fisher, A. D., Roberts, N., Bluett, S. J., Verkerk, G. A., & Matthews, L. R. (2008). Effects of shade provision on the behaviour, body temperature and milk production of grazing dairy cows during a New Zealand summer. New Zealand Journal of Agricultural Research, 51(2), 99-105. DOI: https://doi.org/10.1080/00288230809510439
Fontoura, A., Javaid, A., Sáinz de la Maza-Escolà, V., Salandy, N., Fubini, S., Grilli, E., & McFadden, J. (2022). Heat stress develops with increased total-tract gut permeability, and dietary organic acid and pure botanical supplementation partly restores lactation performance in Holstein dairy cows. Journal of Dairy Science, 105(9), 7842-7860. DOI: https://doi.org/10.3168/jds.2022-21820
Fournel, S., Ouellet, V., & Charbonneau, E. (2017). Practices for alleviating heat stress of dairy cows in humid continental climates: A literature review. Animals, 7(5), 37. DOI: https://doi.org/10.3390/ani7050037
Franco, M., Thompson, P., Brad, A., & Hansen, P. (2006). Effectiveness of administration of gonadotropin-releasing hormone at days 11, 14 or 15 after anticipated ovulation for increasing fertility of lactating dairy cows and non-lactating heifers. Theriogenology, 66(4), 945-954. DOI: https://doi.org/10.1016/j.theriogenology.2005.12.014
Friedman, E., Roth, Z., Voet, H., Lavon, Y., & Wolfenson, D. (2012). Progesterone supplementation postinsemination improves fertility of cooled dairy cows during the summer. Journal of Dairy Science, 95(6), 3092-3099. DOI: https://doi.org/10.3168/jds.2011-5017
Friedman, E., Voet, H., Reznikov, D., Wolfenson, D., & Roth, Z. (2014). Hormonal treatment before and after artificial insemination differentially improves fertility in subpopulations of dairy cows during the summer and Autumn. Journal of Dairy Science, 97(12), 7465-7475. DOI: https://doi.org/10.3168/jds.2014-7900
Garcia-Ispierto, I., Tutusaus, J., & López-Gatius, F. (2014). Does Coxiella burnetii affect reproduction in cattle? A clinical update. Reproduction in Domestic Animals, 49(4), 529-535. DOI: https://doi.org/10.1111/rda.12333
Garner, J. B., Douglas, M. L., Williams, S. R., Wales, W. J., Marett, L. C., Nguyen, T. T., Reich, C. M., et al. (2016). Genomic selection improves heat tolerance in dairy cattle. Scientific Reports, 6(1). DOI: https://doi.org/10.1038/srep34114
Gessner, D. K., Ringseis, R., & Eder, K. (2016). Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. Journal of Animal Physiology and Animal Nutrition, 101(4), 605-628. DOI: https://doi.org/10.1111/jpn.12579
Ghassemi Nejad, J., Lohakare, J., Son, J., Kwon, E., West, J., & Sung, K. (2014). Wool cortisol is a better indicator of stress than blood cortisol in ewes exposed to heat stress and water restriction. Animal, 8(1), 128-132. DOI: https://doi.org/10.1017/S1751731113001870
Gonzalez-Rivas, P. A., DiGiacomo, K., Giraldo, P. A., Leury, B. J., Cottrell, J. J., & Dunshea, F. R. (2017). Reducing rumen starch fermentation of wheat with three percent sodium hydroxide has the potential to ameliorate the effect of heat stress in grain-fed wethers. Journal of Animal Science, 95(12), 5547-5562. DOI: https://doi.org/10.2527/jas2017.1843
Gonzalez-Rivas, P. A., Sullivan, M., Cottrell, J. J., Leury, B. J., Gaughan, J. B., & Dunshea, F. R. (2018). Effect of feeding slowly fermentable grains on productive variables and amelioration of heat stress in lactating dairy cows in a sub-tropical summer. Tropical Animal Health and Production, 50(8), 1763-1769. DOI: https://doi.org/10.1007/s11250-018-1616-5
Guo, J., Gao, S., Quan, S., Zhang, Y., Bu, D., & Wang, J. (2018). Blood amino acids profile responding to heat stress in dairy cows. Asian Australasian Journal of Animal Sciences, 31(1), 47-53. DOI: https://doi.org/10.5713/ajas.16.0428
Habimana, V., Nguluma, A. S., Nziku, Z. C., Ekine - Dzivenu, C. C., Morota, G., Mrode, R., & Chenyambuga, S. W. (2024). Heat stress effects on physiological and milk yield traits of lactating Holstein Friesian crossbreds reared in Tanga region, Tanzania. Animals, 14(13), 1914. DOI: https://doi.org/10.3390/ani14131914
Hansen, P. (2004). Physiological and cellular adaptations of zebu cattle to thermal stress. Animal Reproduction Science, 82-83, 349-360. DOI: https://doi.org/10.1016/j.anireprosci.2004.04.011
