Le stress thermique environnemental dans l’espèce bovine : 4. Moyens de lutte

Auteurs

    D.E. Gherissi, J.F. Cabaraux, J.L. Hornick, C. Hanzen

DOI :

https://doi.org/10.19182/remvt.37495

Mots-clés


Bovin, stress thermique, conduite d’élevage, alimentation, logement des animaux, sélection

Résumé

Contexte : Le stress thermique a un impact significatif sur le bien-être des animaux d’élevage, affectant leur santé physique ainsi que des paramètres zootechniques tels que la productivité et le rendement, ce qui a des conséquences directes sur la rentabilité des exploitations. De nombreuses recherches sont menées dans le but d’évaluer et d’améliorer les méthodes de lutte contre le stress thermique. Objectifs : Cette revue de littérature récapitule les méthodes de lutte contre le stress thermique. Celles-ci peuvent être regroupées en quatre catégories, qui sont l’amélioration de l’environnement physique des animaux, la gestion de l’alimentation, l’approche par sélection génétique et la gestion de la reproduction. Méthode : Cette revue de littérature s’est d’abord appuyée sur des articles de synthèse issus de la base PubMed, puis a été enrichie par l’examen des références citées dans ces articles. Résultats : Il n’existe pas de solution unique pour atténuer les effets d’un stress thermique chez les animaux. Au contraire, les diverses solutions apparaissent comme étant complémentaires et doivent être choisies en fonction du contexte de l’élevage. La première méthode de lutte se concentre sur des adaptations de l’environnement des animaux ciblant la ventilation, le choix des matériaux de construction, et les systèmes de refroidissement. La deuxième méthode de lutte vise une gestion plus rigoureuse de l’alimentation. La troisième méthode de lutte repose sur plusieurs approches complémentaires : la sélection génétique factorielle, la sélection génomique, ainsi que le croisement et l’hybridation. Enfin, la quatrième catégorie de solutions explore l’utilisation des biotechnologies de la reproduction et des traitements hormonaux. Conclusions : La recommandation principale est de combiner plusieurs méthodes, en privilégiant les adaptations environnementales et nutritionnelles, tout en intégrant progressivement une stratégie de sélection génétique adaptée à chaque système d’élevage.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Affiliations

Références

Abreu, A. S., Fischer, V., Stumpf, M. T., McManus, C. M., González, F. H. D., Da Silva, J. B. S., & Heisler, G. (2020). Natural tree shade increases milk stability of lactating dairy cows during the summer in the subtropics. Journal of Dairy Research, 87(4), 444–447. DOI: https://doi.org/10.1017/S0022029920000916

Aggarwal, A., & Upadhyay, R. (2012). Shelter management for alleviation of heat stress in cows and buffaloes. Heat Stress and Animal Productivity, 169-183. DOI: https://doi.org/10.1007/978-81-322-0879-2_7

Ahmad Para, I., Ahmad Dar, P., Ahmad Malla, B., Punetha, M., Rautela, A., Maqbool, I., Mohd, A., et al. (2018). Impact of heat stress on the reproduction of farm animals and strategies to ameliorate it. Biological Rhythm Research, 51(4), 616-632. DOI: https://doi.org/10.1080/09291016.2018.1548870

Al-Katanani, Y., Drost, M., Monson, R., Rutledge, J., Krininger, C., Block, J., Thatcher, W., & Hansen, P. (2002). Pregnancy rates following timed embryo transfer with fresh or vitrified in vitro produced embryos in lactating dairy cows under heat stress conditions. Theriogenology, 58(1), 171-182. DOI: https://doi.org/10.1016/S0093-691X(02)00916-0

Alamer, M. (2009). Effect of water restriction on lactation performance of Aardi goats under heat stress conditions. Small Ruminant Research, 84(1-3), 76-81. DOI: https://doi.org/10.1016/j.smallrumres.2009.06.009

An-Qiang, L., Zhi-Sheng, W., & An-Guo, Z. (2009). Effect of chromium picolinate supplementation on early lactation performance, rectal temperatures, respiration rates and plasma biochemical response of Holstein cows under heat stress. Pakistan Journal of Nutrition, 8, 940-945.

Avendaño-Reyes, L., Álvarez-Valenzuela, F., Correa-Calderón, A., Algándar-Sandoval, A., Rodríguez-González, E., Pérez-Velázquez, R., Macías-Cruz, U., et al. (2010). Comparison of three cooling management systems to reduce heat stress in lactating Holstein cows during hot and dry ambient conditions. Livestock Science, 132(1-3), 48-52. DOI: https://doi.org/10.1016/j.livsci.2010.04.020

Bagath, M., Krishnan, G., Devaraj, C., Rashamol, V., Pragna, P., Lees, A., & Sejian, V. (2019). The impact of heat stress on the immune system in dairy cattle: A review. Research in Veterinary Science, 126, 94-102. DOI: https://doi.org/10.1016/j.rvsc.2019.08.011

Barendse, W. (2017). Climate adaptation of tropical cattle. Annual Review of Animal Biosciences, 5(1), 133-150. DOI: https://doi.org/10.1146/annurev-animal-022516-022921

Baruselli, P. S., Ferreira, R. M., Filho, M. F., Nasser, L. F., Rodrigues, C. A., & Bó, G. A. (2010). Bovine embryo transfer recipient synchronisation and management in tropical environments. Reproduction, Fertility and Development, 22(1), 67. DOI: https://doi.org/10.1071/RD09214

Baruselli, P. S., Ferreira, R. M., Vieira, L. M., Souza, A. H., Bó, G. A., & Rodrigues, C. A. (2020). Use of embryo transfer to alleviate infertility

caused by heat stress. Theriogenology, 155, 1-11.

Bastian, K. R., Gebremedhin, K. G., & Scott, N. R. (2003). A finite difference model to determine conduction heat loss to a water-filled mattress for dairy cows. Transactions of the ASAE, 46(3). DOI: https://doi.org/10.13031/2013.13592

Becker, C., & Stone, A. (2020). Graduate student literature review: Heat abatement strategies used to reduce negative effects of heat stress in dairy cows. Journal of Dairy Science, 103(10), 9667-9675. DOI: https://doi.org/10.3168/jds.2020-18536

Beltran, M., & Vasconcelos, J. (2008). Conception rate in Holstein cows treated with GnRH or hCG on the fifth day post artificial insemination during summer. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 60(3), 580-586. DOI: https://doi.org/10.1590/S0102-09352008000300009

Berman, A., & Horovitz, T. (2012). Radiant heat loss, an unexploited path for heat stress reduction in shaded cattle. Journal of Dairy Science, 95(6), 3021-3031. DOI: https://doi.org/10.3168/jds.2011-4844

Berman, A. (2011). Invited review: Are adaptations present to support dairy cattle productivity in warm climates? Journal of Dairy Science, 94(5), 2147-2158. DOI: https://doi.org/10.3168/jds.2010-3962

Berman, A., Folman, Y., Kaim, M., Mamen, M., Herz, Z., Wolfenson, D., Arieli, A., et al. (1985). Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate. Journal of Dairy Science, 68(6), 1488-1495. DOI: https://doi.org/10.3168/jds.S0022-0302(85)80987-5

