Le stress thermique environnemental dans l’espèce bovine : 3. Effets sur la reproduction
DOI :
https://doi.org/10.19182/remvt.37381Mots-clés
Bovin, stress thermique, cycle oestral, fertilité, gestation, spermatogénèseRésumé
Contexte : L’augmentation régulière depuis plusieurs décennies de la température environnementale s’est accompagnée dans l’espèce bovine, notamment d’une diminution de la fertilité dans différentes régions du monde. Objectifs : Cette revue de littérature passe en revue les divers effets et leurs mécanismes sur les divers aspects de la reproduction du mâle et de la femelle bovine. Méthode : À partir de la base PubMed, cette revue de littérature s’est concentrée dans un premier temps sur les articles de synthèse puis a été complétée par les références des articles identifiés. Résultats : La diminution de la fertilité résulte des effets du stress thermique sur la croissance folliculaire ovarienne, avec une incidence plus marquée sur les follicules pré-antraux que sur les follicules antraux, l’ovocyte et le corps jaune. Ces effets sont la conséquence d’une réduction de la synthèse d’oestradiol, de la progestérone, de l’inhibine et de l’hormone lutéotrope (LH) ainsi que de l’augmentation de celle de l’hormone folliculostimulante (FSH), une modification des gradients de température au niveau du système génital n’étant pas non plus à exclure. Le stress thermique est également responsable d’une augmentation de la fréquence de la mortalité embryonnaire particulièrement durant la première semaine de la gestation. L’exposition des vaches à un stress thermique durant la gestation en raccourcit la durée, affecte le placenta, modifie le métabolisme de la vache lors de sa lactation, altère son immunité et exerce des effets négatifs sur la croissance pondérale, le développement mammaire et folliculaire, la longévité et les performances de reproduction du veau. Chez le mâle, le stress thermique se traduit par une réduction de la motilité et une augmentation des anomalies morphologiques des spermatozoïdes. Conclusions : La reconnaissance croissante des effets du stress thermique sur les performances reproductives de bovins souligne la nécessité pour les responsables de la santé animale de les intégrer dans leurs approches. Il est essentiel de mettre en place des stratégies visant à en atténuer les impacts sur la rentabilité des élevages, d’autant plus que son influence épigénétique sur les performances de la descendance est de mieux en mieux documentée.
Téléchargements
Références
Aguiar, L. H., Hyde, K. A., Pedroza, G. H., & Denicol, A. C. (2020). Heat stress impairs in vitro development of preantral follicles of cattle. Animal Reproduction Science, 213, 106277. DOI: https://doi.org/10.1016/j.anireprosci.2020.106277
Ahmed, B. M., Younas, U., Asar, T. O., Dikmen, S., Hansen, P. J., & Dahl, G. E. (2017). Cows exposed to heat stress during fetal life exhibit improved thermal tolerance1. Journal of Animal Science, 95(8), 3497-3503. DOI: https://doi.org/10.2527/jas.2016.1298
Akbarinejad, V., Gharagozlou, F., & Vojgani, M. (2017). Temporal effect of maternal heat stress during gestation on the fertility and anti-müllerian hormone concentration of offspring in bovine. Theriogenology, 99, 69-78. DOI: https://doi.org/10.1016/j.theriogenology.2017.05.018
Alexander, G., & Williams, D. (1971). Heat stress and development of the conceptusin domestic sheep. The Journal of Agricultural Science, 76(1), 53-72. DOI: https://doi.org/10.1017/S0021859600015616
Alves, M. B., Andrade, A. F., Arruda, R. P., Batissaco, L., Florez-Rodriguez, S. A., Oliveira, B. M., Torres, M. A., et al. (2016). Recovery of normal testicular temperature after scrotal heat stress in rams assessed by infrared thermography and its effects on seminal characteristics and testosterone blood serum concentration. Theriogenology, 86(3), 795-805. DOI: https://doi.org/10.1016/j.theriogenology.2016.02.034
Amaral, C. S., Koch, J., Correa Júnior, E. E., Bertolin, K., Mujica, L. K., Fiorenza, M. F., Rosa, S. G., et al. (2020). Heat stress on oocyte or zygote compromises embryo development, impairs interferon tau production and increases reactive oxygen species and oxidative stress in bovine embryos produced in vitro. Molecular Reproduction and Development, 87(8), 899-909. DOI: https://doi.org/10.1002/mrd.23407
Andrade, M. F., & Simões, J. (2024). Embryonic and fetal mortality in dairy cows: Incidence, relevance, and diagnosis approach in Field conditions. Dairy, 5(3), 526-541. DOI: https://doi.org/10.3390/dairy5030040
Asakura, H. (2004). Fetal and neonatal Thermoregulation. Journal of Nippon Medical School, 71(6), 360-370. DOI: https://doi.org/10.1272/jnms.71.360
Assel, A., Besenfelder, U., Wagener, K., Allram, J., Tekin, M., Vogl, C., Drillich, M., et al. (2023). 64 Is the proteome of the oviductal fluid in dairy cows affected by heat stress? Reproduction, Fertility and Development, 36(2), 183-183. DOI: https://doi.org/10.1071/RDv36n2Ab64
Astiz, S., Gonzalez-Bulnes, A., Sebastian, F., Fargas, O., Cano, I., & Cuesta, P. (2014). Maternal aging affects life performance of progeny in a Holstein dairy cow model. Journal of Developmental Origins of Health and Disease, 5(5), 374-384. DOI: https://doi.org/10.1017/S2040174414000361
Austin, E. J., Mihm, M., Ryan, M. P., Williams, D. H., & Roche, J. F. (1999). Effect of duration of dominance of the ovulatory follicle on onset of oestrus and fertility in heifers. Journal of Animal Science, 77(8), 2219. DOI: https://doi.org/10.2527/1999.7782219x
Badinga, L., Collier, R., Thatcher, W., & Wilcox, C. (1985). Effects of climatic and management factors on conception rate of dairy cattle in subtropical environment. Journal of Dairy Science, 68(1), 78-85. DOI: https://doi.org/10.3168/jds.S0022-0302(85)80800-6
Báez, F., López Darriulat, R., Rodríguez-Osorio, N., & Viñoles, C. (2022). Effect of season on Germinal vesicle stage, quality, and subsequent in vitro developmental competence in bovine cumulus-oocyte complexes. Journal of Thermal Biology, 103, 103171. DOI: https://doi.org/10.1016/j.jtherbio.2021.103171
Banos, G., Brotherstone, S., & Coffey, M. (2007). Prenatal maternal effects on body condition score, female fertility, and milk yield of dairy cows. Journal of Dairy Science, 90(7), 3490-3499. DOI: https://doi.org/10.3168/jds.2006-809
Barros, C. M., Pegorer, M. F., Vasconcelos, J. L., Eberhardt, B. G., & Monteiro, F. M. (2006). Importance of sperm genotype (indicus versus Taurus) for fertility and embryonic development at elevated temperatures. Theriogenology, 65(1), 210-218. DOI: https://doi.org/10.1016/j.theriogenology.2005.09.024
Baruselli, P., Ferreira, R., Sales, J., Gimenes, L., Sá Filho, M., Martins, C., Rodrigues, C., et al. (2011). Timed embryo transfer programs for management of donor and recipient cattle. Theriogenology, 76(9), 1583-1593. DOI: https://doi.org/10.1016/j.theriogenology.2011.06.006
Basiricò, L., Morera, P., Primi, V., Lacetera, N., Nardone, A., & Bernabucci, U. (2011). Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress and Chaperones, 16(4), 441-448. DOI: https://doi.org/10.1007/s12192-011-0257-7
Bauman, D. E., & Bruce Currie, W. (1980). Partitioning of nutrients during pregnancy and lactation: A review of mechanisms involving homeostasis and Homeorhesis. Journal of Dairy Science, 63(9), 1514-1529. DOI: https://doi.org/10.3168/jds.S0022-0302(80)83111-0
Baumgard, L. H., & Rhoads, R. P. (2013). Effects of heat stress on Postabsorptive metabolism and energetics. Annual Review of Animal Biosciences, 1(1), 311-337. DOI: https://doi.org/10.1146/annurev-animal-031412-103644
Beaujean, N., Boutinaud, M., Devinoy, E., Jammes, H., Le Guillou, S., Le Provost, F., Leroux, C., et al. (2020). L’épigénétique et la construction du phenotype chez Le bovin. INRAE Productions Animales, 33(2). DOI: https://doi.org/10.20870/productions-animales.2020.33.2.4477
Bech-Sàbat, G., López-Gatius, F., Yániz, J., García-Ispierto, I., Santolaria, P., Serrano, B., Sulon, J., et al. (2008). Factors affecting plasma progesterone in the early fetal period in high producing dairy cows. Theriogenology, 69(4), 426-432. DOI: https://doi.org/10.1016/j.theriogenology.2007.10.012
