Phenotypic and molecular characterization of goat populations in western Algeria
DOI:
https://doi.org/10.19182/remvt.37626Keywords
Goats, characterization, genetic variation, animal resources, AlgeriaAbstract
Background: Goat farming is vital in arid regions. In Algeria, local goats make an important contribution to meat and milk production. Yet, despite their economic importance, goats are not used to their full potential. This is largely due to the limited breeding programmes and the lack of genetic studies. Phenotypic and genetic analyses can be used to determine livestock adaptability and productivity. Morphometric traits provide insights into body structure and growth, while molecular studies identify key genes like MSTN coding for myostatin, which regulates muscle growth and development, and PRL coding for prolactin, which is important in milk production and the development of mammary glands. Aim: This study investigates the phenotypic and molecular genetic traits of local goat populations in western Algeria. Methods: Morphometric data and blood samples were collected from 119 adult goats across four regions (Oran, Ain-Temouchent, Tlemcen and Mecheria). The traits measured included body, ear and tail length, as well as heights at different points of the body. Results: Descriptive analysis showed that body length (BL), chest size (CS) and abdominal circumference (AC) had the highest mean values, while chest depth (CD) was the most stable trait with minimal variation. Principal Component Analysis (PCA) revealed a strong correlation between traits, such as the height at the withers, back and sacrum height. Using PCR-RFLP technology, genotypic frequencies for the MSTN and PRL loci were found after DNA extraction for all blood samples. The PCA of morphometric traits and genotypes of the two genes, MSTN and PRL, revealed that the MSTN gene demonstrates a moderate positive correlation with the neck length and pelvis width traits. On the other hand, the population showed low genetic diversity by studied regions, with higher variability in Oran compared to Tlemcen. Conclusions: The study underscores the critical need to develop and improve breeding strategies to increase overall meat and milk production. Furthermore, it highlights the largely untapped potential of goat farming in Algeria, a sector which could contribute significantly to the national agricultural production and rural economy.
Downloads
References
Abbas, A. M., Jubrael, J. M., & Mohammed, A. B. (2023). Caprine myostatin gene polymorphism in domestic and wild goat breeds in Duhok Province/Kurdistan Region of Iraq using PCR-RFLP and SNP markers. Science Journal of University of Zakho, 11(2), 280–285. DOI: https://doi.org/10.25271/sjuoz.2023.11.2.1045
Abdel-Aziem, S. H., Mahrous, K. F., Abd El-Hafez, M. A. M., & Abdel Mordy, M. (2018). Genetic variability of myostatin and prolactin genes in popular goat breeds in Egypt. Journal of Genetic Engineering & Biotechnology, 16(1), 89–97. DOI: https://doi.org/10.1016/j.jgeb.2017.10.005
Akounda, B., Ouédraogo, D., Soudré, A., Burger, P. A., Rosen, B. D., Van Tassell, C. P., & Sölkner, J. (2023). Morphometric characterization of local goat breeds in two agroecological zones of Burkina Faso, West Africa. Animals, 13(12), 1931. DOI: https://doi.org/10.3390/ani13121931
Belantar, I., Tefiel, H., & Gaouar, S. B. S. (2018). Phenotypic characterization of local goat population in Western Algeria (Wilaya of Relizane) with morphometric measurements and milk analysis. Genetics & Biodiversity Journal, 2(2), 55–66. DOI: https://doi.org/10.46325/gabj.v2i2.123
Belkhadem, S., Tefiel, H., Belantar, I., Chahbar, M., & Gaouar, S. B. S. (2019). Discriminant analysis on the morphometry of local goat breeds in the Western of Algeria. Genetics & Biodiversity Journal, 3(2), 49–56. DOI: https://doi.org/10.46325/gabj.v3i2.56
Benyoub, K. Q., Ameur Ameur, A., & Gaouar, S. B. S. (2018). Phenotypic characterization of local goat populations in Western Algeria: Morphometric measurements and milk quality. Genetics & Biodiversity Journal, 2(1), 69–76. DOI: https://doi.org/10.46325/gabj.v2i1.116
Bi, Y., Feng, B., Wang, Z., Zhu, H., Qu, L., Lan, X., Pan, C., et al. (2020). Myostatin (MSTN) gene indel variation and its associations with body traits in Shaanbei white cashmere goat. Animals, 10(1), 168. DOI: https://doi.org/10.3390/ani10010168