Bernabucci, U., Biffani, S., Buggiotti, L., Vitali, A., Lacetera, N., & Nardone, A. (2014). The effects of heat stress in Italian Holstein dairy cattle. Journal of Dairy Science, 97(1), 471-486. DOI: https://doi.org/10.3168/jds.2013-6611

Bionaz, M., Chen, S., Khan, M. J., & Loor, J. J. (2013). Functional role of PPARs in ruminants: Potential targets for fine-tuning metabolism during growth and lactation. PPAR Research, 684159, 1-28. DOI: https://doi.org/10.1155/2013/684159

Bin-Jumah, M., Abd El-Hack, M. E., Abdelnour, S. A., Hendy, Y. A., Ghanem, H. A., Alsafy, S. A., Khafaga, A. F., et al. (2020). Potential use of chromium to combat thermal stress in animals: A review. Science of The Total Environment, 707, 135996. DOI: https://doi.org/10.1016/j.scitotenv.2019.135996

Blackburn, H. D., Krehbiel, B., Ericsson, S. A., Wilson, C., Caetano, A. R., & Paiva, S. R. (2017). A fine structure genetic analysis evaluating ecoregional adaptability of a Bos Taurus breed (Hereford). PLOS ONE, 12(5), e0176474. DOI: https://doi.org/10.1371/journal.pone.0176474

Blackshaw, J., & Blackshaw, A. (1994). Heat stress in cattle and the effect of shade on production and behaviour: A review. Australian Journal of Experimental Agriculture, 34(2), 285-295. DOI: https://doi.org/10.1071/EA9940285

Bland, I. M., DiGiacomo, K., Williams, S. R. O., Leury, B. J., Dunshea, F. R., Moate, P. J. (2013, April 17). The use of infra-red thermography to measure flank temperatures of dairy cows fed wheat- or maize-based diets. In: Proceedings of the British Society of Animal Science Annual Conference; Nottingham, UK, 182 p.

Block, J., Chase, C. C. Jr., Hansen, P. J. 2002. Inheritance of resistance of bovine preimplantation embryos to heat shock: relative importance of the maternal vs paternal contribution. Molecular Reproduction and Developement, 63, 32-37. DOI: https://doi.org/10.1002/mrd.10160

Bó, G., Baruselli, P., Moreno, D., Cutaia, L., Caccia, M., Tríbulo, R., Tríbulo, H., et al. (2002). The control of follicular wave development for self-appointed embryo transfer programs in cattle. Theriogenology, 57(1), 53-72. DOI: https://doi.org/10.1016/S0093-691X(01)00657-4

Bonnefoy, J. M., & Noordhuizen, J. (2011). Maîtriser le stress thermique chez la vache laitière. Bulletin des groupements techniques vétérinaires, 60(1), 77–86.

Bouglé, L. (2022). Rafraîchissement des vaches en période chaude à l’aide d’un matelas de logette à eau refroidie : effets sur l’incidence et la persistance des boiteries et la production laitière de vaches laitières hautes productrices. [Thèse de doctorat, Oniris - École nationale vétérinaire de Nantes, agroalimentaire et de l’alimentation], HAL open science. https://dumas.ccsd.cnrs.fr/dumas-03857898v1/file/N-2022-061.pdf

Bousquet, D., Twagiramungu, H., Morin, N., Brisson, C., Carboneau, G., & Durocher, J. (1999). In vitro embryo production in the cow: An effective alternative to the conventional embryo production approach. Theriogenology, 51(1), 59-70. DOI: https://doi.org/10.1016/S0093-691X(98)00231-3

Camargo, L. S., Saraiva, N. Z., Oliveira, C. S., Carmickle, A., Lemos, D. R., Siqueira, L. G., & Denicol, A. C. (2022). Perspectives of gene editing for cattle farming in tropical and subtropical regions. Animal Reproduction, 19(4). DOI: https://doi.org/10.1590/1984-3143-ar2022-0108

Campos, I. L., Chud, T. C., Junior, G. A., Baes, C. F., Cánovas, Á., & Schenkel, F. S. (2022). Estimation of genetic parameters of heat tolerance for production traits in Canadian holsteins cattle. Animals, 12(24), 3585. DOI: https://doi.org/10.3390/ani12243585

Carvalho, P., Santos, V., Giordano, J., Wiltbank, M., & Fricke, P. (2018). Development of fertility programs to achieve high 21-day pregnancy rates in high-producing dairy cows. Theriogenology, 114, 165-172. DOI: https://doi.org/10.1016/j.theriogenology.2018.03.037

Carabaño, M. J., Ramón, M., Menéndez-Buxadera, A., Molina, A., & Díaz, C. (2019). Selecting for heat tolerance. Animal Frontiers, 9(1), 62-68. DOI: https://doi.org/10.1093/af/vfy033

Chaiyabutr, N., Buranakarl, C., Muangcharoen, V., Loypetjra, P., & Pichaicharnarong, A. (1987). Effects of acute heat stress on changes in the rate of liquid flow from the rumen and turnover of body water of swamp buffalo. The Journal of Agricultural Science, 108(3), 549-553. DOI: https://doi.org/10.1017/S0021859600079934

Chebel, R., Demétrio, D., & Metzger, J. (2008). Factors affecting success of embryo collection and transfer in large dairy herds. Theriogenology, 69(1), 98-106. DOI: https://doi.org/10.1016/j.theriogenology.2007.09.008

Chen, S., Wang, J., Peng, D., Li, G., Chen, J., & Gu, X. (2018). Exposure to heat-stress environment affects the physiology, circulation levels of cytokines, and microbiome in dairy cows. Scientific Reports, 8(1). DOI: https://doi.org/10.1038/s41598-018-32886-1

Cheruiyot, E. K., Haile-Mariam, M., Cocks, B. G., & Pryce, J. E. (2022). Improving Genomic selection for heat tolerance in dairy cattle: Current opportunities and future directions. Frontiers in Genetics, 13. DOI: https://doi.org/10.3389/fgene.2022.894067

Collier, R., Eley, R., Sharma, A., Pereira, R., & Buffington, D. (1981). Shade management in subtropical environment for milk yield and composition in Holstein and Jersey cows. Journal of Dairy Science, 64(5), 844-849. DOI: https://doi.org/10.3168/jds.S0022-0302(81)82656-2

Coon, R., Duffield, T., & DeVries, T. (2018). Effect of straw particle size on the behavior, health, and production of early-lactation dairy cows. Journal of Dairy Science, 101(7), 6375-6387. DOI: https://doi.org/10.3168/jds.2017-13920

Cummins, K. (1998). Bedding plays role in heat abatement. Dairy Herd Management, 35(6), 20.