Bell, A. W. (2006). Prenatal programming of postnatal productivity and health of livestock: A brief review. Australian Journal of Experimental Agriculture, 46(7), 725. DOI: https://doi.org/10.1071/EA06006
Bell, A. W., McBride, B. W., Slepetis, R., Early, R. J., & Currie, W. B. (1989). Chronic heat stress and prenatal development in sheep: I. Conceptus growth and maternal plasma hormones and metabolites. Journal of Animal Science, 67(12), 3289. DOI: https://doi.org/10.2527/jas1989.67123289x
Berry, D., Lonergan, P., Butler, S., Cromie, A., Fair, T., Mossa, F., & Evans, A. (2008). Negative influence of high maternal milk production before and after conception on offspring survival and milk production in dairy cattle. Journal of Dairy Science, 91(1), 329-337. DOI: https://doi.org/10.3168/jds.2007-0438
Biggers, B. G., Geisert, R. D., Wetteman, R. P., & Buchanan, D. S. (1987). Effect of heat stress on early embryonic development in the beef cow. Journal of Animal Science, 64(5), 1512-1518. DOI: https://doi.org/10.2527/jas1987.6451512x
Biran, D., Braw-Tal, R., Gendelman, M., Lavon, Y., & Roth, Z. (2015). ACTH administration during formation of preovulatory follicles impairs steroidogenesis and angiogenesis in association with ovulation failure in lactating cows. Domestic Animal Endocrinology, 53, 52-59. DOI: https://doi.org/10.1016/j.domaniend.2015.05.002
Boni, R. (2019). Heat stress, a serious threat to reproductive function in animals and humans. Molecular Reproduction and Development, 86(10), 1307-1323. DOI: https://doi.org/10.1002/mrd.23123
Boni, R., Perrone, L., & Cecchini, S. (2014). Heat stress affects reproductive performance of high producing dairy cows bred in an area of southern Apennines. Livestock Science, 160, 172-177. DOI: https://doi.org/10.1016/j.livsci.2013.11.016
Bouraoui, R., Lahmar, M., Majdoub, A., Djemali, M., & Belyea, R. (2002). The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Animal Research, 51(6), 479-491. DOI: https://doi.org/10.1051/animres:2002036
Bridges, P., Brusie, M., & Fortune, J. (2005). Elevated temperature (heat stress) in vitro reduces androstenedione and estradiol and increases progesterone secretion by follicular cells from bovine dominant follicles. Domestic Animal Endocrinology, 29(3), 508-522. DOI: https://doi.org/10.1016/j.domaniend.2005.02.017
Brito, L. F., Silva, A. E., Barbosa, R. T., & Kastelic, J. P. (2004). Testicular thermoregulation in Bos indicus, crossbred and Bos Taurus bulls: Relationship with scrotal, testicular vascular cone and testicular morphology, and effects on semen quality and sperm production. Theriogenology, 61(2-3), 511-528. DOI: https://doi.org/10.1016/S0093-691X(03)00231-0
Brown, B. M., Stallings, J. W., Clay, J. S., & Rhoads, M. L. (2015). Periconceptional heat stress of Holstein dams is associated with differences in daughter milk production and composition during multiple lactations. PLOS ONE, 10(10), e0133574. DOI: https://doi.org/10.1371/journal.pone.0133574
Camargo, L., Viana, J., Ramos, A., Serapião, R., De Sa, W., Ferreira, A., Guimarães, M., et al. (2007). Developmental competence and expression of the Hsp 70.1 gene in oocytes obtained from Bos indicus and Bos Taurus dairy cows in a tropical environment. Theriogenology, 68(4), 626-632. DOI: https://doi.org/10.1016/j.theriogenology.2007.03.029
Capela, L., Leites, I., Romão, R., Lopes-da-Costa, L., & Pereira, R. M. (2022). Impact of heat stress on bovine sperm quality and competence. Animals, 12(8), 975. DOI: https://doi.org/10.3390/ani12080975
Capuco, A., Akers, R., & Smith, J. (1997). Mammary growth in Holstein cows during the dry period: Quantification of nucleic acids and histology. Journal of Dairy Science, 80(3), 477-487. DOI: https://doi.org/10.3168/jds.S0022-0302(97)75960-5
Cartwright, S., Schmied, J., Livernois, A., & Mallard, B. A. (2022). Physiological response to heat stress in immune Phenotyped Canadian Holstein dairy cattle in free-stall and tie-stall management systems. Frontiers in Animal Science, 3. DOI: https://doi.org/10.3389/fanim.2022.852958
Cartwright, S. L., Schmied, J., Karrow, N., & Mallard, B. A. (2023). Impact of heat stress on dairy cattle and selection strategies for thermotolerance: A review. Frontiers in Veterinary Science, 10. DOI: https://doi.org/10.3389/fvets.2023.1198697
Cerri, R. L., Rutigliano, H. M., Chebel, R. C., & Santos, J. E. (2009). Period of dominance of the ovulatory follicle influences embryo quality in lactating dairy cows. Reproduction, 137(5), 813-823. DOI: https://doi.org/10.1530/REP-08-0242
Chacha, F., Gherissi, D. E., Lamraoui, R., Afri-Bouzebda, F., & Bouzebda, Z. (2022). Evaluation of body condition, daily milk production and biochemical parameters during the postpartum period according to calving season in Montbeliard dairy cows reared in the semi-arid region – Algeria. Veterinarska stanica, 53(6), 677-687. DOI: https://doi.org/10.46419/vs.53.6.3
Chandolia, R., Reinertsen, E., & Hansen, P. (1999). Short communication: Lack of breed differences in responses of bovine spermatozoa to heat shock. Journal of Dairy Science, 82(12), 2617-2619. DOI: https://doi.org/10.3168/jds.S0022-0302(99)75517-7
Chawicha, T. G., & Mummed, Y. Y. (2022). An overview of how heat stress impacts dairy cattle fertility. Multidisciplinary Reviews, 5(3), 1-10. DOI: https://doi.org/10.31893/multirev.2022014
Christison, G. I., & Johnson, H. D. (1972). Cortisol turnover in heat-stressed cows. Journal of Animal Science, 35(5), 1005-1010. DOI: https://doi.org/10.2527/jas1972.3551005x
Clarke, I. J. (2014). Interface between metabolic balance and reproduction in ruminants: Focus on the hypothalamus and pituitary. Hormones and Behavior, 66(1), 15-40. DOI: https://doi.org/10.1016/j.yhbeh.2014.02.005
Collier, R., Beede, D., Thatcher, W., Israel, L., & Wilcox, C. (1982). Influences of environment and its modification on dairy animal health and production. Journal of Dairy Science, 65(11), 2213-2227. DOI: https://doi.org/10.3168/jds.S0022-0302(82)82484-3
Collier, R. J., Doelger, S. G., Head, H. H., Thatcher, W. W., & Wilcox, C. J. (1982). Effects of heat stress during pregnancy on maternal hormone concentrations, calf birth weight and postpartum milk yield of Holstein cows. Journal of Animal Science, 54(2), 309-319. DOI: https://doi.org/10.2527/jas1982.542309x
Collier, R. J., Stiening, C. M., Pollard, B. C., VanBaale, M. J., Baumgard, L. H., Gentry, P. C., & Coussens, P. M. (2006). Use of gene expression microarrays for evaluating environmental stress tolerance at the cellular level in cattle. Journal of Animal Science, 84(suppl_13), E1-E13. DOI: https://doi.org/10.2527/2006.8413_supplE1x
Collier, R. J., Baumgard, L. H., Zimbelman, R. B., & Xiao, Y. (2018). Heat stress: Physiology of acclimation and adaptation. Animal Frontiers, 9(1), 12-19. DOI: https://doi.org/10.1093/af/vfy031
Connor, E., Meyer, M., Li, R., Van Amburgh, M., Boisclair, Y., & Capuco, A. (2007). Regulation of gene expression in the bovine mammary gland by ovarian steroids. Journal of Dairy Science, 90, E55-E65. DOI: https://doi.org/10.3168/jds.2006-466
Cortvrindt, R., & Smitz, J. (2001). In vitro follicle growth: Achievements in mammalian species. Reproduction in Domestic Animals, 36(1), 3-9. DOI: https://doi.org/10.1046/j.1439-0531.2001.00261.x
Da Broi, M. G., Giorgi, V. S., Wang, F., Keefe, D. L., Albertini, D., & Navarro, P. A. (2018). Influence of follicular fluid and cumulus cells on oocyte quality: Clinical implications. Journal of Assisted Reproduction and Genetics, 35(5), 735-751. DOI: https://doi.org/10.1007/s10815-018-1143-3
Silva, W. C., Silva, J. A., Camargo-Júnior, R. N., Silva, É. B., Santos, M. R., Viana, R. B., Silva, A. G., et al. (2023). Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Frontiers in Veterinary Science, 10.
Dado-Senn, B., Laporta, J., & Dahl, G. (2020). Carry over effects of lategestational heat stress on dairy cattle progeny. Theriogenology, 154, 17-23.
Dahl, G. E., Tao, S., & Laporta, J. (2017). Triennial lactation symposium/Bolfa: Late gestation heat stress of dairy cattle programs dam and daughter milk production. Journal of Animal Science, 95(12), 5701-5710.
Dahl, G. E., Skibiel, A. L., & Laporta, J. (2019). In utero heat stress programs reduced performance and health in calves. Veterinary Clinics of North America: Food Animal Practice, 35(2), 343-353.