Hansen, P. (2007). Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology, 68, S242-S249. DOI: https://doi.org/10.1016/j.theriogenology.2007.04.008
Hansen, P. J. (2019). Reproductive physiology of the heat-stressed dairy cow: Implications for fertility and assisted reproduction. Animal Reproduction, 16(3), 497-507. DOI: https://doi.org/10.21451/1984-3143-AR2019-0053
Hansen, P. J. (2020). Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology, 154, 190-202. DOI: https://doi.org/10.1016/j.theriogenology.2020.05.010
Hansen, P. J., & Aréchiga, C. F. (1997). Strategies for managing reproduction in the heat-stressed dairy cow. Journal of Animal Science, 77(suppl_2), 36. DOI: https://doi.org/10.2527/1997.77suppl_236x
Hanzen, C., Delhez, P., Knapp, E., Hornick, J.-L., & Gherissi, D. E. (2024). Le stress thermique environnemental dans l’espèce bovine : 1. Caractéristiques générales et méthodes d’évaluation. Revue d’élevage et de médecine vétérinaire des pays tropicaux, 77, 1-8. DOI: https://doi.org/10.19182/remvt.37379
Hanzen, C., Delhez, P., Hornick, J.-L., Lessire, F., & Gherissi, D. E. (2024). Le stress thermique environnemental dans l’espèce bovine : 2. Effets physiologiques, pathologiques, comportementaux, alimentaires, immunitaires et sur la production laitière. Revue d’élevage et de médecine vétérinaire des pays tropicaux, 77, 1-13. DOI: https://doi.org/10.19182/remvt.37380
Hanzen, C., Delhez, P., Lessire, F., Hornick, J.-L., & Gherissi, D. E. (2025). Le stress thermique environnemental dans l’espèce bovine : 3. Effets sur la reproduction. Revue d’élevage et de médecine vétérinaire des pays tropicaux, 78, 1-15. DOI: https://doi.org/10.19182/remvt.37381
Harris, Jr., B. (1992). Feeding and managing cows in warm weather. Fact Sheet DS 48 of the Dairy Production Guide, Florida Cooperative Extension Service. Harris Jr., Barney, 1992. Feeding and managing cows in warm weather. Fact Sheet DS 48 of the Dairy Production Guide, Florida Cooperative Extension Service
House, H. K. 2015. Dairy Housing-ventilation options for free stall barns. https://files.ontario.ca/omafra-ventilation-options-free-stall-barns-15-017-en-aoda-2020-04-27.pdf
Huang, L., & Xu, Y. (2018). Effective reduction of antinutritional factors in soybean meal by acetic acid-catalyzed processing. Journal of Food Processing and Preservation, 42(11), e13775. DOI: https://doi.org/10.1111/jfpp.13775
INRA. (2018). INRA feeding system for ruminants. INRA. DOI: https://doi.org/10.3920/978-90-8686-292-4
Jousan, F. D., & Hansen, P. J. (2007). Insulin-like growth factor-I promotes resistance of bovine preimplantation embryos to heat shock through actions independent of its anti-apoptotic actions requiring PI3K signaling. Molecular Reproduction and Development, 74(2), 189-196. DOI: https://doi.org/10.1002/mrd.20527
Kaim, M., Bloch, A., Wolfenson, D., Braw-Tal, R., Rosenberg, M., Voet, H., & Folman, Y. (2003). Effects of GnRH administered to cows at the onset of Estrus on timing of ovulation, endocrine responses, and conception. Journal of Dairy Science, 86(6), 2012-2021. DOI: https://doi.org/10.3168/jds.S0022-0302(03)73790-4
Kassube, K., Kaufman, J., Pohler, K., McFadden, J., & Ríus, A. (2017). Jugularinfused methionine, lysine and branched-chain amino acids does not improve milk production in Holstein cows experiencing heat stress. Animal, 11(12), 2220-2228. DOI: https://doi.org/10.1017/S1751731117001057
Kerekoppa, R. P., Rao, A., Basavaraju, M., Geetha, G. R., Krishnamurthy, L., Rao, T. V., Das, D. N., et al. (2015). Molecular characterization of the HSPA1A gene by single-strandconformation polymorphism and sequence analysis in Holstein-friesiancrossbred and Deoni cattle raised in India. Turkish Journal of Veterinary and Animal Sciences, 39, 128-133. DOI: https://doi.org/10.3906/vet-1212-3
Khan, I. M., Khan, A., Liu, H., & Khan, M. Z. (2023). Editorial: Genetic markers identification for animal production and disease resistance. Frontiers in Genetics, 14. DOI: https://doi.org/10.3389/fgene.2023.1243793
Khare, A., Thorat, G., Yadav, V., Bhimte, A., & Purwar, V. (2018). Role of mineral and vitamin in heat stress. Journal of Pharmacognosy and Phytochemistry, 7(4), 229-231.