CVB Table Booklet Feeding of Ruminants. 2022. Nutrient requirements for cattle, sheep and goats and nutritional values of feeding ingredients for ruminants. CVB-series no 66; Stichting CVB, Lelystad, the Netherlands, 2022. Consulté en janvier 2024 sur https://fr.scribd.com/document/735837153/Cvb-Table-Booklet-Feeding-of-Ruminants-2022

Da Silva, W. C., Silva, J. A., Camargo-Júnior, R. N., Silva, É. B., Santos, M. R., Viana, R. B., Silva, A. G., et al. (2023). Animal welfare and effects of per-female stress on male and cattle reproduction—A review. Frontiers in Veterinary Science, 10. DOI: https://doi.org/10.3389/fvets.2023.1083469

Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9(3), 260-268. DOI: https://doi.org/10.14202/vetworld.2016.260-268

Davis, S. R., Spelman, R. J., & Littlejohn, M. D. (2017). Breeding and genetics Symposium: Breeding heat tolerant dairy cattle: The case for introgression of the “Slick” prolactin receptor variant into Bos Taurus dairy breeds. Journal of Animal Science, 95(4), 1788-1800. DOI: https://doi.org/10.2527/jas.2016.0956

De la Sota, R., Burke, J., Risco, C., Moreira, F., DeLorenzo, M., & Thatcher, W. (1998). Evaluation of timed insemination during summer heat stress in lactating dairy cattle. Theriogenology, 49(4), 761-770. DOI: https://doi.org/10.1016/S0093-691X(98)00025-9

Demetrio, D., Santos, R., Demetrio, C., & Vasconcelos, J. M. (2007). Factors affecting conception rates following artificial insemination or embryo transfer in lactating Holstein cows. Journal of Dairy Science, 90(11), 5073-5082. DOI: https://doi.org/10.3168/jds.2007-0223

Dikmen, S., Cole, J. B., Null, D. J., & Hansen, P. J. (2013). Genome-wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in Holstein cattle. PLoS ONE, 8(7), e69202. DOI: https://doi.org/10.1371/journal.pone.0069202

Dikmen, S., Khan, F., Huson, H., Sonstegard, T., Moss, J., Dahl, G., & Hansen, P. (2014). The SLICK hair locus derived from Senepol cattle confers thermotolerance to intensively managed lactating Holstein cows. Journal of Dairy Science, 97(9), 5508-5520. DOI: https://doi.org/10.3168/jds.2014-8087

Do Amaral, B., Connor, E., Tao, S., Hayen, J., Bubolz, J., & Dahl, G. (2009). Heat-stress abatement during the dry period: Does cooling improve transition into lactation? Journal of Dairy Science, 92(12), 5988-5999. DOI: https://doi.org/10.3168/jds.2009-2343

Drost, M., Ambrose, J., Thatcher, M., Cantrell, C., Wolfsdorf, K., Hasler, J., & Thatcher, W. (1999). Conception rates after artificial insemination or embryo transfer in lactating dairy cows during summer in Florida. Theriogenology, 52(7), 1161-1167. DOI: https://doi.org/10.1016/S0093-691X(99)00208-3

Durosaro, S., Iyasere, O., Ilori, B., Oyeniran, V., & Ozoje, M. (2023). Molecular regulation, breed differences and genes involved in stress control in farm animals. Domestic Animal Endocrinology, 82, 106769. DOI: https://doi.org/10.1016/j.domaniend.2022.106769

Eberhardt, B. G., Satrapa, R. A., Capinzaiki, C. R., Trinca, L. A., & Barros, C. M. (2009). Influence of the breed of bull (Bos Taurus indicus vs. Bos Taurus Taurus) and the breed of cow (Bos Taurus indicus, Bos Taurus Taurus and crossbred) on the resistance of bovine embryos to heat. Animal Reproduction Science, 114(1-3), 54-61. DOI: https://doi.org/10.1016/j.anireprosci.2008.09.008

Efimova, I. O., Zagidullin, L. R., Khisamov, R. R., Akhmetov, T. M., Shaidullin, R. R., Tyulkin, S. V., & Gilmanov, K. K. (2020). Assessment on milk productivity and milk quality in cattle with different genotypes by HSP70.1 gene. IOP Conference Series: Earth and Environmental Science, 604(1), 012016. DOI: https://doi.org/10.1088/1755-1315/604/1/012016

EFSA, European Food Safety Authority. (2024). Qualified presumption of safety (QPS): Microorganisms (MOs) in QPS. https://www.efsa.europa.eu/en/applications/qps-assessment#:~:text=What%20does%20it%20mean%20if,have%20the%20same%20QPS%20status

Farooq, U., Samad, H. A., Shehzad, F., Qayyum, A. (2010). Physiological responses of cattle to heat stress. World Applied Sciences Journal, 8, 38-43.

Ferag, A., Gherissi, D. E., Khenenou, T., Boughanem, A., Moussa, H. H., & Maamour, A. (2024a). Reproduction efficiency of native and imported Algerian cattle under challenging climatic conditions. The 9th International Seminar (MGIBR) Management and Genetic Improvement of Biological Ressources, 13. DOI: https://doi.org/10.3390/blsf2024036013

Ferag, A., Gherissi, D. E., Khenenou, T., Boughanem, A., Moussa, H. H., Kechroud, A. A., & Fares, M. A. (2024b). Heat stress effect on fertility of two imported dairy cattle breeds from different Algerian agro-ecological areas. International Journal of Biometeorology, 68(12), 2515-2529. DOI: https://doi.org/10.1007/s00484-024-02761-y

Ferreira, R., Ayres, H., Chiaratti, M., Ferraz, M., Araújo, A., Rodrigues, C., Watanabe, Y., et al. (2011). The low fertility of repeat-breeder cows during summer heat stress is related to a low oocyte competence to develop into blastocysts. Journal of Dairy Science, 94(5), 2383-2392. DOI: https://doi.org/10.3168/jds.2010-3904

Fisher, A. D., Roberts, N., Bluett, S. J., Verkerk, G. A., & Matthews, L. R. (2008). Effects of shade provision on the behaviour, body temperature and milk production of grazing dairy cows during a New Zealand summer. New Zealand Journal of Agricultural Research, 51(2), 99-105. DOI: https://doi.org/10.1080/00288230809510439

Fontoura, A., Javaid, A., Sáinz de la Maza-Escolà, V., Salandy, N., Fubini, S., Grilli, E., & McFadden, J. (2022). Heat stress develops with increased total-tract gut permeability, and dietary organic acid and pure botanical supplementation partly restores lactation performance in Holstein dairy cows. Journal of Dairy Science, 105(9), 7842-7860. DOI: https://doi.org/10.3168/jds.2022-21820

Fournel, S., Ouellet, V., & Charbonneau, E. (2017). Practices for alleviating heat stress of dairy cows in humid continental climates: A literature review. Animals, 7(5), 37. DOI: https://doi.org/10.3390/ani7050037

Franco, M., Thompson, P., Brad, A., & Hansen, P. (2006). Effectiveness of administration of gonadotropin-releasing hormone at days 11, 14 or 15 after anticipated ovulation for increasing fertility of lactating dairy cows and non-lactating heifers. Theriogenology, 66(4), 945-954. DOI: https://doi.org/10.1016/j.theriogenology.2005.12.014

Friedman, E., Roth, Z., Voet, H., Lavon, Y., & Wolfenson, D. (2012). Progesterone supplementation postinsemination improves fertility of cooled dairy cows during the summer. Journal of Dairy Science, 95(6), 3092-3099. DOI: https://doi.org/10.3168/jds.2011-5017

Friedman, E., Voet, H., Reznikov, D., Wolfenson, D., & Roth, Z. (2014). Hormonal treatment before and after artificial insemination differentially improves fertility in subpopulations of dairy cows during the summer and Autumn. Journal of Dairy Science, 97(12), 7465-7475. DOI: https://doi.org/10.3168/jds.2014-7900

Garcia-Ispierto, I., Tutusaus, J., & López-Gatius, F. (2014). Does Coxiella burnetii affect reproduction in cattle? A clinical update. Reproduction in Domestic Animals, 49(4), 529-535. DOI: https://doi.org/10.1111/rda.12333