Dash, S., Chakravarty, A. K., Singh, A., Upadhyay, A., Singh, M., & Yousuf, S. (2016). Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review. Veterinary World, 9(3), 235-244.
Da Broi, M. G., Giorgi, V. S., Wang, F., Keefe, D. L., Albertini, D., & Navarro, P. A. (2018). Influence of follicular fluid and cumulus cells on
oocyte quality: Clinical implications. Journal of Assisted Reproduction and Genetics, 35(5), 735-751.
Da Silva, W. C., Silva, J. A., Camargo-Júnior, R. N., Silva, É. B., Santos, M. R., Viana, R. B., Silva, A. G., et al. (2023). Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Frontiers in Veterinary Science, 10. DOI: https://doi.org/10.3389/fvets.2023.1083469
Dado-Senn, B., Laporta, J., & Dahl, G. (2020). Carry over effects of lategestational heat stress on dairy cattle progeny. Theriogenology, 154, 17-23. DOI: https://doi.org/10.1016/j.theriogenology.2020.05.012
Dahl, G. E., Tao, S., & Laporta, J. (2017). Triennial lactation symposium/Bolfa: Late gestation heat stress of dairy cattle programs dam and daughter milk production. Journal of Animal Science, 95(12), 5701-5710. DOI: https://doi.org/10.2527/jas2017.2006
Dahl, G. E., Skibiel, A. L., & Laporta, J. (2019). In utero heat stress programs reduced performance and health in calves. Veterinary Clinics of North America: Food Animal Practice, 35(2), 343-353. DOI: https://doi.org/10.1016/j.cvfa.2019.02.005
Dash, S., Chakravarty, A. K., Singh, A., Upadhyay, A., Singh, M., & Yousuf, S. (2016). Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review. Veterinary World, 9(3), 235-244. DOI: https://doi.org/10.14202/vetworld.2016.235-244
Davidson, B., Sarlo Davila, K., Mateescu, R., Dahl, G., & Laporta, J. (2022). Effect of in utero exposure to hyperthermia on postnatal hair length, skin morphology, and thermoregulatory responses. Journal of Dairy Science, 105(11), 8898-8910. DOI: https://doi.org/10.3168/jds.2022-22202
Denicol, A. C., & Siqueira, L. G. (2023). Maternal contributions to pregnancy success: From gamete quality to uterine environment. Animal Reproduction, 20(2). DOI: https://doi.org/10.1590/1984-3143-ar2023-0085
De Rensis, F., Saleri, R., Garcia-Ispierto, I., Scaramuzzi, R., & López-Gatius, F. (2021). Effects of heat stress on follicular physiology in dairy cows. Animals, 11(12), 3406. DOI: https://doi.org/10.3390/ani11123406
De Sousa, P., Caveney, A., Westhusin, M., & Watson, A. (1998). Temporal patterns of embryonic gene expression and their dependence on oogenetic factors. Theriogenology, 49(1), 115-128. DOI: https://doi.org/10.1016/S0093-691X(97)00406-8
Djelailia, H., M’Hamdi, N., Bouraoui, R., & Najar, T. (2021). Effects of thermal stress on physiological state and hormone concentrations in Holstein cows under arid climatic conditions. South African Journal of Animal Science, 51(4), 452-459. DOI: https://doi.org/10.4314/sajas.v51i4.5
Do Amaral, B. D., Connor, E., Tao, S., Hayen, J., Bubolz, J., & Dahl, G. (2010). Heat stress abatement during the dry period influences prolactin signaling in lymphocytes. Domestic Animal Endocrinology, 38(1), 38-45. DOI: https://doi.org/10.1016/j.domaniend.2009.07.005
Do Amaral, B., Connor, E., Tao, S., Hayen, M., Bubolz, J., & Dahl, G. (2011). Heat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows. Journal of Dairy Science, 94(1), 86-96. DOI: https://doi.org/10.3168/jds.2009-3004
Dovolou, E., Giannoulis, T., Nanas, I., & Amiridis, G. S. (2023). Heat stress: A serious disruptor of the reproductive physiology of dairy cows. Animals, 13(11), 1846. DOI: https://doi.org/10.3390/ani13111846
Dransfield, M., Nebel, R., Pearson, R., & Warnick, L. (1998). Timing of insemination for dairy cows identified in Estrus by a Radiotelemetric Estrus detection system. Journal of Dairy Science, 81(7), 1874-1882. DOI: https://doi.org/10.3168/jds.S0022-0302(98)75758-3
Ealy, A. D., Drost, M., & Hansen, P. J. (1993). Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows. Journal of Dairy Science, 76(10), 2899-2905. DOI: https://doi.org/10.3168/jds.S0022-0302(93)77629-8
Edwards, J. L., & Hansen, P. J. (1997). Differential responses of bovine oocytes and preimplantation embryos to heat shock. Molecular Reproduction and Development, 46(2), 138-145. DOI: https://doi.org/10.1002/(SICI)1098-2795(199702)46:2<138::AID-MRD4>3.0.CO;2-R
Edwards, J. L., Ealy, A. D., Monterroso, V. H., & Hansen, P. J. (1997). Ontogeny of temperature-regulated heat shock protein 70 synthesis in preimplantation bovine embryos. Molecular Reproduction and Development, 48(1), 25-33. DOI: https://doi.org/10.1002/(SICI)1098-2795(199709)48:1<25::AID-MRD4>3.0.CO;2-R
Edwards, J., King, W., Kawarsky, S., & Ealy, A. (2001). Responsiveness of early embryos to environmental insults: Potential protective roles of HSP70 and glutathione. Theriogenology, 55(1), 209-223. DOI: https://doi.org/10.1016/S0093-691X(00)00455-6
El-Sheikh Ali, H., Kitahara, G., Tamura, Y., Kobayashi, I., Hemmi, K., Torisu, S., Sameshima, H., et al. (2013). Presence of a temperature gradient among genital tract portions and the thermal changes within these portions over the Estrous cycle in beef cows. Journal of Reproduction and Development, 59(1), 59-65. DOI: https://doi.org/10.1262/jrd.2012-017
El-Tarabany, M. S., & El-Tarabany, A. A. (2015). Impact of maternal heat stress at insemination on the subsequent reproductive performance of Holstein, Brown Swiss, and their crosses. Theriogenology, 84(9), 1523-1529. DOI: https://doi.org/10.1016/j.theriogenology.2015.07.040
Erb, R. E., Wilbur, J. W., & Hilton, J. H. 1940. Some factors affecting breeding efficiency in dairy cattle. Journal of Dairy Science, 23, 549
Eulmi, H., Deghnouche, K., & Gherissi, D. E. (2023). Dairy cattle breeding practices, production and constraints in arid and semi-arid Algerian bioclimatic environments. International Journal of Environmental Studies, 81(3),1238-1255. DOI: https://doi.org/10.1080/00207233.2023.2228616
Feng, X., Li, C., Zhang, H., Zhang, P., Shahzad, M., Du, W., & Zhao, X. (2024). Heat-stress impacts on developing bovine oocytes: Unraveling epigenetic changes, oxidative stress, and developmental resilience. International Journal of Molecular Sciences, 25(9), 4808. DOI: https://doi.org/10.3390/ijms25094808
Ferag, A., Gherissi, D. E., Khenenou, T., Boughanem, A., Moussa, H. H., & Maamour, A. (2024). Reproduction efficiency of native and imported Algerian cattle under challenging climatic conditions. The 9th International Seminar (MGIBR) Management and Genetic Improvement of Biological Ressources, 13. DOI: https://doi.org/10.3390/blsf2024036013
Frei, R. E., Schultz, G. A., & Church, R. B. (1989). Qualitative and quantitative changes in protein synthesis occur at the 8-16-cell stage of embryogenesis in the cow. Reproduction, 86(2), 637-641. DOI: https://doi.org/10.1530/jrf.0.0860637
Garcia-Ispierto, I., Abdelfatah, A., & López-Gatius, F. (2012). Melatonin treatment at dry-off improves reproductive performance postpartum in high-producing dairy cows under heat stress conditions. Reproduction in Domestic Animals, 48(4), 577-583. DOI: https://doi.org/10.1111/rda.12128
Garcia-Ispierto, I., De Rensis, F., Pérez-Salas, J., Nunes, J., Pradés, B., Serrano-Pérez, B., & López-Gatius, F. (2019). The GnRH analogue dephereline given in a fixed-time AI protocol improves ovulation and embryo survival in dairy cows. Research in Veterinary Science, 122, 170-174. DOI: https://doi.org/10.1016/j.rvsc.2018.11.020
Ghaffari, M. H. (2022). Developmental programming: Prenatal and postnatal consequences of hyperthermia in dairy cows and calves. Domestic Animal Endocrinology, 80, 106723. DOI: https://doi.org/10.1016/j.domaniend.2022.106723
Gilad, E., Meidan, R., Berman, A., Graber, Y., & Wolfenson, D. (1993). Effect of heat stress on tonic and gnrh-induced gonadotrophin secretion in relation to concentration of oestradiol in plasma of cyclic cows. Reproduction, 99(2), 315-321. DOI: https://doi.org/10.1530/jrf.0.0990315
Gloria, A., Candeloro, L., Wegher, L., Robbe, D., Carluccio, A., & Contri, A. (2021). Correction to: Environmental temperature and relative humidity differently affect the sperm characteristics in Brown Swiss and Belgian blue bulls. International Journal of Biometeorology, 65(12), 2201-2201. DOI: https://doi.org/10.1007/s00484-021-02200-2