Kim, J., Hanotte, O., Mwai, O. A., Dessie, T., Bashir, S., Diallo, B., Agaba, M., et al. (2017). The genome landscape of Indigenous African cattle. Genome Biology, 18(1). https://doi.org/10.1186/s13059-017-1153-y DOI: https://doi.org/10.1186/s13059-017-1153-y
Kim, S. H., Ramos, S. C., Valencia, R. A., Cho, Y. I., & Lee, S. S. (2022). Heat stress: Effects on rumen microbes and host physiology, and strategies to alleviate the negative impacts on lactating dairy cows. Frontiers in Microbiology, 13. DOI: https://doi.org/10.3389/fmicb.2022.804562
Krininger III, C., Stephens, S., & Hansen, P. (2002). Developmental changes in inhibitory effects of arsenic and heat shock on growth of pre-implantation bovine embryos. Molecular Reproduction and Development, 63(3), 335-340. DOI: https://doi.org/10.1002/mrd.90017
Kroukamp, H., den Haan, R., van Zyl, J. H., & van Zyl, W. H. 2013. Rational strain engineering interventions to enhance cellulase secretion by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 110(3), 738-752.
Laible, G., Cole, S., Brophy, B., Wei, J., Leath, S., Jivanji, S., Littlejohn, M. D., et al. (2021). Holstein Friesian dairy cattle edited for diluted coat color as a potential adaptation to climate change. BMC Genomics, 22(1). DOI: https://doi.org/10.1186/s12864-021-08175-z
Landaeta-Hernández, A., Zambrano-Nava, S., Hernández-Fonseca, J. P., Godoy, R., Calles, M., Iragorri, J. L., Añez, L., et al. (2011). Variability of hair coat and skin traits as related to adaptation in Criollo Limonero cattle. Tropical Animal Health and Production, 43(3), 657-663. DOI: https://doi.org/10.1007/s11250-010-9749-1
Lemal, P., May, K., König, S., Schroyen, M., & Gengler, N. (2023). Invited review: From heat stress to disease—Immune response and candidate genes involved in cattle thermotolerance. Journal of Dairy Science, 106(7), 4471-4488. DOI: https://doi.org/10.3168/jds.2022-22727
Liu, Y., Offler, C. E., & Ruan, Y. (2013). Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Frontiers in Plant Science, 4. DOI: https://doi.org/10.3389/fpls.2013.00282
Liu, J., Ye, G., Zhou, Y., Liu, Y., Zhao, L., Liu, Y., Chen, X., et al. (2014). Feeding glycerol-enriched yeast culture improves performance, energy status, and heat shock protein gene expression of lactating Holstein cows under heat stress1. Journal of Animal Science, 92(6), 2494-2502. DOI: https://doi.org/10.2527/jas.2013-7152
Lomander, H., Frössling, J., Ingvartsen, K., Gustafsson, H., & Svensson, C. (2012). Supplemental feeding with glycerol or propylene glycol of dairy cows in early lactation—Effects on metabolic status, body condition, and milk yield. Journal of Dairy Science, 95(5), 2397-2408. DOI: https://doi.org/10.3168/jds.2011-4535
López-Gatius, F., Santolaria, P., Martino, A., Delétang, F., & De Rensis, F. (2006). The effects of GnRH treatment at the time of AI and 12 days later on reproductive performance of high producing dairy cows during the warm season in northeastern Spain. Theriogenology, 65(4), 820-830. DOI: https://doi.org/10.1016/j.theriogenology.2005.07.002
Luo, H., Hu, L., Brito, L. F., Dou, J., Sammad, A., Chang, Y., Ma, L., et al. (2022). Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle. Journal of Animal Science and Biotechnology, 13(1). DOI: https://doi.org/10.1186/s40104-022-00748-6
Mariana, E., Sumantri, C., Astuti, D. A., Anggraeni, A., & Gunawan, A. (2020). Association of HSP70 gene with milk yield and milk quality of Friesian Holstein in Indonesia. IOP Conference Series: Earth and Environmental Science, 425(1), 012045. DOI: https://doi.org/10.1088/1755-1315/425/1/012045
Min, L., Li, D., Tong, X., Nan, X., Ding, D., Xu, B., & Wang, G. (2019). Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: A review. International Journal of Biometeorology, 63(9), 1283-1302. DOI: https://doi.org/10.1007/s00484-019-01744-8
Moallem, U., Altmark, G., Lehrer, H., & Arieli, A. (2010). Performance of high-yielding dairy cows supplemented with fat or concentrate under hot and humid climates. Journal of Dairy Science, 93(7), 3192-3202. DOI: https://doi.org/10.3168/jds.2009-2979
Mogas, T. (2018). Update on the vitrification of bovine oocytes and invitroproduced embryos. Reproduction, Fertility and Development, 31(1), 105. DOI: https://doi.org/10.1071/RD18345