Garner, J. B., Douglas, M. L., Williams, S. R., Wales, W. J., Marett, L. C., Nguyen, T. T., Reich, C. M., et al. (2016). Genomic selection improves heat tolerance in dairy cattle. Scientific Reports, 6(1). DOI: https://doi.org/10.1038/srep34114

Gessner, D. K., Ringseis, R., & Eder, K. (2016). Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. Journal of Animal Physiology and Animal Nutrition, 101(4), 605-628. DOI: https://doi.org/10.1111/jpn.12579

Ghassemi Nejad, J., Lohakare, J., Son, J., Kwon, E., West, J., & Sung, K. (2014). Wool cortisol is a better indicator of stress than blood cortisol in ewes exposed to heat stress and water restriction. Animal, 8(1), 128-132. DOI: https://doi.org/10.1017/S1751731113001870

Gonzalez-Rivas, P. A., DiGiacomo, K., Giraldo, P. A., Leury, B. J., Cottrell, J. J., & Dunshea, F. R. (2017). Reducing rumen starch fermentation of wheat with three percent sodium hydroxide has the potential to ameliorate the effect of heat stress in grain-fed wethers. Journal of Animal Science, 95(12), 5547-5562. DOI: https://doi.org/10.2527/jas2017.1843

Gonzalez-Rivas, P. A., Sullivan, M., Cottrell, J. J., Leury, B. J., Gaughan, J. B., & Dunshea, F. R. (2018). Effect of feeding slowly fermentable grains on productive variables and amelioration of heat stress in lactating dairy cows in a sub-tropical summer. Tropical Animal Health and Production, 50(8), 1763-1769. DOI: https://doi.org/10.1007/s11250-018-1616-5

Guo, J., Gao, S., Quan, S., Zhang, Y., Bu, D., & Wang, J. (2018). Blood amino acids profile responding to heat stress in dairy cows. Asian Australasian Journal of Animal Sciences, 31(1), 47-53. DOI: https://doi.org/10.5713/ajas.16.0428

Habimana, V., Nguluma, A. S., Nziku, Z. C., Ekine - Dzivenu, C. C., Morota, G., Mrode, R., & Chenyambuga, S. W. (2024). Heat stress effects on physiological and milk yield traits of lactating Holstein Friesian crossbreds reared in Tanga region, Tanzania. Animals, 14(13), 1914. DOI: https://doi.org/10.3390/ani14131914

Hansen, P. (2004). Physiological and cellular adaptations of zebu cattle to thermal stress. Animal Reproduction Science, 82-83, 349-360. DOI: https://doi.org/10.1016/j.anireprosci.2004.04.011

Hansen, P. (2007). Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology, 68, S242-S249. DOI: https://doi.org/10.1016/j.theriogenology.2007.04.008

Hansen, P. J. (2019). Reproductive physiology of the heat-stressed dairy cow: Implications for fertility and assisted reproduction. Animal Reproduction, 16(3), 497-507. DOI: https://doi.org/10.21451/1984-3143-AR2019-0053

Hansen, P. J. (2020). Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle. Theriogenology, 154, 190-202. DOI: https://doi.org/10.1016/j.theriogenology.2020.05.010

Hansen, P. J., & Aréchiga, C. F. (1997). Strategies for managing reproduction in the heat-stressed dairy cow. Journal of Animal Science, 77(suppl_2), 36. DOI: https://doi.org/10.2527/1997.77suppl_236x

Hanzen, C., Delhez, P., Knapp, E., Hornick, J.-L., & Gherissi, D. E. (2024). Le stress thermique environnemental dans l’espèce bovine : 1. Caractéristiques générales et méthodes d’évaluation. Revue d’élevage et de médecine vétérinaire des pays tropicaux, 77, 1-8. DOI: https://doi.org/10.19182/remvt.37379

Hanzen, C., Delhez, P., Hornick, J.-L., Lessire, F., & Gherissi, D. E. (2024). Le stress thermique environnemental dans l’espèce bovine : 2. Effets physiologiques, pathologiques, comportementaux, alimentaires, immunitaires et sur la production laitière. Revue d’élevage et de médecine vétérinaire des pays tropicaux, 77, 1-13. DOI: https://doi.org/10.19182/remvt.37380

Hanzen, C., Delhez, P., Lessire, F., Hornick, J.-L., & Gherissi, D. E. (2025). Le stress thermique environnemental dans l’espèce bovine : 3. Effets sur la reproduction. Revue d’élevage et de médecine vétérinaire des pays tropicaux, 78, 1-15. DOI: https://doi.org/10.19182/remvt.37381

Harris, Jr., B. (1992). Feeding and managing cows in warm weather. Fact Sheet DS 48 of the Dairy Production Guide, Florida Cooperative Extension Service. Harris Jr., Barney, 1992. Feeding and managing cows in warm weather. Fact Sheet DS 48 of the Dairy Production Guide, Florida Cooperative Extension Service

House, H. K. 2015. Dairy Housing-ventilation options for free stall barns. https://files.ontario.ca/omafra-ventilation-options-free-stall-barns-15-017-en-aoda-2020-04-27.pdf

Huang, L., & Xu, Y. (2018). Effective reduction of antinutritional factors in soybean meal by acetic acid-catalyzed processing. Journal of Food Processing and Preservation, 42(11), e13775. DOI: https://doi.org/10.1111/jfpp.13775

INRA. (2018). INRA feeding system for ruminants. INRA. DOI: https://doi.org/10.3920/978-90-8686-292-4

Jousan, F. D., & Hansen, P. J. (2007). Insulin-like growth factor-I promotes resistance of bovine preimplantation embryos to heat shock through actions independent of its anti-apoptotic actions requiring PI3K signaling. Molecular Reproduction and Development, 74(2), 189-196. DOI: https://doi.org/10.1002/mrd.20527

Kaim, M., Bloch, A., Wolfenson, D., Braw-Tal, R., Rosenberg, M., Voet, H., & Folman, Y. (2003). Effects of GnRH administered to cows at the onset of Estrus on timing of ovulation, endocrine responses, and conception. Journal of Dairy Science, 86(6), 2012-2021. DOI: https://doi.org/10.3168/jds.S0022-0302(03)73790-4

Kassube, K., Kaufman, J., Pohler, K., McFadden, J., & Ríus, A. (2017). Jugularinfused methionine, lysine and branched-chain amino acids does not improve milk production in Holstein cows experiencing heat stress. Animal, 11(12), 2220-2228. DOI: https://doi.org/10.1017/S1751731117001057

Kerekoppa, R. P., Rao, A., Basavaraju, M., Geetha, G. R., Krishnamurthy, L., Rao, T. V., Das, D. N., et al. (2015). Molecular characterization of the HSPA1A gene by single-strandconformation polymorphism and sequence analysis in Holstein-friesiancrossbred and Deoni cattle raised in India. Turkish Journal of Veterinary and Animal Sciences, 39, 128-133. DOI: https://doi.org/10.3906/vet-1212-3

Khan, I. M., Khan, A., Liu, H., & Khan, M. Z. (2023). Editorial: Genetic markers identification for animal production and disease resistance. Frontiers in Genetics, 14. DOI: https://doi.org/10.3389/fgene.2023.1243793

Khare, A., Thorat, G., Yadav, V., Bhimte, A., & Purwar, V. (2018). Role of mineral and vitamin in heat stress. Journal of Pharmacognosy and Phytochemistry, 7(4), 229-231.