Gómez-Guzmán, J. A., Parra-Bracamonte, G. M., & Velazquez, M. A. (2024). Impact of heat stress on oocyte developmental competence and pre-implantation embryo viability in cattle. Animals, 14(15), 2280. DOI: https://doi.org/10.3390/ani14152280
Graham, J. M., Edwards, M. J., & Edwards, M. J. (1998). Teratogen update: Gestational effects of maternal hyperthermia due to febrile illnesses and resultant patterns of defects in humans. Teratology, 58(5), 209-221. DOI: https://doi.org/10.1002/(SICI)1096-9926(199811)58:5<209::AID-TERA8>3.0.CO;2-Q
Greve, T., Grøndahl, C., Schmidt, M., Hunter, R. H. F., & Avery, B. (1996). Bovine preovulatory follicular temperature: Implications for in vitro production of embryos. Archives of Animal Breeding, 39, 7-14
Grummer, R., & Rastani, R. (2004). Why reevaluate dry period length? Journal of Dairy Science, 87, E77-E85. DOI: https://doi.org/10.3168/jds.S0022-0302(04)70063-6
Guzeloglu, A., Ambrose, J., Kassa, T., Diaz, T., Thatcher, M., & Thatcher, W. (2001). Long-term follicular dynamics and biochemical characteristics of dominant follicles in dairy cows subjected to acute heat stress. Animal Reproduction Science, 66(1-2), 15-34. DOI: https://doi.org/10.1016/S0378-4320(01)00082-3
Gwazdauskas, F., Thatcher, W., Kiddy, C., Paape, M., & Wilcox, C. (1981). Hormonal patterns during heat stress following PGF2α-Tham salt induced luteal regression in heifers. Theriogenology, 16(3), 271-285. DOI: https://doi.org/10.1016/0093-691X(81)90012-1
Hansen, P. (2004). Physiological and cellular adaptations of zebu cattle to thermal stress. Animal Reproduction Science, 82-83, 349-360. DOI: https://doi.org/10.1016/j.anireprosci.2004.04.011
Hansen, P. (2007). Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology, 68, S242-S249. DOI: https://doi.org/10.1016/j.theriogenology.2007.04.008
Hansen, P. J. (2013). Antecedents of mammalian fertility: Lessons from the heat-stressed cow regarding the importance of oocyte competence for fertilization and embryonic development. Animal Frontiers, 3(4), 34-39. DOI: https://doi.org/10.2527/af.2013-0031
Hansen, P. J. (2019). Reproductive physiology of the heat-stressed dairy cow: Implications for fertility and assisted reproduction. Animal Reproduction, 16(3), 497-507. DOI: https://doi.org/10.21451/1984-3143-AR2019-0053
Hansen, P. J., & Aréchiga, C. F. (1997). Strategies for managing reproduction in the heat-stressed dairy cow. Journal of Animal Science, 77(suppl_2), 36. DOI: https://doi.org/10.2527/1997.77suppl_236x
Hanzen, C., Drion, P., Lourtie, O., Depierreux, C., & Christians, E. (1999). La mortalité embryonnaire. 1. Aspects cliniques et facteurs étiologiques dans l’espèce bovine. Annales de Médecine Vétérinaire, 143, 91-118. https://hdl.handle.net/2268/8978
Hanzen, C., Lourtie, O., Derkenne, F., & Drion, P. (2000). Mise au point relative à la croissance folliculaire chez la vache. 1. Aspects morphologiques et cinétiques. Annales de Médecine Vétérinaire, 144, 223-235. https://hdl.handle.net/2268/9206
Hanzen, C., Delhez, P., Knapp, E., Hornick, J., & Gherissi, D. E. (2024). Le stress thermique environnemental dans l’espèce bovine : 1. Caractéristiques générales et méthodes d’évaluation. Revue d’élevage et de médecine vétérinaire des pays tropicaux, 77, 37379. DOI: https://doi.org/10.19182/remvt.37379
Hanzen, C., Delhez, P., Hornick, J., Lessire, F., & Gherissi, D. E. (2024). Le stress thermique environnemental dans l’espèce bovine : 2. Effets physiologiques, pathologiques, comportementaux, alimentaires, immunitaires et sur la production laitière. Revue d’élevage et de médecine vétérinaire des pays tropicaux, 77, 37380. DOI: https://doi.org/10.19182/remvt.37380
Hendricks, K. E., Martins, L., & Hansen, P. J. (2009). Consequences for the bovine embryo of being derived from a spermatozoon subjected to post-ejaculatory aging and heat shock: Development to the blastocyst stage and sex ratio. Journal of Reproduction and Development, 55(1), 69-74. DOI: https://doi.org/10.1262/jrd.20097
Honig, H., Ofer, L., Kaim, M., Jacobi, S., Shinder, D., & Gershon, E. (2016). The effect of cooling management on blood flow to the dominant follicle and estrous cycle length at heat stress. Theriogenology, 86(2), 626-634. DOI: https://doi.org/10.1016/j.theriogenology.2016.02.017
Huber, E., Notaro, U., Recce, S., Rodríguez, F., Ortega, H., Salvetti, N., & Rey, F. (2020). Fetal programming in dairy cows: Effect of heat stress on progeny fertility and associations with the hypothalamic-pituitary-adrenal axis functions. Animal Reproduction Science, 216, 106348. DOI: https://doi.org/10.1016/j.anireprosci.2020.106348
Hyttel, P., Viuff, D., Fair, T., Laurincik, J., Thomsen, P., Callesen, H., Vos, P., et al. (2001). Ribosomal RNA gene expression and chromosome aberrations in bovine oocytes and preimplantation embryos. Reproduction, 122(1), 21-30. DOI: https://doi.org/10.1530/rep.0.1220021
Ioannis, N., Eleni, D., Dimitrios, P., Katerina, D., Thomas-Markos, C., Maria, S., Panagiotis, G., et al. (2021). Age, gestational and heat stress effects on ghrelin secretion in dairy cattle. Theriogenology, 176, 82-93. DOI: https://doi.org/10.1016/j.theriogenology.2021.09.028
Petrocchi Jasinski, F., Evangelista, C., Basiricò, L., & Bernabucci, U. (2023). Responses of dairy buffalo to heat stress conditions and mitigation strategies: A review. Animals, 13(7), 1260. DOI: https://doi.org/10.3390/ani13071260
Jitjumnong, J., Moonmanee, T., Sudwan, P., Mektrirat, R., Osathanunkul, M., Navanukraw, C., Panatuk, J., et al. (2020). Associations among thermal biology, preovulatory follicle diameter, follicular and luteal vascularities, and sex steroid hormone concentrations during preovulatory and postovulatory periods in tropical beef cows. Animal Reproduction Science, 213, 106281. DOI: https://doi.org/10.1016/j.anireprosci.2020.106281
Jonsson, N., McGowan, M., McGuigan, K., Davison, T., Hussain, A., Kafi, M., & Matschoss, A. (1997). Relationships among calving season, heat load, energy balance and postpartum ovulation of dairy cows in a subtropical environment. Animal Reproduction Science, 47(4), 315-326. DOI: https://doi.org/10.1016/S0378-4320(97)00014-6
Jordan, E. (2003). Effects of heat stress on reproduction. Journal of Dairy Science, 86, E104-E114. DOI: https://doi.org/10.3168/jds.S0022-0302(03)74043-0
Kadokawa, H., Suzuki, S., & Hashizume, T. (2008). Kisspeptin-10 stimulates the secretion of growth hormone and prolactin directly from cultured bovine anterior pituitary cells. Animal Reproduction Science, 105(3-4), 404-408. DOI: https://doi.org/10.1016/j.anireprosci.2007.11.005
Kastelic, J., Coulter, G., & Cook, R. (1995). Scrotal surface, subcutaneous, intratesticular, and intraepididymal temperatures in bulls. Theriogenology, 44(1), 147-152. DOI: https://doi.org/10.1016/0093-691X(95)00155-2
Kastelic, J. P., Cook, R. B., & Coulter, G. H. (1996). Contribution of the scrotum and testes to scrotal and testicular thermoregulation in bulls and rams. Reproduction, 108(1), 81-85. DOI: https://doi.org/10.1530/jrf.0.1080081
Kawano, K., Yanagawa, Y., Nagano, M., & Katagiri, S. (2022). Effects of heat stress on the endometrial epidermal growth factor profile and fertility in dairy cows. Journal of Reproduction and Development, 68(2), 144-151. DOI: https://doi.org/10.1262/jrd.2021-120
Klabnik, J. L., Christenson, L. K., Gunewardena, S. S., Pohler, K. G., Rispoli, L. A., Payton, R. R., Moorey, S. E., et al. (2022). Heat-induced increases in body temperature in lactating dairy cows: Impact on the cumulus and granulosa cell transcriptome of the periovulatory follicle. Journal of Animal Science, 100(7). DOI: https://doi.org/10.1093/jas/skac121
Kobayashi, Y., Wakamiya, K., Kohka, M., Yamamoto, Y., & Okuda, K. (2013). Summer heat stress affects prostaglandin synthesis in the bovine oviduct. Reproduction, 146(2), 103-110. DOI: https://doi.org/10.1530/REP-12-0479