Morgado, J. N., Lamonaca, E., Santeramo, F. G., Caroprese, M., Albenzio, M., & Ciliberti, M. G. (2023). Effects of management strategies on animal welfare and productivity under heat stress: A synthesis. Frontiers in Veterinary Science, 10. DOI: https://doi.org/10.3389/fvets.2023.1145610
Muller, C. J. C., Botha, J. A., Coetzer, W. A., Smith, W. A. (1994). Effect of shade on various parameters of Friesian cows in a Mediterranean climate in South Africa. 2. Physiological responses. South African Journal of Animal Science, 24(2), 56-60. https://www.ajol.info/index.php/sajas/article/view/138378
Naderi, N., Ghorbani, G., Sadeghi-Sefidmazgi, A., Nasrollahi, S., & Beauchemin, K. (2016). Shredded beet pulp substituted for corn silage in diets fed to dairy cows under ambient heat stress: Feed intake, total-tract digestibility, plasma metabolites, and milk production. Journal of Dairy Science, 99(11), 8847-8857. DOI: https://doi.org/10.3168/jds.2016-11029
Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1-3), 57-69. DOI: https://doi.org/10.1016/j.livsci.2010.02.011
Nebel, R. L., Jobst, S. M., Dransfield, M. B. G., Pandolfi, S. M., Bailey, T. L. (1997). Use of radio frequency data communication system Heat Watch to describe behavioural estrus in dairy cattle. Journal of Dairy Science, 80, 179.
Negrón-Pérez, V., Fausnacht, D., & Rhoads, M. (2019). Invited review: Management strategies capable of improving the reproductive performance of heat-stressed dairy cattle. Journal of Dairy Science, 102(12), 10695-10710. DOI: https://doi.org/10.3168/jds.2019-16718
Nguyen, T. T., Bowman, P. J., Haile-Mariam, M., Pryce, J. E., & Hayes, B. J. (2016). Genomic selection for tolerance to heat stress in Australian dairy cattle. Journal of Dairy Science, 99(4), 2849-2862. DOI: https://doi.org/10.3168/jds.2015-9685
Nielsen, P. P., & Wredle, E. (2023). How does the provision of shade during grazing affect heat stress experienced by dairy cows in Sweden? Animals, 13(24), 3823. DOI: https://doi.org/10.3390/ani13243823
Nishisozu, T., Singh, J., Abe, A., Okamura, K., & Dochi, O. (2023). Effects of the temperature-humidity index on conception rates in Holstein heifers and cows receiving in vitro-produced Japanese Black cattle embryos. Journal of Reproduction and Development, 69(2), 72-77. DOI: https://doi.org/10.1262/jrd.2022-112
Nowicki, A. (2021). Embryo transfer as an option to improve fertility in repeat breeder dairy cows. Journal of Veterinary Research, 65(2), 231-237. DOI: https://doi.org/10.2478/jvetres-2021-0018
NRC. National Academies of Sciences, Engineering, and Medicine. (2021). Nutrient Requirements of Dairy Cattle: Eighth Revised Edition. The National Academies Press.
Olson, T. A., Lucena, C., Chase, C. C., & Hammond, A. C. (2003). Evidence of a major gene influencing hair length and heat tolerance in Bos Taurus cattle. Journal of Animal Science, 81(1), 80-90. DOI: https://doi.org/10.2527/2003.81180x
Ortiz-Colón, G., Fain, S. J., Parés, I. K., Curbelo-Rodríguez, J., Jiménez-Cabán, E., Pagán-Morales, M., & Gould, W. A. (2018). Assessing climate vulnerabilities and adaptive strategies for resilient beef and dairy operations in the tropics. Climatic Change, 146(1-2), 47-58. DOI: https://doi.org/10.1007/s10584-017-2110-1
Osei-Amponsah, R., Chauhan, S. S., Leury, B. J., Cheng, L., Cullen, B., Clarke, I. J., & Dunshea, F. R. (2019). Genetic selection for Thermotolerance in ruminants. Animals, 9(11), 948. DOI: https://doi.org/10.3390/ani9110948
Palacio, S., Bergeron, R., Lachance, S., & Vasseur, E. (2015). The effects of providing portable shade at pasture on dairy cow behavior and physiology. Journal of Dairy Science, 98(9), 6085-6093. DOI: https://doi.org/10.3168/jds.2014-8932
Pancarci, S., Jordan, E., Risco, C., Schouten, M., Lopes, F., Moreira, F., & Thatcher, W. (2002). Use of Estradiol Cypionate in a Presynchronized timed artificial insemination program for lactating dairy cattle. Journal of Dairy Science, 85(1), 122-131. DOI: https://doi.org/10.3168/jds.S0022-0302(02)74060-5
Park, T., Ma, L., Gao, S., Bu, D., & Yu, Z. (2022). Heat stress impacts the multi-domain ruminal microbiota and some of the functional features independent of its effect on feed intake in lactating dairy cows. Journal of Animal Science and Biotechnology, 13(1). DOI: https://doi.org/10.1186/s40104-022-00717-z
Patiño Chaparro, J. M. (2016). Comparison of genetic variations related to productive efficiency of Slick Holstein cattle versus non-Slick. [Master’s thesis, University of Puerto Rico, Mayaguez Campus].