Kim, J., Hanotte, O., Mwai, O. A., Dessie, T., Bashir, S., Diallo, B., Agaba, M., et al. (2017). The genome landscape of Indigenous African cattle. Genome Biology, 18(1). https://doi.org/10.1186/s13059-017-1153-y DOI: https://doi.org/10.1186/s13059-017-1153-y

Kim, S. H., Ramos, S. C., Valencia, R. A., Cho, Y. I., & Lee, S. S. (2022). Heat stress: Effects on rumen microbes and host physiology, and strategies to alleviate the negative impacts on lactating dairy cows. Frontiers in Microbiology, 13. DOI: https://doi.org/10.3389/fmicb.2022.804562

Krininger III, C., Stephens, S., & Hansen, P. (2002). Developmental changes in inhibitory effects of arsenic and heat shock on growth of pre-implantation bovine embryos. Molecular Reproduction and Development, 63(3), 335-340. DOI: https://doi.org/10.1002/mrd.90017

Kroukamp, H., den Haan, R., van Zyl, J. H., & van Zyl, W. H. 2013. Rational strain engineering interventions to enhance cellulase secretion by Saccharomyces cerevisiae. Biotechnology and Bioengineering, 110(3), 738-752.

Laible, G., Cole, S., Brophy, B., Wei, J., Leath, S., Jivanji, S., Littlejohn, M. D., et al. (2021). Holstein Friesian dairy cattle edited for diluted coat color as a potential adaptation to climate change. BMC Genomics, 22(1). DOI: https://doi.org/10.1186/s12864-021-08175-z

Landaeta-Hernández, A., Zambrano-Nava, S., Hernández-Fonseca, J. P., Godoy, R., Calles, M., Iragorri, J. L., Añez, L., et al. (2011). Variability of hair coat and skin traits as related to adaptation in Criollo Limonero cattle. Tropical Animal Health and Production, 43(3), 657-663. DOI: https://doi.org/10.1007/s11250-010-9749-1

Lemal, P., May, K., König, S., Schroyen, M., & Gengler, N. (2023). Invited review: From heat stress to disease—Immune response and candidate genes involved in cattle thermotolerance. Journal of Dairy Science, 106(7), 4471-4488. DOI: https://doi.org/10.3168/jds.2022-22727

Liu, Y., Offler, C. E., & Ruan, Y. (2013). Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Frontiers in Plant Science, 4. DOI: https://doi.org/10.3389/fpls.2013.00282

Liu, J., Ye, G., Zhou, Y., Liu, Y., Zhao, L., Liu, Y., Chen, X., et al. (2014). Feeding glycerol-enriched yeast culture improves performance, energy status, and heat shock protein gene expression of lactating Holstein cows under heat stress1. Journal of Animal Science, 92(6), 2494-2502. DOI: https://doi.org/10.2527/jas.2013-7152

Lomander, H., Frössling, J., Ingvartsen, K., Gustafsson, H., & Svensson, C. (2012). Supplemental feeding with glycerol or propylene glycol of dairy cows in early lactation—Effects on metabolic status, body condition, and milk yield. Journal of Dairy Science, 95(5), 2397-2408. DOI: https://doi.org/10.3168/jds.2011-4535

López-Gatius, F., Santolaria, P., Martino, A., Delétang, F., & De Rensis, F. (2006). The effects of GnRH treatment at the time of AI and 12 days later on reproductive performance of high producing dairy cows during the warm season in northeastern Spain. Theriogenology, 65(4), 820-830. DOI: https://doi.org/10.1016/j.theriogenology.2005.07.002

Luo, H., Hu, L., Brito, L. F., Dou, J., Sammad, A., Chang, Y., Ma, L., et al. (2022). Weighted single-step GWAS and RNA sequencing reveals key candidate genes associated with physiological indicators of heat stress in Holstein cattle. Journal of Animal Science and Biotechnology, 13(1). DOI: https://doi.org/10.1186/s40104-022-00748-6

Mariana, E., Sumantri, C., Astuti, D. A., Anggraeni, A., & Gunawan, A. (2020). Association of HSP70 gene with milk yield and milk quality of Friesian Holstein in Indonesia. IOP Conference Series: Earth and Environmental Science, 425(1), 012045. DOI: https://doi.org/10.1088/1755-1315/425/1/012045

Min, L., Li, D., Tong, X., Nan, X., Ding, D., Xu, B., & Wang, G. (2019). Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: A review. International Journal of Biometeorology, 63(9), 1283-1302. DOI: https://doi.org/10.1007/s00484-019-01744-8

Moallem, U., Altmark, G., Lehrer, H., & Arieli, A. (2010). Performance of high-yielding dairy cows supplemented with fat or concentrate under hot and humid climates. Journal of Dairy Science, 93(7), 3192-3202. DOI: https://doi.org/10.3168/jds.2009-2979

Mogas, T. (2018). Update on the vitrification of bovine oocytes and invitroproduced embryos. Reproduction, Fertility and Development, 31(1), 105. DOI: https://doi.org/10.1071/RD18345

Morgado, J. N., Lamonaca, E., Santeramo, F. G., Caroprese, M., Albenzio, M., & Ciliberti, M. G. (2023). Effects of management strategies on animal welfare and productivity under heat stress: A synthesis. Frontiers in Veterinary Science, 10. DOI: https://doi.org/10.3389/fvets.2023.1145610

Muller, C. J. C., Botha, J. A., Coetzer, W. A., Smith, W. A. (1994). Effect of shade on various parameters of Friesian cows in a Mediterranean climate in South Africa. 2. Physiological responses. South African Journal of Animal Science, 24(2), 56-60. https://www.ajol.info/index.php/sajas/article/view/138378

Naderi, N., Ghorbani, G., Sadeghi-Sefidmazgi, A., Nasrollahi, S., & Beauchemin, K. (2016). Shredded beet pulp substituted for corn silage in diets fed to dairy cows under ambient heat stress: Feed intake, total-tract digestibility, plasma metabolites, and milk production. Journal of Dairy Science, 99(11), 8847-8857. DOI: https://doi.org/10.3168/jds.2016-11029

Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M., & Bernabucci, U. (2010). Effects of climate changes on animal production and sustainability of livestock systems. Livestock Science, 130(1-3), 57-69. DOI: https://doi.org/10.1016/j.livsci.2010.02.011

Nebel, R. L., Jobst, S. M., Dransfield, M. B. G., Pandolfi, S. M., Bailey, T. L. (1997). Use of radio frequency data communication system Heat Watch to describe behavioural estrus in dairy cattle. Journal of Dairy Science, 80, 179.