Koivisto, M., Costa, M., Perri, S., & Vicente, W. (2009). The effect of season on semen characteristics and Freezability in Bos indicus and Bos taurus bulls in the southeastern region of Brazil. Reproduction in Domestic Animals, 44(4), 587-592. DOI: https://doi.org/10.1111/j.1439-0531.2008.01023.x
Kölle, S., Hughes, B., & Steele, H. (2020). Early embryo-maternal communication in the oviduct: A review. Molecular Reproduction and Development, 87(6), 650-662. DOI: https://doi.org/10.1002/mrd.23352
Knobel, R. B. (2014). Fetal and neonatal thermal physiology. Newborn and Infant Nursing Reviews, 14(2), 45-49. DOI: https://doi.org/10.1053/j.nainr.2014.03.003
Laporta, J., Fabris, T., Skibiel, A., Powell, J., Hayen, M., Horvath, K., Miller-Cushon, E., et al. (2017). In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves. Journal of Dairy Science, 100(4), 2976-2984. DOI: https://doi.org/10.3168/jds.2016-11993
Laporta, J., Ferreira, F., Ouellet, V., Dado-Senn, B., Almeida, A., De Vries, A., & Dahl, G. (2020). Late-gestation heat stress impairs daughter and granddaughter lifetime performance. Journal of Dairy Science, 103(8), 7555-7568. DOI: https://doi.org/10.3168/jds.2020-18154
Lopez-Diaz, M., & Bosu, W. (1992). A review and an update of cystic ovarian degeneration in ruminants. Theriogenology, 37(6), 1163-1183. DOI: https://doi.org/10.1016/0093-691X(92)90173-O
López-Gatius, F. (2003). Is fertility declining in dairy cattle? Theriogenology, 60(1), 89-99. DOI: https://doi.org/10.1016/S0093-691X(02)01359-6
López-Gatius, F., & Hunter, R. (2017). Clinical relevance of pre-ovulatory follicular temperature in heat-stressed lactating dairy cows. Reproduction in Domestic Animals, 52(3), 366-370. DOI: https://doi.org/10.1111/rda.12916
López-Gatius, F., & Hunter, R. H. (2019a). Pre-ovulatory follicular cooling correlates positively with the potential for pregnancy in dairy cows: Implications for human IVF. Journal of Gynecology Obstetrics and Human Reproduction, 48(6), 419-422. DOI: https://doi.org/10.1016/j.jogoh.2019.03.005
López-Gatius, F., & Hunter, R. H. (2019b). Pre-ovulatory follicular temperature in Bi-ovular cows. Journal of Reproduction and Development, 65(2), 191-194. DOI: https://doi.org/10.1262/jrd.2018-111
López-Gatius, F., López-Béjar, M., Fenech, M., & Hunter, R. (2005). Ovulation failure and double ovulation in dairy cattle: Risk factors and effects. Theriogenology, 63(5), 1298-1307. DOI: https://doi.org/10.1016/j.theriogenology.2004.06.010
López-Gatius, F., Garcia-Ispierto, I., & Hunter, R. H. (2021). Cervix–rectum temperature differential at the time of insemination is correlated with the potential for pregnancy in dairy cows. Journal of Reproduction and Development, 67(4), 251-255. DOI: https://doi.org/10.1262/jrd.2021-022
Lublin, A., & Wolfenson, D. (1996). Lactation and pregnancy effects on blood flow to mammary and reproductive systems in heat-stressed rabbits. Comparative Biochemistry and Physiology Part A: Physiology, 115(4), 277-285. DOI: https://doi.org/10.1016/S0300-9629(96)00060-6
Lucio, A. C., Alves, B. G., Alves, K. A., Martins, M. C., Braga, L. S., Miglio, L., Alves, B. G., et al. (2016). Selected sperm traits are simultaneously altered after scrotal heat stress and play specific roles in in vitro fertilization and embryonic development. Theriogenology, 86(4), 924-933. DOI: https://doi.org/10.1016/j.theriogenology.2016.03.015
Lupoli, B., Johansson, B., Uvnäs-Moberg, K., & Svennersten-Sjaunja, K. (2001). Effect of suckling on the release of oxytocin, prolactin, cortisol, gastrin, cholecystokinin, somatostatin and insulin in dairy cows and their calves. Journal of Dairy Research, 68(2), 175-187. DOI: https://doi.org/10.1017/S0022029901004721
Magdub, A., Johnson, H., & Belyea, R. (1982). Effect of environmental heat and dietary fiber on thyroid physiology of lactating cows. Journal of Dairy Science, 65(12), 2323-2331. DOI: https://doi.org/10.3168/jds.S0022-0302(82)82504-6
Makker, K., Agarwal, A., & Sharma, R. (2009). Oxidative stress and male infertility. Indian Joural of Medical Research, 129(4), 357-367.
Malama, E., Zeron, Y., Janett, F., Siuda, M., Roth, Z., & Bollwein, H. (2017). Use of computer-assisted sperm analysis and flow cytometry to detect seasonal variations of bovine semen quality. Theriogenology, 87, 79-90. DOI: https://doi.org/10.1016/j.theriogenology.2016.08.002
Mallard, B., Dekkers, J., Ireland, M., Leslie, K., Sharif, S., Lacey Vankampen, C., Wagter, L., et al. (1998). Alteration in immune responsiveness during the Peripartum period and its ramification on dairy cow and calf health. Journal of Dairy Science, 81(2), 585-595. DOI: https://doi.org/10.3168/jds.S0022-0302(98)75612-7
Mann, G., & Lamming, G. (2001). Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows. Reproduction, 121(1), 175-180. DOI: https://doi.org/10.1530/rep.0.1210175
Mete, F., Kilic, E., Somay, A., & Yilmaz, B.,2012. Effects of heat stress on endocrine functions and behaviour in the pre-pubertal rat. Indian Journal of Medical Research, 135, 233-239.
Naranjo-Gómez, J. S., Uribe-García, H. F., Herrera-Sánchez, M. P., Lozano- Villegas, K. J., Rodríguez-Hernández, R., & Rondón-Barragán, I. S. (2021). Heat stress on cattle embryo: Gene regulation and adaptation. Heliyon, 7(3), e06570. DOI: https://doi.org/10.1016/j.heliyon.2021.e06570
Mihm, M., Baguisi, A., Boland, M. P., & Roche, J. F. (1994). Association between the duration of dominance of the ovulatory follicle and pregnancy rate in beef heifers. Reproduction, 102(1), 123-130. DOI: https://doi.org/10.1530/jrf.0.1020123
Mills, M. D., Pollock, A. B., Batey, I. E., O’Neil, M. A., Schrick, F. N., Payton, R. R., Moorey, S. E., et al. (2024). Magnitude and persistence of higher estrus-associated temperatures in beef heifers and suckled cows. Journal of Animal Science, 102. DOI: https://doi.org/10.1093/jas/skae079
Mishra, S. R., Kundu, A. K., Mahapatra, A. P. K. (2013). Effect of ambient temperature on membrane integrity of spermatozoa in different breeds of bulls. The Bioscan, 8, 181-183. https://thebioscan.com/index.php/pub/article/view/2279
Monteiro, A., Guo, J., Weng, X., Ahmed, B., Hayen, M., Dahl, G., Bernard, J., et al. (2016). Effect of maternal heat stress during the dry period on growth and metabolism of calves. Journal of Dairy Science, 99(5), 3896-3907. DOI: https://doi.org/10.3168/jds.2015-10699
Monteiro, A., Tao, S., Thompson, I., & Dahl, G. (2016). In utero heat stress decreases calf survival and performance through the first lactation. Journal of Dairy Science, 99(10), 8443-8450. DOI: https://doi.org/10.3168/jds.2016-11072
Morrell, J. M. (2020). Heat stress and bull fertility. Theriogenology, 153, 62-67. DOI: https://doi.org/10.1016/j.theriogenology.2020.05.014
Mossa, F., Carter, F., Walsh, S. W., Kenny, D. A., Smith, G. W., Ireland, J. L., Hildebrandt, T. B., et al. (2013). Maternal Undernutrition in cows impairs ovarian and cardiovascular systems in their Offspring1. Biology of Reproduction, 88(4). DOI: https://doi.org/10.1095/biolreprod.112.107235
Muller, L. D., Beardsley, G. L., Ellis, R. P., Reed, D. E., & Owens, M. J. (1975). Calf response to the initiation of parturition in dairy cows with Dexamethasone or Dexamethasone with Estradiol benzoate. Journal of Animal Science, 41(6), 1711-1716. DOI: https://doi.org/10.2527/jas1975.4161711x
Nanas, I., Chouzouris, T., Dadouli, K., Dovolou, E., Stamperna, K., Barbagianni, M., Valasi, I., et al. (2020). A study on stress response and fertility parameters in phenotypically thermotolerant and thermosensitive dairy cows during summer heat stress. Reproduction in Domestic Animals, 55(12), 1774-1783. DOI: https://doi.org/10.1111/rda.13840
Nanas, I., Chouzouris, T., Dovolou, E., Dadouli, K., Stamperna, K., Kateri, I., Barbagianni, M., et al. (2021). Early embryo losses, progesterone and pregnancy associated glycoproteins levels during summer heat stress in dairy cows. Journal of Thermal Biology, 98, 102951. DOI: https://doi.org/10.1016/j.jtherbio.2021.102951
Nebel, R. L., Jobst, S. M., Dransfield, M. B. G., Pandolfi, S. M., Bailey, T. L. 1997. Use of radio frequency data communication system, HeatWatch®, to describe behavioral estrus in dairy cattle. Journal of Dairy Science, 80, 179.