Patra, A. K., & Kar, I. (2021). Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals. Journal of Animal Science and Technology, 63(2), 211-247. DOI: https://doi.org/10.5187/jast.2021.e48
Paula-Lopes, F., Chase, C. C, Al-Katanani, Y., Krininger, C. E., Rivera, R., Tekin, S., Majewski, A., et al. (2003). Genetic divergence in cellular resistance to heat shock in cattle: Differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures. Reproduction, 125(2), 285-294. DOI: https://doi.org/10.1530/rep.0.1250285
Perano, K., Usack, J., Angenent, L., & Gebremedhin, K. (2015). Corrigendum to “Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling”. Journal of Dairy Science, 98(12), 9060. DOI: https://doi.org/10.3168/jds.2015-98-12-9060
RAAA. (2021). Red Angus Association of America. Red Angus Approves Gene-Edited Traits for Animal Registration. By: Drovers news source, September 15, 2021. https://www.drovers.com/news/industry/red-angus-approves-gene-edited-traits-animal-registration
Ravagnolo, O., & Misztal, I. (2000). Genetic component of heat stress in dairy cattle, parameter estimation. Journal of Dairy Science, 83(9), 2126-2130. DOI: https://doi.org/10.3168/jds.S0022-0302(00)75095-8
Renaudeau, D., Collin, A., Yahav, S., De Basilio, V., Gourdine, J., & Collier, R. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707-728. DOI: https://doi.org/10.1017/S1751731111002448
Riley, D., Chase, C., Coleman, S., & Olson, T. (2012). Genetic assessment of rectal temperature and coat score in Brahman, Angus, and Romosinuano crossbred and straightbred cows and calves under subtropical summer conditions. Livestock Science, 148(1-2), 109-118. DOI: https://doi.org/10.1016/j.livsci.2012.05.017
Ríus, A. (2019). Invited review: Adaptations of protein and amino acid metabolism to heat stress in dairy cows and other livestock species. Applied Animal Science, 35(1), 39-48. DOI: https://doi.org/10.15232/aas.2018-01805
Rodrigues, C., Teixeira, A., Ferreira, R., Ayres, H., Mancilha, R., Souza, A., & Baruselli, P. (2010). Effect of fixed-time embryo transfer on reproductive efficiency in high-producing repeat-breeder Holstein cows. Animal Reproduction Science, 118(2-4), 110-117. DOI: https://doi.org/10.1016/j.anireprosci.2009.06.020
Roman-Ponce, H., Thatcher, W., Buffington, D., Wilcox, C., & Van Horn, H. (1977). Physiological and production responses of dairy cattle to a shade structure in a subtropical environment. Journal of Dairy Science, 60(3), 424-430. DOI: https://doi.org/10.3168/jds.S0022-0302(77)83882-4
Roth, Z., Arav, A., Bor, A., Zeron, Y., Braw-Tal, R., & Wolfenson, D. (2001). Improvement of quality of oocytes collected in the Autumn by enhanced removal of impaired follicles from previously heat-stressed cows. Reproduction, 122(5), 737-744. DOI: https://doi.org/10.1530/rep.0.1220737
Roth, Z., Shiff, O., Lavon, Y., Kalo, D., & Wolfenson, D. (2022). Progesterone supplementation to improve fertility of selected subgroups of lactating cows during the summer and fall. Reproduction in Domestic Animals, 57(8), 943-946. DOI: https://doi.org/10.1111/rda.14157
Ruiz-González, A., Suissi, W., Baumgard, L., Martel-Kennes, Y., Chouinard, P., Gervais, R., & Rico, D. (2023). Increased dietary vitamin D3 and calcium partially alleviate heat stress symptoms and inflammation in lactating Holstein cows independent of dietary concentrations of vitamin E and selenium. Journal of Dairy Science, 106(6), 3984-4001. DOI: https://doi.org/10.3168/jds.2022-22345
Sakatani, M., Kobayashi, S., & Takahashi, M. (2003). Effects of heat shock on in vitro development and intracellular oxidative state of bovine preimplantation embryos. Molecular Reproduction and Development, 67(1), 77-82. DOI: https://doi.org/10.1002/mrd.20014