Brameld, J. M., & Parr, T. (2016). Improving efficiency in meat production. Proceedings of the Nutrition Society, 75(3), 242–246. DOI: https://doi.org/10.1017/S0029665116000161
Chen Z., Luo J., Zhang C., Ma Y., Sun S., Zhang T. & Loor J. J. (2018). Mechanism of prolactin inhibition of miR-135b via methylation in goat mammary epithelial cells. Journal of Cellular Physiology, 233, 651–662. DOI: https://doi.org/10.1002/jcp.25925
Dekhili, M., Bounechada, M., & Mannalah, I. (2013). Multivariate analyses of morphological traits in Algerian goats, Sétif, North-Eastern Algeria. Animal Genetic Resources, 52, 51–57. DOI: https://doi.org/10.1017/S2078633613000040
El-Shorbagy, H. M., Abdel-Aal, E. S., Mohamed, S. A., & El-Ghor, A. A. (2022). Association of PRLR, IGF1, and LEP genes polymorphism with milk production and litter size in Egyptian Zaraibi goat. Tropical Animal Health and Production, 54(5), 321. DOI: https://doi.org/10.1007/s11250-022-03316-2
Fantazi, K., Tolone, M., Amato, B., Sahraoui, H., Di Marco Lo Presti, V., Gaouar, S. B. S., & Vitale, M. (2017). Characterization of morphological traits in Algerian indigenous goats by multivariate analysis. Genetics & Biodiversity Journal, 1(2). DOI: https://doi.org/10.46325/gabj.v1i2.93
Grobet, L., Poncelet, D., Royo, L. J., Brouwers, B., Pirottin, D., Michaux, C., Ménissier, F. et al. (1998). Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double-muscling in cattle. Mammalian Genome, 9(3), 210–213. DOI: https://doi.org/10.1007/s003359900727
Ji, S., Losinski, R. L., Cornelius, S. G., Frank, G. R., Willis, G. M., Gerrard, D. E., Depreux, F. F. S., et al. (1998). Myostatin expression in porcine tissues: Tissue specificity and developmental and postnatal regulation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 275(4), R1265–R1273. DOI: https://doi.org/10.1152/ajpregu.1998.275.4.R1265
Laouadi, M., Tennah, S., Moula, N., Antoine-Moussiaux, N., & Kafidi, N. (2020). Caracterización morfológica de cabras indígenas en el área de Laghouat en Argelia. Archivos de Zootecnia, 69(267), 272–279. DOI: https://doi.org/10.21071/az.v69i267.5345
Liu, X., Ma, L., Wang, M., Wang, K., Li, J., Yan, H., Zhu, H., et al. (2020). Two indel variants of prolactin receptor (PRLR) gene are associated with growth traits in goat. Animal Biotechnology, 31(4), 314–323. DOI: https://doi.org/10.1080/10495398.2019.1594863
Manallah, I., & Dekhili, M. (2011). Caractérisation morphologique des caprins dans la zone des Hautes Plaines de Sétif. Agriculture, 2(2), 7–13. http://dspace.univ-setif.dz:8888/jspui/handle/123456789/385
McPherron, A. C., & Lee, S.-J. (1997). Double muscling in cattle due to mutations in the myostatin gene. Proceedings of the National Academy of Sciences, 94(23), 12457–12461. DOI: https://doi.org/10.1073/pnas.94.23.12457
Miller, S. A., Dykes, D. D., & Polesky, H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Research, 16(3), 1215. DOI: https://doi.org/10.1093/nar/16.3.1215
Nowier, A. M., Darwish, H. R., Ramadan, S. I., & Othman, O. E. (2023). Allele mining in prolactin receptor gene and its association with some economic traits in Egyptian goat breeds. Animal Biotechnology, 34(9), 5028–5036. DOI: https://doi.org/10.1080/10495398.2023.2223237
Sahraoui, H., Madani, T., Fantazi, K., Chaouch Khouane, A., Ameur Ameur, A., Paschino, P., Vacca, G. M., et al. (2020). Genetic variability in the A microsatellite at SLC11A1gene and possible implications with innate resistance against brucellosis in Algerian native goats. Biodiversitas Journal of Biological Diversity, 21(12). DOI: https://doi.org/10.13057/biodiv/d211219
Shamsalddini, S., Mohammadabadi, M. R., & Esmailizadeh, A. K. (2016). Polymorphism of the prolactin gene and its effect on fiber traits in goat. Genetika, 52(4), 461–465. DOI: https://doi.org/10.7868/S0016675816040093
Sodhi, M., Mukesh, M., Prakash, B., Mishra, B. P., Sobti, R. C., Singh, K. P., Singh, S., et al. (2007). MspI allelic pattern of bovine growth hormone gene in Indian Zebu cattle (Bos indicus) breeds. Biochemical Genetics, 45(1–2), 145–153. DOI: https://doi.org/10.1007/s10528-006-9068-4

Downloads
-
Abstract1191
-
pdf527
Received
Accepted
Published
How to Cite
License
© S.Belkhadem et al., hosted by CIRAD 2025

This work is licensed under a Creative Commons Attribution 4.0 International License.