Oakes, G. K., Walker, A. M., Ehrenkranz, R. A., Cefalo, R. C., & Chez, R. A. (1976). Uteroplacental blood flow during hyperthermia with and without respiratory alkalosis. Journal of Applied Physiology, 41(2), 197-201. DOI: https://doi.org/10.1152/jappl.1976.41.2.197
Orihuela, A. (2000). Some factors affecting the behavioural manifestation of oestrus in cattle: A review. Applied Animal Behaviour Science, 70(1), 1-16. DOI: https://doi.org/10.1016/S0168-1591(00)00139-8
Ouellet, V., Laporta, J., & Dahl, G. (2020). Late gestation heat stress in dairy cows: Effects on dam and daughter. Theriogenology, 150, 471-479. DOI: https://doi.org/10.1016/j.theriogenology.2020.03.011
Ouellet, V., Negrao, J., Skibiel, A. L., Lantigua, V. A., Fabris, T. F., Marrero, M. G., Dado-Senn, B., et al. (2021). Endocrine signals altered by heat stress impact dairy cow mammary cellular processes at different stages of the dry period. Animals, 11(2), 563. DOI: https://doi.org/10.3390/ani11020563
Paes, V., Vieira, L., Correia, H., Sa, N., Moura, A., Sales, A., Rodrigues, A., et al. (2016). Effect of heat stress on the survival and development of in vitro cultured bovine preantral follicles and on in vitro maturation of cumulus–oocyte complex. Theriogenology, 86(4), 994-1003. DOI: https://doi.org/10.1016/j.theriogenology.2016.03.027
Palta, P., Mondal, S., Prakash, B., & Madan, M. (1997). Peripheral inhibin levels in relation to climatic variations and stage of estrous cycle in buffalo. Theriogenology, 47(5), 989-995. DOI: https://doi.org/10.1016/S0093-691X(97)00055-1
Paula-Lopes, F. F., Lima, R. S., Satrapa, R. A., & Barros, C. M. (2013). Physiology and endocrinology symposium: Influence of cattle genotype (BOS indicus vs. BOS Taurus) on oocyte and preimplantation embryo resistance to increased temperature. Journal of Animal Science, 91(3), 1143-1153. DOI: https://doi.org/10.2527/jas.2012-5802
Pérez-Crespo, M., Pintado, B., & Gutiérrez-Adán, A. (2007). Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Molecular Reproduction and Development, 75(1), 40-47. DOI: https://doi.org/10.1002/mrd.20759
Pollock, A. B., Moorey, S. E., Hessock, E. A., Klabnik, J. L., Payton, R. R., Schrick, F. N., Campagna, S. R., et al. (2023). Relationship between higher estrus-associated temperatures and the bovine preovulatory follicular fluid metabolome. Frontiers in Animal Science, 4. DOI: https://doi.org/10.3389/fanim.2023.1241033
Putney, D., Drost, M., & Thatcher, W. (1988). Embryonic development in superovulated dairy cattle exposed to elevated ambient temperatures between days 1 to 7 post insemination. Theriogenology, 30(2), 195-209. DOI: https://doi.org/10.1016/0093-691X(88)90169-0
Rahman, M. B., Schellander, K., Luceño, N. L., & Van Soom, A. (2018). Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology, 113, 102-112. DOI: https://doi.org/10.1016/j.theriogenology.2018.02.012
Recce, S., Huber, E., Notaro, U. S., Rodríguez, F. M., Ortega, H. H., Rey, F., Signorini, M. L., et al. (2021). Association between heat stress during intrauterine development and the calving-to-conception and calving-to-firstservice intervals in Holstein cows. Theriogenology, 162, 95-104. DOI: https://doi.org/10.1016/j.theriogenology.2021.01.002
Reese, S., Franco, G., Poole, R., Hood, R., Fernadez Montero, L., Oliveira Filho, R., Cooke, R., et al. (2020). Pregnancy loss in beef cattle: A meta-analysis. Animal Reproduction Science, 212, 106251. DOI: https://doi.org/10.1016/j.anireprosci.2019.106251
Reynolds, L. P., Borowicz, P. P., Caton, J. S., Crouse, M. S., Dahlen, C. R., & Ward, A. K. (2019). Developmental programming of fetal growth and development. Veterinary Clinics of North America: Food Animal Practice, 35(2), 229-247. DOI: https://doi.org/10.1016/j.cvfa.2019.02.006
Rhoads, M. (2020). Effects of periconceptional heat stress on primiparous and multiparous daughters of Holstein dairy cows. Theriogenology, 150, 458-463. DOI: https://doi.org/10.1016/j.theriogenology.2020.03.015
Rhoads, R. P., Baumgard, L. H., Suagee, J. K., & Sanders, S. R. (2013). Nutritional interventions to alleviate the negative consequences of heat stress. Advances in Nutrition, 4(3), 267-276. DOI: https://doi.org/10.3945/an.112.003376
Rhynes, W. E., & Ewing, L. L. (1973). Testicular endocrine function in Hereford bulls exposed to high ambient Temperature1. Endocrinology, 92(2), 509-515. DOI: https://doi.org/10.1210/endo-92-2-509
Rivera, R. M., Kelley, K. L., Erdos, G. W., & Hansen, P. J. (2003). Alterations in Ultrastructural morphology of two-cell bovine embryos produced in vitro and in vivo following a physiologically relevant heat Shock1. Biology of Reproduction, 69(6), 2068-2077. DOI: https://doi.org/10.1095/biolreprod.103.020347
Rocha, A., Randel, R., Broussard, J., Lim, J., Blair, R., Roussel, J., Godke, R., et al. (1998). High environmental temperature and humidity decrease oocyte quality in but not in cows. Theriogenology, 49(3), 657-665. DOI: https://doi.org/10.1016/S0093-691X(98)00016-8
Ronchi, B., Stradaioli, G., Verini Supplizi, A., Bernabucci, U., Lacetera, N., Accorsi, P., Nardone, A., et al. (2001). Influence of heat stress or feed restriction on plasma progesterone, oestradiol-17β, LH, FSH, prolactin and cortisol in Holstein heifers. Livestock Production Science, 68(2-3), 231-241. DOI: https://doi.org/10.1016/S0301-6226(00)00232-3
Roth, Z. (2015). Physiology and endocrinology symposium: Cellular and molecular mechanisms of heat stress related to bovine ovarian function. Journal of Animal Science, 93(5), 2034-2044. DOI: https://doi.org/10.2527/jas.2014-8625
Roth, Z. (2017). Effect of heat stress on reproduction in dairy cows: Insights into the cellular and molecular responses of the oocyte. Annual Review of Animal Biosciences, 5(1), 151-170. DOI: https://doi.org/10.1146/annurev-animal-022516-022849
Roth, Z. (2018). Symposium review: Reduction in oocyte developmental competence by stress is associated with alterations in mitochondrial function. Journal of Dairy Science, 101(4), 3642-3654. DOI: https://doi.org/10.3168/jds.2017-13389
Roth, Z. (2020). Reproductive physiology and endocrinology responses of cows exposed to environmental heat stress - Experiences from the past and lessons for the present. Theriogenology, 155, 150-156. DOI: https://doi.org/10.1016/j.theriogenology.2020.05.040
Roth, Z., & Hansen, P. (2004). Involvement of Apoptosis in disruption of developmental competence of bovine oocytes by heat shock during Maturation. Biology of Reproduction, 71(6), 1898-1906. DOI: https://doi.org/10.1095/biolreprod.104.031690
Roth, Z., Meidan, R., Braw-Tal, R., & Wolfenson, D. (2000). Immediate and delayed effects of heat stress on follicular development and its association with plasma FSH and inhibin concentration in cows. Reproduction, 120(1), 83-90. DOI: https://doi.org/10.1530/jrf.0.1200083
Roth, Z., Arav, A., Bor, A., Zeron, Y., Braw-Tal, R., & Wolfenson, D. (2001a). Improvement of quality of oocytes collected in the Autumn by enhanced removal of impaired follicles from previously heat-stressed cows. Reproduction, 122(5), 737-744. DOI: https://doi.org/10.1530/rep.0.1220737
Roth Z., Meidan R., Shaham-Albalancy A., Braw-Tal R., Wolfenson D., (2001b). Delayed effect of heat stress on steroid production in medium- sized and preovulatory bovine follicles. Reproduction, 121: 745-751. DOI: https://doi.org/10.1530/rep.0.1210745
Sa, S. J., Jeong, J., Cho, J., Lee, S.-H., & Choi, I. (2018). Heat waves impair cytoplasmic maturation of oocytes and preimplantation development in Korean native cattle (Hanwoo). Korean Journal of Agricultural Science, 45, 493-498. DOI: https://doi.org/10.7744/kjoas.20180072