Sakatani, M. (2017). Effects of heat stress on bovine preimplantation embryos produced in vitro. Journal of Reproduction and Development, 63(4), 347-352. DOI: https://doi.org/10.1262/jrd.2017-045
Salvati, G., Morais Júnior, N., Melo, A., Vilela, R., Cardoso, F., Aronovich, M., Pereira, R., et al. (2015). Response of lactating cows to live yeast supplementation during summer. Journal of Dairy Science, 98(6), 4062-4073. DOI: https://doi.org/10.3168/jds.2014-9215
Sammad, A., Umer, S., Shi, R., Zhu, H., Zhao, X., & Wang, Y. (2019). Dairy cow reproduction under the influence of heat stress. Journal of Animal Physiology and Animal Nutrition, 104(4), 978-986. DOI: https://doi.org/10.1111/jpn.13257
Sanchez, W., McGuire, M., & Beede, D. (1994). Macromineral nutrition by heat stress interactions in dairy cattle: Review and original research. Journal of Dairy Science, 77(7), 2051-2079. DOI: https://doi.org/10.3168/jds.S0022-0302(94)77150-2
Sánchez, J., Misztal, I., Aguilar, I., Zumbach, B., & Rekaya, R. (2009). Genetic determination of the onset of heat stress on daily milk production in the US Holstein cattle. Journal of Dairy Science, 92(8), 4035-4045. DOI: https://doi.org/10.3168/jds.2008-1626
Santos, J., Bisinotto, R., & Ribeiro, E. (2016). Mechanisms underlying reduced fertility in anovular dairy cows. Theriogenology, 86(1), 254-262. DOI: https://doi.org/10.1016/j.theriogenology.2016.04.038
Sartori, R., Sartor-Bergfelt, R., Mertens, S., Guenther, J., Parrish, J., & Wiltbank, M. (2002). Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter. Journal of Dairy Science, 85(11), 2803-2812. DOI: https://doi.org/10.3168/jds.S0022-0302(02)74367-1
Schmitt, E. J., Diaz, T., Barros, C. M., De la Sota, R. L., Drost, M., Fredriksson, E. W., Staples, C. R., et al. (1996). Differential response of the luteal phase and fertility in cattle following ovulation of the first-wave follicle with human chorionic gonadotropin or an agonist of gonadotropinreleasing hormone. Journal of Animal Science, 74(5), 1074. DOI: https://doi.org/10.2527/1996.7451074x
Schütz, K., Rogers, A., Poulouin, Y., Cox, N., & Tucker, C. (2010). The amount of shade influences the behavior and physiology of dairy cattle. Journal of Dairy Science, 93(1), 125-133. DOI: https://doi.org/10.3168/jds.2009-2416
Sejian, V., Maurya, V. P., & Naqvi, S. M. (2010). Adaptability and growth of Malpura ewes subjected to thermal and nutritional stress. Tropical Animal Health and Production, 42(8), 1763-1770. DOI: https://doi.org/10.1007/s11250-010-9633-z
Shabankareh, H. K., Habibizad, J., Sarsaifi, K., Cheghamirza, K., & Jasemi, V. K. (2010). The effect of the absence or presence of a corpus luteum on the ovarian follicular population and serum oestradiol concentrations during the estrous cycle in Sanjabi ewes. Small Ruminant Research, 93(2-3), 180-185. DOI: https://doi.org/10.1016/j.smallrumres.2010.06.002
Shen, J., Hanif, Q., Cao, Y., Yu, Y., Lei, C., Zhang, G., & Zhao, Y. (2020). Whole genome scan and selection signatures for climate adaption in Yanbian cattle. Frontiers in Genetics, 11. DOI: https://doi.org/10.3389/fgene.2020.00094
Silanikove, N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 67(1-2), 1-18. DOI: https://doi.org/10.1016/S0301-6226(00)00162-7
Silva, C., Sartorelli, E., Castilho, A., Satrapa, R., Puelker, R., Razza, E., Ticianelli, J., et al. (2013). Effects of heat stress on development, quality and survival of Bos indicus and Bos Taurus embryos produced in vitro. Theriogenology, 79(2), 351-357. DOI: https://doi.org/10.1016/j.theriogenology.2012.10.003
Smith, J. R., & Harner, J. P. (2012). Strategies to reduce the impact of heat and cold stress in dairy cattle facilities. Environmental Physiology of Livestock, 267-288. DOI: https://doi.org/10.1002/9781119949091.ch15