Negrón-Pérez, V., Fausnacht, D., & Rhoads, M. (2019). Invited review: Management strategies capable of improving the reproductive performance of heat-stressed dairy cattle. Journal of Dairy Science, 102(12), 10695-10710. DOI: https://doi.org/10.3168/jds.2019-16718

Nguyen, T. T., Bowman, P. J., Haile-Mariam, M., Pryce, J. E., & Hayes, B. J. (2016). Genomic selection for tolerance to heat stress in Australian dairy cattle. Journal of Dairy Science, 99(4), 2849-2862. DOI: https://doi.org/10.3168/jds.2015-9685

Nielsen, P. P., & Wredle, E. (2023). How does the provision of shade during grazing affect heat stress experienced by dairy cows in Sweden? Animals, 13(24), 3823. DOI: https://doi.org/10.3390/ani13243823

Nishisozu, T., Singh, J., Abe, A., Okamura, K., & Dochi, O. (2023). Effects of the temperature-humidity index on conception rates in Holstein heifers and cows receiving in vitro-produced Japanese Black cattle embryos. Journal of Reproduction and Development, 69(2), 72-77. DOI: https://doi.org/10.1262/jrd.2022-112

Nowicki, A. (2021). Embryo transfer as an option to improve fertility in repeat breeder dairy cows. Journal of Veterinary Research, 65(2), 231-237. DOI: https://doi.org/10.2478/jvetres-2021-0018

NRC. National Academies of Sciences, Engineering, and Medicine. (2021). Nutrient Requirements of Dairy Cattle: Eighth Revised Edition. The National Academies Press.

Olson, T. A., Lucena, C., Chase, C. C., & Hammond, A. C. (2003). Evidence of a major gene influencing hair length and heat tolerance in Bos Taurus cattle. Journal of Animal Science, 81(1), 80-90. DOI: https://doi.org/10.2527/2003.81180x

Ortiz-Colón, G., Fain, S. J., Parés, I. K., Curbelo-Rodríguez, J., Jiménez-Cabán, E., Pagán-Morales, M., & Gould, W. A. (2018). Assessing climate vulnerabilities and adaptive strategies for resilient beef and dairy operations in the tropics. Climatic Change, 146(1-2), 47-58. DOI: https://doi.org/10.1007/s10584-017-2110-1

Osei-Amponsah, R., Chauhan, S. S., Leury, B. J., Cheng, L., Cullen, B., Clarke, I. J., & Dunshea, F. R. (2019). Genetic selection for Thermotolerance in ruminants. Animals, 9(11), 948. DOI: https://doi.org/10.3390/ani9110948

Palacio, S., Bergeron, R., Lachance, S., & Vasseur, E. (2015). The effects of providing portable shade at pasture on dairy cow behavior and physiology. Journal of Dairy Science, 98(9), 6085-6093. DOI: https://doi.org/10.3168/jds.2014-8932

Pancarci, S., Jordan, E., Risco, C., Schouten, M., Lopes, F., Moreira, F., & Thatcher, W. (2002). Use of Estradiol Cypionate in a Presynchronized timed artificial insemination program for lactating dairy cattle. Journal of Dairy Science, 85(1), 122-131. DOI: https://doi.org/10.3168/jds.S0022-0302(02)74060-5

Park, T., Ma, L., Gao, S., Bu, D., & Yu, Z. (2022). Heat stress impacts the multi-domain ruminal microbiota and some of the functional features independent of its effect on feed intake in lactating dairy cows. Journal of Animal Science and Biotechnology, 13(1). DOI: https://doi.org/10.1186/s40104-022-00717-z

Patiño Chaparro, J. M. (2016). Comparison of genetic variations related to productive efficiency of Slick Holstein cattle versus non-Slick. [Master’s thesis, University of Puerto Rico, Mayaguez Campus].

Patra, A. K., & Kar, I. (2021). Heat stress on microbiota composition, barrier integrity, and nutrient transport in gut, production performance, and its amelioration in farm animals. Journal of Animal Science and Technology, 63(2), 211-247. DOI: https://doi.org/10.5187/jast.2021.e48

Paula-Lopes, F., Chase, C. C, Al-Katanani, Y., Krininger, C. E., Rivera, R., Tekin, S., Majewski, A., et al. (2003). Genetic divergence in cellular resistance to heat shock in cattle: Differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures. Reproduction, 125(2), 285-294. DOI: https://doi.org/10.1530/rep.0.1250285

Perano, K., Usack, J., Angenent, L., & Gebremedhin, K. (2015). Corrigendum to “Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling”. Journal of Dairy Science, 98(12), 9060. DOI: https://doi.org/10.3168/jds.2015-98-12-9060

RAAA. (2021). Red Angus Association of America. Red Angus Approves Gene-Edited Traits for Animal Registration. By: Drovers news source, September 15, 2021. https://www.drovers.com/news/industry/red-angus-approves-gene-edited-traits-animal-registration

Ravagnolo, O., & Misztal, I. (2000). Genetic component of heat stress in dairy cattle, parameter estimation. Journal of Dairy Science, 83(9), 2126-2130. DOI: https://doi.org/10.3168/jds.S0022-0302(00)75095-8

Renaudeau, D., Collin, A., Yahav, S., De Basilio, V., Gourdine, J., & Collier, R. (2012). Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6(5), 707-728. DOI: https://doi.org/10.1017/S1751731111002448

Riley, D., Chase, C., Coleman, S., & Olson, T. (2012). Genetic assessment of rectal temperature and coat score in Brahman, Angus, and Romosinuano crossbred and straightbred cows and calves under subtropical summer conditions. Livestock Science, 148(1-2), 109-118. DOI: https://doi.org/10.1016/j.livsci.2012.05.017

Ríus, A. (2019). Invited review: Adaptations of protein and amino acid metabolism to heat stress in dairy cows and other livestock species. Applied Animal Science, 35(1), 39-48. DOI: https://doi.org/10.15232/aas.2018-01805

Rodrigues, C., Teixeira, A., Ferreira, R., Ayres, H., Mancilha, R., Souza, A., & Baruselli, P. (2010). Effect of fixed-time embryo transfer on reproductive efficiency in high-producing repeat-breeder Holstein cows. Animal Reproduction Science, 118(2-4), 110-117. DOI: https://doi.org/10.1016/j.anireprosci.2009.06.020

Roman-Ponce, H., Thatcher, W., Buffington, D., Wilcox, C., & Van Horn, H. (1977). Physiological and production responses of dairy cattle to a shade structure in a subtropical environment. Journal of Dairy Science, 60(3), 424-430. DOI: https://doi.org/10.3168/jds.S0022-0302(77)83882-4

Roth, Z., Arav, A., Bor, A., Zeron, Y., Braw-Tal, R., & Wolfenson, D. (2001). Improvement of quality of oocytes collected in the Autumn by enhanced removal of impaired follicles from previously heat-stressed cows. Reproduction, 122(5), 737-744. DOI: https://doi.org/10.1530/rep.0.1220737

Roth, Z., Shiff, O., Lavon, Y., Kalo, D., & Wolfenson, D. (2022). Progesterone supplementation to improve fertility of selected subgroups of lactating cows during the summer and fall. Reproduction in Domestic Animals, 57(8), 943-946. DOI: https://doi.org/10.1111/rda.14157

Ruiz-González, A., Suissi, W., Baumgard, L., Martel-Kennes, Y., Chouinard, P., Gervais, R., & Rico, D. (2023). Increased dietary vitamin D3 and calcium partially alleviate heat stress symptoms and inflammation in lactating Holstein cows independent of dietary concentrations of vitamin E and selenium. Journal of Dairy Science, 106(6), 3984-4001. DOI: https://doi.org/10.3168/jds.2022-22345