Sabés-Alsina, M., Lundeheim, N., Johannisson, A., López-Béjar, M., & Morrell, J. (2019). Relationships between climate and sperm quality in dairy bull semen: A retrospective analysis. Journal of Dairy Science, 102(6), 5623-5633. DOI: https://doi.org/10.3168/jds.2018-15837
Sakai, S., Yagi, M., Fujime, N., Kuse, M., Sakumoto, R., Yamamoto, Y., Okuda, K., et al. (2021). Heat stress influences the attenuation of prostaglandin synthesis by interferon tau in bovine endometrial cells. Theriogenology, 165, 52-58. DOI: https://doi.org/10.1016/j.theriogenology.2021.02.005
Sakatani, M. (2017). Effects of heat stress on bovine preimplantation embryos produced in vitro. Journal of Reproduction and Development, 63(4), 347-352. DOI: https://doi.org/10.1262/jrd.2017-045
Sakatani, M., Kobayashi, S., & Takahashi, M. (2003). Effects of heat shock on in vitro development and intracellular oxidative state of bovine preimplantation embryos. Molecular Reproduction and Development, 67(1), 77-82. DOI: https://doi.org/10.1002/mrd.20014
Sakatani, M., Bonilla, L., Dobbs, K. B., Block, J., Ozawa, M., Shanker, S., Yao, J., & Hansen, P. J. (2013). Changes in the transcriptome of morula-stage bovine embryos caused by heat shock: Relationship to developmental acquisition of thermotolerance. Reproductive Biology and Endocrinology, 11(1). DOI: https://doi.org/10.1186/1477-7827-11-3
Sakatani, M., Yamanaka, K., Balboula, A. Z., Takenouchi, N., & Takahashi, M. (2014). Heat stress during in vitro fertilization decreases fertilization success by disrupting anti‐polyspermy systems of the oocytes. Molecular Reproduction and Development, 82(1), 36-47. DOI: https://doi.org/10.1002/mrd.22441
Santolaria, P., López-Gatius, F., García-Ispierto, I., Bech-Sàbat, G., Angulo, E., Carretero, T., Sánchez-Nadal, J. A., et al. (2009). Effects of cumulative stressful and acute variation episodes of farm climate conditions on late embryo/early fetal loss in high producing dairy cows. International Journal of Biometeorology, 54(1), 93-98. DOI: https://doi.org/10.1007/s00484-009-0258-8
Sartori, R., Sartor-Bergfelt, R., Mertens, S., Guenther, J., Parrish, J., & Wiltbank, M. (2002). Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter. Journal of Dairy Science, 85(11), 2803-2812. DOI: https://doi.org/10.3168/jds.S0022-0302(02)74367-1
Scharf, B., Leonard, M. J., Weaber, R. L., Mader, T. L., Hahn, G. L., & Spiers, D. E. (2010). Determinants of bovine thermal response to heat and solar radiation exposures in a field environment. International Journal of Biometeorology, 55(4), 469-480. DOI: https://doi.org/10.1007/s00484-010-0360-y
Schreiber, J. R., Nakamura, K., & Erickson, G. F. (1982). Rat ovary glucocorticoid receptor: Identification and characterization. Steroids, 39(5), 569-584. DOI: https://doi.org/10.1016/0039-128X(82)90057-5
Schüller, L., Burfeind, O., & Heuwieser, W. (2014). Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature–humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology, 81(8), 1050-1057. DOI: https://doi.org/10.1016/j.theriogenology.2014.01.029
Schüller, L., Michaelis, I., & Heuwieser, W. (2017). Impact of heat stress on estrus expression and follicle size in estrus under field conditions in dairy cows. Theriogenology, 102, 48-53. DOI: https://doi.org/10.1016/j.theriogenology.2017.07.004
Seifi-Jamadi, A., Zhandi, M., Kohram, H., Luceño, N. L., Leemans, B., Henrotte, E., Latour, C., et al. (2020). Influence of seasonal differences on semen quality and subsequent embryo development of Belgian blue bulls. Theriogenology, 158, 8-17. DOI: https://doi.org/10.1016/j.theriogenology.2020.08.037
Skibiel, A. L., Dado-Senn, B., Fabris, T. F., Dahl, G. E., & Laporta, J. (2018). In utero exposure to thermal stress has long-term effects on mammary gland microstructure and function in dairy cattle. PLOS ONE, 13(10), e0206046. DOI: https://doi.org/10.1371/journal.pone.0206046
Skibiel, A. L., Peñagaricano, F., Amorín, R., Ahmed, B. M., Dahl, G. E., & Laporta, J. (2018). In utero heat stress alters the offspring Epigenome. Scientific Reports, 8(1). DOI: https://doi.org/10.1038/s41598-018-32975-1
Skinner, J. D., & Louw, G. N. (1966). Heat stress and spermatogenesis in BOS indicus and BOS Taurus cattle. Journal of Applied Physiology, 21(6), 1784-1790. DOI: https://doi.org/10.1152/jappl.1966.21.6.1784
Stamperna, K., Dovolou, E., Giannoulis, T., Kalemkeridou, M., Nanas, I., Dadouli, K., Moutou, K., et al. (2021). Developmental competence of heat stressed oocytes from Holstein and Limousine cows matured in vitro. Reproduction in Domestic Animals, 56(10), 1302-1314. DOI: https://doi.org/10.1111/rda.13993
Stewart, B., Block, J., Morelli, P., Navarette, A., Amstalden, M., Bonilla, L., Hansen, P., et al. (2011). Efficacy of embryo transfer in lactating dairy cows during summer using fresh or vitrified embryos produced in vitro with sex-sorted semen. Journal of Dairy Science, 94(7), 3437-3445. DOI: https://doi.org/10.3168/jds.2010-4008
Stott, G., & Williams, R. (1962). Causes of low breeding efficiency in dairy cattle associated with seasonal high temperatures. Journal of Dairy Science, 45(11), 1369-1375. DOI: https://doi.org/10.3168/jds.S0022-0302(62)89628-3
Suthar, V., Burfeind, O., Patel, J., Dhami, A., & Heuwieser, W. (2011). Body temperature around induced estrus in dairy cows. Journal of Dairy Science, 94(5), 2368-2373. DOI: https://doi.org/10.3168/jds.2010-3858
Tao, S., Bubolz, J., Do Amaral, B., Thompson, I., Hayen, M., Johnson, S., & Dahl, G. (2011). Effect of heat stress during the dry period on mammary gland development. Journal of Dairy Science, 94(12), 5976-5986. DOI: https://doi.org/10.3168/jds.2011-4329
Tao, S., & Dahl, G. (2013). Invited review: Heat stress effects during late gestation on dry cows and their calves. Journal of Dairy Science, 96(7), 4079-4093. DOI: https://doi.org/10.3168/jds.2012-6278
Tao, S., Monteiro, A., Thompson, I., Hayen, M., & Dahl, G. (2012). Effect of late-gestation maternal heat stress on growth and immune function of dairy calves. Journal of Dairy Science, 95(12), 7128-7136. DOI: https://doi.org/10.3168/jds.2012-5697
Tao, S., Monteiro, A., Hayen, M., & Dahl, G. (2014). Short communication: Maternal heat stress during the dry period alters postnatal whole-body insulin response of calves. Journal of Dairy Science, 97(2), 897-901. DOI: https://doi.org/10.3168/jds.2013-7323
Tao, S., Dahl, G. E., Laporta, J., Bernard, J. K., Orellana Rivas, R. M., & Marins, T. N. (2019). Physiology symposium: Effects of heat stress during late gestation on the dam and its calf. Journal of Animal Science, 97(5), 2245-2257. DOI: https://doi.org/10.1093/jas/skz061
Thompson, I. M., Tao, S., Branen, J., Ealy, A. D., & Dahl, G. E. (2013). Environmental regulation of pregnancy-specific protein B concentrations during late pregnancy in dairy cattle1. Journal of Animal Science, 91(1), 168-173. DOI: https://doi.org/10.2527/jas.2012-5730
Toledo, I., Fabris, T., Tao, S., & Dahl, G. (2020). When do dry cows get heat stressed? Correlations of rectal temperature, respiration rate, and performance. JDS Communications, 1(1), 21-24. DOI: https://doi.org/10.3168/jdsc.2019-18019
Van Eetvelde, M., Kamal, M., Hostens, M., Vandaele, L., Fiems, L., & Opsomer, G. (2016). Evidence for placental compensation in cattle. Animal, 10(8), 1342-1350. DOI: https://doi.org/10.1017/S1751731116000318
Van Eetvelde, M., Kamal, M., Vandaele, L., & Opsomer, G. (2017). Season of birth is associated with first-lactation milk yield in Holstein Friesian cattle. Animal, 11(12), 2252-2259. DOI: https://doi.org/10.1017/S1751731117001021
van Niekerk, J., Fischer-Tlustos, A., Wilms, J., Hare, K., Welboren, A., Lopez, A., Yohe, T., et al. (2021). ADSA Foundation scholar award: New
frontiers in calf and heifer nutrition—From conception to puberty. Journal of Dairy Science, 104(8), 8341-8362.