Soares, J., Martins, C., Carvalho, N., Nicacio, A., Abreu-Silva, A., Campos Filho, E. P., Torres Júnior, J., et al. (2011). Timing of insemination using sexsorted sperm in embryo production with Bos indicus and Bos Taurus superovulated donors. Animal Reproduction Science, 127(3-4), 148-153. DOI: https://doi.org/10.1016/j.anireprosci.2011.08.003
Souza-Cácares, M., Fialho, A., Silva, W., Cardoso, C., Pöhland, R., Martins, M., & Melo-Sterza, F. (2019). Oocyte quality and heat shock proteins in oocytes from bovine breeds adapted to the tropics under different conditions of environmental thermal stress. Theriogenology, 130, 103-110. DOI: https://doi.org/10.1016/j.theriogenology.2019.02.039
Stermer, R., Brasington, C., Coppock, C., Lanham, J., & Milam, K. (1986). Effect of drinking water temperature on heat stress of dairy cows. Journal of Dairy Science, 69(2), 546-551. DOI: https://doi.org/10.3168/jds.S0022-0302(86)80436-2
Stewart, B., Block, J., Morelli, P., Navarette, A., Amstalden, M., Bonilla, L., Hansen, P., et al. (2011). Efficacy of embryo transfer in lactating dairy cows during summer using fresh or vitrified embryos produced in vitro with sex-sorted semen. Journal of Dairy Science, 94(7), 3437-3445. DOI: https://doi.org/10.3168/jds.2010-4008
St-Pierre, N., Cobanov, B., & Schnitkey, G. (2003). Economic losses from heat stress by US livestock industries. Journal of Dairy Science, 86, E52-E77. DOI: https://doi.org/10.3168/jds.S0022-0302(03)74040-5
Sun, L., Gao, S., Wang, K., Xu, J., Sanz-Fernandez, M., Baumgard, L., & Bu, D. (2019). Effects of source on bioavailability of selenium, antioxidant status, and performance in lactating dairy cows during oxidative stress-inducing conditions. Journal of Dairy Science, 102(1), 311-319. DOI: https://doi.org/10.3168/jds.2018-14974
Sungkhapreecha, P., Chankitisakul, V., Duangjinda, M., Buaban, S., & Boonkum, W. (2022). Determining heat stress effects of multiple genetic traits in tropical dairy cattle using single-step Genomic BLUP. Veterinary Sciences, 9(2), 66. DOI: https://doi.org/10.3390/vetsci9020066
Taye, M., Lee, W., Caetano-Anolles, K., Dessie, T., Hanotte, O., Mwai, O. A., Kemp, S., et al. (2017). Whole genome detection of signature of positive selection in African cattle reveals selection for thermotolerance. Animal Science Journal, 88(12), 1889-1901. DOI: https://doi.org/10.1111/asj.12851
Torres-Júnior, J. D., Pires, M. D., De Sá, W., Ferreira, A. D., Viana, J., Camargo, L., Ramos, A., et al. (2008). Effect of maternal heat-stress on follicular growth and oocyte competence in BOS indicus cattle. Theriogenology, 69(2), 155-166. DOI: https://doi.org/10.1016/j.theriogenology.2007.06.023
Tourillon, M. (2022). Comportement et physiologique de vaches laitières hautes productrices en période chaude : effets d’un matelas de logettes à eau refroidie. Sciences du Vivant [q-bio]. (dumas-03857862)
Tucker, C. B., Rogers, A. R., & Schütz, K. E. (2008). Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. Applied Animal Behaviour Science, 109(2-4), 141-154. DOI: https://doi.org/10.1016/j.applanim.2007.03.015
Tyagi, S., Kesiraju, K., Saakre, M., Rathinam, M., Raman, V., Pattanayak, D., & Sreevathsa, R. (2020). Genome editing for resistance to insect pests: An emerging tool for crop improvement. ACS Omega, 5(33), 20674-20683. DOI: https://doi.org/10.1021/acsomega.0c01435
Tyson, J., McFarland, D., Graves, R. (2014). Tunnel ventilation for tie stall dairy barns. https://extension.psu.edu/tunnel-ventilation-for-tie-stall-dairy-barns
Ullah, G., Fuquay, J., Keawkhong, T., Clark, B., Pogue, D., & Murphey, E. (1996). Effect of gonadotropin-releasing hormone at Estrus on subsequent luteal function and fertility in lactating holsteins during heat stress. Journal of Dairy Science, 79(11), 1950-1953. DOI: https://doi.org/10.3168/jds.S0022-0302(96)76565-7
Uyeno, Y., Sekiguchi, Y., Tajima, K., Takenaka, A., Kurihara, M., & Kamagata, Y. (2010). An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe, 16(1), 27-33. DOI: https://doi.org/10.1016/j.anaerobe.2009.04.006