Sakatani, M., Kobayashi, S., & Takahashi, M. (2003). Effects of heat shock on in vitro development and intracellular oxidative state of bovine preimplantation embryos. Molecular Reproduction and Development, 67(1), 77-82. DOI: https://doi.org/10.1002/mrd.20014

Sakatani, M. (2017). Effects of heat stress on bovine preimplantation embryos produced in vitro. Journal of Reproduction and Development, 63(4), 347-352. DOI: https://doi.org/10.1262/jrd.2017-045

Salvati, G., Morais Júnior, N., Melo, A., Vilela, R., Cardoso, F., Aronovich, M., Pereira, R., et al. (2015). Response of lactating cows to live yeast supplementation during summer. Journal of Dairy Science, 98(6), 4062-4073. DOI: https://doi.org/10.3168/jds.2014-9215

Sammad, A., Umer, S., Shi, R., Zhu, H., Zhao, X., & Wang, Y. (2019). Dairy cow reproduction under the influence of heat stress. Journal of Animal Physiology and Animal Nutrition, 104(4), 978-986. DOI: https://doi.org/10.1111/jpn.13257

Sanchez, W., McGuire, M., & Beede, D. (1994). Macromineral nutrition by heat stress interactions in dairy cattle: Review and original research. Journal of Dairy Science, 77(7), 2051-2079. DOI: https://doi.org/10.3168/jds.S0022-0302(94)77150-2

Sánchez, J., Misztal, I., Aguilar, I., Zumbach, B., & Rekaya, R. (2009). Genetic determination of the onset of heat stress on daily milk production in the US Holstein cattle. Journal of Dairy Science, 92(8), 4035-4045. DOI: https://doi.org/10.3168/jds.2008-1626

Santos, J., Bisinotto, R., & Ribeiro, E. (2016). Mechanisms underlying reduced fertility in anovular dairy cows. Theriogenology, 86(1), 254-262. DOI: https://doi.org/10.1016/j.theriogenology.2016.04.038

Sartori, R., Sartor-Bergfelt, R., Mertens, S., Guenther, J., Parrish, J., & Wiltbank, M. (2002). Fertilization and early embryonic development in heifers and lactating cows in summer and lactating and dry cows in winter. Journal of Dairy Science, 85(11), 2803-2812. DOI: https://doi.org/10.3168/jds.S0022-0302(02)74367-1

Schmitt, E. J., Diaz, T., Barros, C. M., De la Sota, R. L., Drost, M., Fredriksson, E. W., Staples, C. R., et al. (1996). Differential response of the luteal phase and fertility in cattle following ovulation of the first-wave follicle with human chorionic gonadotropin or an agonist of gonadotropinreleasing hormone. Journal of Animal Science, 74(5), 1074. DOI: https://doi.org/10.2527/1996.7451074x

Schütz, K., Rogers, A., Poulouin, Y., Cox, N., & Tucker, C. (2010). The amount of shade influences the behavior and physiology of dairy cattle. Journal of Dairy Science, 93(1), 125-133. DOI: https://doi.org/10.3168/jds.2009-2416

Sejian, V., Maurya, V. P., & Naqvi, S. M. (2010). Adaptability and growth of Malpura ewes subjected to thermal and nutritional stress. Tropical Animal Health and Production, 42(8), 1763-1770. DOI: https://doi.org/10.1007/s11250-010-9633-z

Shabankareh, H. K., Habibizad, J., Sarsaifi, K., Cheghamirza, K., & Jasemi, V. K. (2010). The effect of the absence or presence of a corpus luteum on the ovarian follicular population and serum oestradiol concentrations during the estrous cycle in Sanjabi ewes. Small Ruminant Research, 93(2-3), 180-185. DOI: https://doi.org/10.1016/j.smallrumres.2010.06.002

Shen, J., Hanif, Q., Cao, Y., Yu, Y., Lei, C., Zhang, G., & Zhao, Y. (2020). Whole genome scan and selection signatures for climate adaption in Yanbian cattle. Frontiers in Genetics, 11. DOI: https://doi.org/10.3389/fgene.2020.00094

Silanikove, N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 67(1-2), 1-18. DOI: https://doi.org/10.1016/S0301-6226(00)00162-7

Silva, C., Sartorelli, E., Castilho, A., Satrapa, R., Puelker, R., Razza, E., Ticianelli, J., et al. (2013). Effects of heat stress on development, quality and survival of Bos indicus and Bos Taurus embryos produced in vitro. Theriogenology, 79(2), 351-357. DOI: https://doi.org/10.1016/j.theriogenology.2012.10.003

Smith, J. R., & Harner, J. P. (2012). Strategies to reduce the impact of heat and cold stress in dairy cattle facilities. Environmental Physiology of Livestock, 267-288. DOI: https://doi.org/10.1002/9781119949091.ch15

Soares, J., Martins, C., Carvalho, N., Nicacio, A., Abreu-Silva, A., Campos Filho, E. P., Torres Júnior, J., et al. (2011). Timing of insemination using sexsorted sperm in embryo production with Bos indicus and Bos Taurus superovulated donors. Animal Reproduction Science, 127(3-4), 148-153. DOI: https://doi.org/10.1016/j.anireprosci.2011.08.003

Souza-Cácares, M., Fialho, A., Silva, W., Cardoso, C., Pöhland, R., Martins, M., & Melo-Sterza, F. (2019). Oocyte quality and heat shock proteins in oocytes from bovine breeds adapted to the tropics under different conditions of environmental thermal stress. Theriogenology, 130, 103-110. DOI: https://doi.org/10.1016/j.theriogenology.2019.02.039

Stermer, R., Brasington, C., Coppock, C., Lanham, J., & Milam, K. (1986). Effect of drinking water temperature on heat stress of dairy cows. Journal of Dairy Science, 69(2), 546-551. DOI: https://doi.org/10.3168/jds.S0022-0302(86)80436-2

Stewart, B., Block, J., Morelli, P., Navarette, A., Amstalden, M., Bonilla, L., Hansen, P., et al. (2011). Efficacy of embryo transfer in lactating dairy cows during summer using fresh or vitrified embryos produced in vitro with sex-sorted semen. Journal of Dairy Science, 94(7), 3437-3445. DOI: https://doi.org/10.3168/jds.2010-4008

St-Pierre, N., Cobanov, B., & Schnitkey, G. (2003). Economic losses from heat stress by US livestock industries. Journal of Dairy Science, 86, E52-E77. DOI: https://doi.org/10.3168/jds.S0022-0302(03)74040-5

Sun, L., Gao, S., Wang, K., Xu, J., Sanz-Fernandez, M., Baumgard, L., & Bu, D. (2019). Effects of source on bioavailability of selenium, antioxidant status, and performance in lactating dairy cows during oxidative stress-inducing conditions. Journal of Dairy Science, 102(1), 311-319. DOI: https://doi.org/10.3168/jds.2018-14974

Sungkhapreecha, P., Chankitisakul, V., Duangjinda, M., Buaban, S., & Boonkum, W. (2022). Determining heat stress effects of multiple genetic traits in tropical dairy cattle using single-step Genomic BLUP. Veterinary Sciences, 9(2), 66. DOI: https://doi.org/10.3390/vetsci9020066

Taye, M., Lee, W., Caetano-Anolles, K., Dessie, T., Hanotte, O., Mwai, O. A., Kemp, S., et al. (2017). Whole genome detection of signature of positive selection in African cattle reveals selection for thermotolerance. Animal Science Journal, 88(12), 1889-1901. DOI: https://doi.org/10.1111/asj.12851

Torres-Júnior, J. D., Pires, M. D., De Sá, W., Ferreira, A. D., Viana, J., Camargo, L., Ramos, A., et al. (2008). Effect of maternal heat-stress on follicular growth and oocyte competence in BOS indicus cattle. Theriogenology, 69(2), 155-166. DOI: https://doi.org/10.1016/j.theriogenology.2007.06.023

Tourillon, M. (2022). Comportement et physiologique de vaches laitières hautes productrices en période chaude : effets d’un matelas de logettes à eau refroidie. Sciences du Vivant [q-bio]. (dumas-03857862)

Tucker, C. B., Rogers, A. R., & Schütz, K. E. (2008). Effect of solar radiation on dairy cattle behaviour, use of shade and body temperature in a pasture-based system. Applied Animal Behaviour Science, 109(2-4), 141-154. DOI: https://doi.org/10.1016/j.applanim.2007.03.015

Tyagi, S., Kesiraju, K., Saakre, M., Rathinam, M., Raman, V., Pattanayak, D., & Sreevathsa, R. (2020). Genome editing for resistance to insect pests: An emerging tool for crop improvement. ACS Omega, 5(33), 20674-20683. DOI: https://doi.org/10.1021/acsomega.0c01435

Tyson, J., McFarland, D., Graves, R. (2014). Tunnel ventilation for tie stall dairy barns. https://extension.psu.edu/tunnel-ventilation-for-tie-stall-dairy-barns

Ullah, G., Fuquay, J., Keawkhong, T., Clark, B., Pogue, D., & Murphey, E. (1996). Effect of gonadotropin-releasing hormone at Estrus on subsequent luteal function and fertility in lactating holsteins during heat stress. Journal of Dairy Science, 79(11), 1950-1953. DOI: https://doi.org/10.3168/jds.S0022-0302(96)76565-7

Uyeno, Y., Sekiguchi, Y., Tajima, K., Takenaka, A., Kurihara, M., & Kamagata, Y. (2010). An rRNA-based analysis for evaluating the effect of heat stress on the rumen microbial composition of Holstein heifers. Anaerobe, 16(1), 27-33. DOI: https://doi.org/10.1016/j.anaerobe.2009.04.006

Vasconcelos, J., Jardina, D., Sá Filho, O., Aragon, F., & Veras, M. (2011). Comparison of progesterone-based protocols with gonadotropin-releasing hormone or estradiol benzoate for timed artificial insemination or embryo transfer in lactating dairy cows. Theriogenology, 75(6), 1153-1160. DOI: https://doi.org/10.1016/j.theriogenology.2010.11.027

Vieira, L., Rodrigues, C., Mendanha, M., Sá Filho, M., Sales, J., Souza, A., Santos, J., et al. (2014). Donor category and seasonal climate associated with embryo production and survival in multiple ovulation and embryo transfer programs in Holstein cattle. Theriogenology, 82(2), 204-212. DOI: https://doi.org/10.1016/j.theriogenology.2014.03.018

Wallage, A. L., Johnston, S. D., Lisle, A. T., Beard, L., Lees, A. M., Collins, C. W., & Gaughan, J. B. (2017). Thermoregulation of the bovine scrotum 1: Measurements of free-range animals in a Paddock and pen. International Journal of Biometeorology, 61(8), 1381-1387. DOI: https://doi.org/10.1007/s00484-017-1315-3

Wang, B., Wang, C., Guan, R., Shi, K., Wei, Z., Liu, J., & Liu, H. (2019). Effects of dietary rumen-protected betaine supplementation on performance of postpartum dairy cows and immunity of newborn calves. Animals, 9(4), 167. DOI: https://doi.org/10.3390/ani9040167

Wang, J., Bu, D., Wang, J., Huo, X., Guo, T., Wei, H., Zhou, L., et al. (2010). Effect of saturated fatty acid supplementation on production and metabolism indices in heat-stressed mid-lactation dairy cows. Journal of Dairy Science, 93(9), 4121-4127. DOI: https://doi.org/10.3168/jds.2009-2635

Watanabe, Y. F., Souza, H. A., Mingoti, R. D., Ferreira, R. M., Batista, E. O., Dayan, A., Watanabe, O. Y., et al. (2017). Number of oocytes retrieved per donor during OPU and its relationship with in vitro embryo production and field fertility following embryo transfer. Animal Reproduction, 14(3), 635-644. DOI: https://doi.org/10.21451/1984-3143-AR1008

West, J., Hill, G., Fernandez, J., Mandebvu, P., & Mullinix, B. (1999). Effects of dietary fiber on intake, milk yield, and digestion by lactating dairy cows during cool or hot, humid weather. Journal of Dairy Science, 82(11), 2455-2465. DOI: https://doi.org/10.3168/jds.S0022-0302(99)75497-4

Willard, S., Gandy, S., Bowers, S., Graves, K., Elias, A., & Whisnant, C. (2003). The effects of GnRH administration postinsemination on serum concentrations of progesterone and pregnancy rates in dairy cattle exposed to mild summer heat stress. Theriogenology, 59(8), 1799-1810. DOI: https://doi.org/10.1016/S0093-691X(02)01232-3

Wolfenson, D., & Roth, Z. (2018). Impact of heat stress on cow reproduction and fertility. Animal Frontiers, 9(1), 32-38. DOI: https://doi.org/10.1093/af/vfy027

Zhang, X., Liang, H., Xu, L., Zou, B., Zhang, T., Xue, F., & Qu, M. (2022). Rumen fermentative metabolomic and blood insights into the effect of yeast culture supplement on growing bulls under heat stress conditions. Frontiers in Microbiology, 13. DOI: https://doi.org/10.3389/fmicb.2022.947822

Zhao, S., Min, L., Zheng, N., & Wang, J. (2019). Effect of heat stress on bacterial composition and metabolism in the rumen of lactating dairy cows. Animals, 9(11), 925. DOI: https://doi.org/10.3390/ani9110925

Zolini, A., Ortiz, W., Estrada-Cortes, E., Ortega, M., Dikmen, S., Sosa, F., Giordano, J., et al. (2019). Interactions of human chorionic gonadotropin with genotype and parity on fertility responses of lactating dairy cows. Journal of Dairy Science, 102(1), 846-856. DOI: https://doi.org/10.3168/jds.2018-15358

Elevage_Italie@D. Bastianelli, Cirad

Téléchargements

Métriques
Vues/Téléchargements
  • Résumé
    1249
  • pdf
    872

Reçu

08-07-2024

Accepté

12-02-2025

Publié

28-04-2025

Comment citer

Gherissi, D. E., Cabaraux, J.-F., Hornick, J.-L., & Hanzen, C. (2025). Le stress thermique environnemental dans l’espèce bovine : 4. Moyens de lutte. Revue d’élevage Et De médecine vétérinaire Des Pays Tropicaux, 78, 1–15. https://doi.org/10.19182/remvt.37495

Numéro

Rubrique

Productions animales et produits animaux

Catégories

Articles les plus lus par le même auteur ou la même autrice

1 2 > >> 

Articles similaires

<< < 296 297 298 299 300 301 302 303 304 305 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.