Vanselow, J., Vernunft, A., Koczan, D., Spitschak, M., & Kuhla, B. (2016). Exposure of lactating dairy cows to acute pre-ovulatory heat stress affects Granulosa cell-specific gene expression profiles in dominant follicles. PLOS ONE, 11(8), e0160600. DOI: https://doi.org/10.1371/journal.pone.0160600
Vasconcelos, J., Jardina, D., Sá Filho, O., Aragon, F., & Veras, M. (2011). Comparison of progesterone-based protocols with gonadotropin-releasing hormone or estradiol benzoate for timed artificial insemination or embryo transfer in lactating dairy cows. Theriogenology, 75(6), 1153-1160. DOI: https://doi.org/10.1016/j.theriogenology.2010.11.027
Vickers, L., Burfeind, O., Von Keyserlingk, M., Veira, D., Weary, D., & Heuwieser, W. (2010). Technical note: Comparison of rectal and vaginal temperatures in lactating dairy cows. Journal of Dairy Science, 93(11), 5246-5251. DOI: https://doi.org/10.3168/jds.2010-3388
Vieira, L., Rodrigues, C., Mendanha, M., Sá Filho, M., Sales, J., Souza, A., Santos, J., et al. (2014). Donor category and seasonal climate associated with embryo production and survival in multiple ovulation and embryo transfer programs in Holstein cattle. Theriogenology, 82(2), 204-212. DOI: https://doi.org/10.1016/j.theriogenology.2014.03.018
Wallace, J. M., Bourke, D. A., Aitken, R. P., Leitch, N., & Hay, W. W. (2002). Blood flows and nutrient uptakes in growth-restricted pregnancies induced by overnourishing adolescent sheep. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 282(4), R1027-R1036. DOI: https://doi.org/10.1152/ajpregu.00465.2001
Weller, M., Fortes, M., Marcondes, M., Rotta, P., Gionbeli, T., Valadares Filho, S., Campos, M., et al. (2016). Effect of maternal nutrition and days of gestation on pituitary gland and gonadal gene expression in cattle. Journal of Dairy Science, 99(4), 3056-3071. DOI: https://doi.org/10.3168/jds.2015-9673
Wheelock, J., Rhoads, R., VanBaale, M., Sanders, S., & Baumgard, L. (2010). Effects of heat stress on energetic metabolism in lactating Holstein cows. Journal of Dairy Science, 93(2), 644-655. DOI: https://doi.org/10.3168/jds.2009-2295
White, F. J., Wettemann, R. P., Looper, M. L., Prado, T. M., & Morgan, G. L. (2002). Seasonal effects on estrous behavior and time of ovulation in nonlactating beef cows. Journal of Animal Science, 80(12), 3053-3059. DOI: https://doi.org/10.2527/2002.80123053x
Wilson, S., Kirby, C., Koenigsfeld, A., Keisler, D., & Lucy, M. (1998). Effects of controlled heat stress on ovarian function of dairy cattle. 2. Heifers. Journal of Dairy Science, 81(8), 2132-2138. DOI: https://doi.org/10.3168/jds.S0022-0302(98)75789-3
Wiltbank, M. C., Baez, G. M., Garcia-Guerra, A., Toledo, M. Z., Monteiro, P. L., Melo, L. F., Ochoa, J. C., et al. (2016). Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology, 86(1), 239-253. DOI: https://doi.org/10.1016/j.theriogenology.2016.04.037
Wise, M., Armstrong, D., Huber, J., Hunter, R., & Wiersma, F. (1988). Hormonal alterations in the lactating dairy cow in response to thermal stress. Journal of Dairy Science, 71(9), 2480-2485. DOI: https://doi.org/10.3168/jds.S0022-0302(88)79834-3
Wolfenson, D., & Roth, Z. (2018). Impact of heat stress on cow reproduction and fertility. Animal Frontiers, 9(1), 32-38. DOI: https://doi.org/10.1093/af/vfy027
Wolfenson, D., Flamenbaum, I., & Berman, A. (1988). Dry period heat stress relief effects on Prepartum progesterone, calf birth weight, and milk production. Journal of Dairy Science, 71(3), 809-818. DOI: https://doi.org/10.3168/jds.S0022-0302(88)79621-6
Wolfenson, D., Bartol, F., Badinga, L., Barros, C., Marple, D., Cummins, K., Wolfe, D., et al. (1993). Secretion of PGF2α and oxytocin during hyperthermia in cyclic and pregnant heifers. Theriogenology, 39(5), 1129-1141. DOI: https://doi.org/10.1016/0093-691X(93)90012-T
Wolfenson, D., Thatcher, W. W., Badinga, L., Savi0, J. D., Meidan, R., Lew, B. J., Braw-tal, R., & Berman, A. (1995). Effect of heat stress on follicular development during the Estrous cycle in lactating dairy Cattle. Biology of Reproduction, 52(5), 1106-1113. DOI: https://doi.org/10.1095/biolreprod52.5.1106
Wolfenson, D., Lew, B., Thatcher, W., Graber, Y., & Meidan, R. (1997). Seasonal and acute heat stress effects on steroid production by dominant follicles in cows. Animal Reproduction Science, 47(1-2), 9-19. DOI: https://doi.org/10.1016/S0378-4320(96)01638-7
Wolfenson, D., Roth, Z., & Meidan, R. (2000). Impaired reproduction in heatstressed cattle: Basic and applied aspects. Animal Reproduction Science, 60-61, 535-547. DOI: https://doi.org/10.1016/S0378-4320(00)00102-0
Wolfenson, D., Sonego, H., Bloch, A., Shaham-Albalancy, A., Kaim, M., Folman, Y., & Meidan, R. (2002). Seasonal differences in progesterone production by luteinized bovine thecal and granulosa cells. Domestic Animal Endocrinology, 22(2), 81-90. DOI: https://doi.org/10.1016/S0739-7240(01)00127-8
Wrenn, T., Bitman, J., & Sykes, J. (1958). Body temperature variations in dairy cattle during the Estrous cycle and pregnancy. Journal of Dairy Science, 41(8), 1071-1076. DOI: https://doi.org/10.3168/jds.S0022-0302(58)91053-1
Wu, C., & Sirard, M. (2020). Parental effects on epigenetic programming in gametes and embryos of dairy cows. Frontiers in Genetics, 11. DOI: https://doi.org/10.3389/fgene.2020.557846
Wu, G., Bazer, F. W., Wallace, J. M., & Spencer, T. E. (2006). Board-invited review: Intrauterine growth retardation: Implications for the animal sciences. Journal of Animal Science, 84(9), 2316-2337. DOI: https://doi.org/10.2527/jas.2006-156
Yadav, B., Singh, G., & Wankar, A. (2015). Adaptive capability as indicated by redox status and endocrine responses in crossbred cattle exposed to thermal stress. Journal of Animal Research, 5(1), 67. DOI: https://doi.org/10.5958/2277-940X.2015.00011.X
Yamanaka, K., Khatun, H., Egashira, J., Balboula, A. Z., Tatemoto, H., Sakatani, M., Takenouchi, N., et al. (2018). Heat-shock-induced cathepsin B activity during IVF and culture compromises the developmental competence of bovine embryos. Theriogenology, 114, 293-300. DOI: https://doi.org/10.1016/j.theriogenology.2018.04.005
Yániz, J., López-Gatius, F., Almería, S., Carretero, T., García-Ispierto, I., Serrano, B., Smith, R., et al. (2009). Dynamics of heat shock protein 70 concentrations in peripheral blood lymphocyte lysates during pregnancy in lactating Holstein-Friesian cows. Theriogenology, 72(8), 1041-1046. DOI: https://doi.org/10.1016/j.theriogenology.2009.06.019
Zarzynska, J., Gajkowska, B., Wojewodzka, U., Dymnicki, E., & Motyl, T., 2007. Apoptosis and autophagy in involuting bovine mammary gland is accompanied by upregulation of TGF-beta1 and suppression of somatotropic pathway. Polish Journal of Veterinary Sciences, 10(1). 1-9
Zhang, B., Peñagaricano, F., Driver, A., Chen, H., & Khatib, H., 2011. Differential expression of heat shock protein genes and their splice variants in bovine preimplantation embryos. Journal of Dairy Science, 94(8), 4174-4182. DOI: https://doi.org/10.3168/jds.2010-4137

Téléchargements
-
Résumé2184
-
pdf822
Reçu
Accepté
Publié
Comment citer
Numéro
Rubrique
Catégories
Licence
© C.Hanzen et al., publié par CIRAD 2025

Ce travail est disponible sous la licence Creative Commons Attribution 4.0 International .