Vasconcelos, J., Jardina, D., Sá Filho, O., Aragon, F., & Veras, M. (2011). Comparison of progesterone-based protocols with gonadotropin-releasing hormone or estradiol benzoate for timed artificial insemination or embryo transfer in lactating dairy cows. Theriogenology, 75(6), 1153-1160. DOI: https://doi.org/10.1016/j.theriogenology.2010.11.027
Vieira, L., Rodrigues, C., Mendanha, M., Sá Filho, M., Sales, J., Souza, A., Santos, J., et al. (2014). Donor category and seasonal climate associated with embryo production and survival in multiple ovulation and embryo transfer programs in Holstein cattle. Theriogenology, 82(2), 204-212. DOI: https://doi.org/10.1016/j.theriogenology.2014.03.018
Wallage, A. L., Johnston, S. D., Lisle, A. T., Beard, L., Lees, A. M., Collins, C. W., & Gaughan, J. B. (2017). Thermoregulation of the bovine scrotum 1: Measurements of free-range animals in a Paddock and pen. International Journal of Biometeorology, 61(8), 1381-1387. DOI: https://doi.org/10.1007/s00484-017-1315-3
Wang, B., Wang, C., Guan, R., Shi, K., Wei, Z., Liu, J., & Liu, H. (2019). Effects of dietary rumen-protected betaine supplementation on performance of postpartum dairy cows and immunity of newborn calves. Animals, 9(4), 167. DOI: https://doi.org/10.3390/ani9040167
Wang, J., Bu, D., Wang, J., Huo, X., Guo, T., Wei, H., Zhou, L., et al. (2010). Effect of saturated fatty acid supplementation on production and metabolism indices in heat-stressed mid-lactation dairy cows. Journal of Dairy Science, 93(9), 4121-4127. DOI: https://doi.org/10.3168/jds.2009-2635
Watanabe, Y. F., Souza, H. A., Mingoti, R. D., Ferreira, R. M., Batista, E. O., Dayan, A., Watanabe, O. Y., et al. (2017). Number of oocytes retrieved per donor during OPU and its relationship with in vitro embryo production and field fertility following embryo transfer. Animal Reproduction, 14(3), 635-644. DOI: https://doi.org/10.21451/1984-3143-AR1008
West, J., Hill, G., Fernandez, J., Mandebvu, P., & Mullinix, B. (1999). Effects of dietary fiber on intake, milk yield, and digestion by lactating dairy cows during cool or hot, humid weather. Journal of Dairy Science, 82(11), 2455-2465. DOI: https://doi.org/10.3168/jds.S0022-0302(99)75497-4
Willard, S., Gandy, S., Bowers, S., Graves, K., Elias, A., & Whisnant, C. (2003). The effects of GnRH administration postinsemination on serum concentrations of progesterone and pregnancy rates in dairy cattle exposed to mild summer heat stress. Theriogenology, 59(8), 1799-1810. DOI: https://doi.org/10.1016/S0093-691X(02)01232-3
Wolfenson, D., & Roth, Z. (2018). Impact of heat stress on cow reproduction and fertility. Animal Frontiers, 9(1), 32-38. DOI: https://doi.org/10.1093/af/vfy027
Zhang, X., Liang, H., Xu, L., Zou, B., Zhang, T., Xue, F., & Qu, M. (2022). Rumen fermentative metabolomic and blood insights into the effect of yeast culture supplement on growing bulls under heat stress conditions. Frontiers in Microbiology, 13. DOI: https://doi.org/10.3389/fmicb.2022.947822
Zhao, S., Min, L., Zheng, N., & Wang, J. (2019). Effect of heat stress on bacterial composition and metabolism in the rumen of lactating dairy cows. Animals, 9(11), 925. DOI: https://doi.org/10.3390/ani9110925
Zolini, A., Ortiz, W., Estrada-Cortes, E., Ortega, M., Dikmen, S., Sosa, F., Giordano, J., et al. (2019). Interactions of human chorionic gonadotropin with genotype and parity on fertility responses of lactating dairy cows. Journal of Dairy Science, 102(1), 846-856. DOI: https://doi.org/10.3168/jds.2018-15358

Téléchargements
-
Résumé1249
-
pdf872
Reçu
Accepté
Publié
Comment citer
Numéro
Rubrique
Catégories
Licence
© D.E.Gherissi et al., publié par CIRAD 2025

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .