Nuevos recursos sobre líneas celulares de garrapatas e insectos para la investigación de enfermedades transmitidas por vectores a partir de la estructura internacional del Biobanco de Células de Garrapatas
DOI:
https://doi.org/10.19182/remvt.37774Palabras clave
Línea celular, garrapata, mosquito, culicoide, flebotomo, mosca tsé-tsé, chinche triatominoResumen
Contexto: Las líneas celulares de artrópodos tienen un papel importante en la investigación sobre el control de patógenos de transmisión vectorial con impacto veterinario, médico y agrícola. El Biobanco de Células de Garrapatas (TCB) de la Universidad de Liverpool es la única colección en el mundo de líneas celulares derivadas de garrapatas y de insectos vectores de patógenos virales, bacterianos, protozoarios y helmintos. Objetivo: El TCB de Liverpool y sus puestos avanzados en Malasia y Brasil se crearon para facilitar el acceso de los investigadores de todo el mundo a los recursos de líneas celulares de garrapatas y de insectos, así como para la formación en su mantenimiento, su aplicación y su desarrollo. Métodos: El TCB recibe y almacena líneas celulares de artrópodos y las distribuye a los científicos que las solicitan, también genera nuevas líneas celulares a partir de garrapatas y de insectos vectores. Para facilitar la adopción de líneas celulares, el TCB y sus puestos avanzados garantizan una formación en el cultivo de células de artrópodos y proporcionan consejos y apoyo permanente a los beneficiarios. Las líneas celulares se proporcionan en el marco de acuerdos de transferencia de material. Resultados: El TCB alberga actualmente más de 90 líneas celulares derivadas de garrapatas Ixodidae y Argasidae, de mosquitos, de mosquitas picadoras, de flebótomos, de moscas tsé-tsé, de triatominos y de abejas melíferas. Este artículo describe estos recursos nuevos y desarrollados/adquiridos recientemente, en especial las líneas celulares derivadas de las garrapatas Argas reflexus, Hyalomma lusitanicum, Hyalomma marginatum y Rhipicephalus bursa, así como insectos Anopheles stephensi, Apis mellifera, Culicoides sonorensis, Glossina morsitans, Phlebotomus argentipes y Triatoma infestans. Conclusiones: La mayoría de las especies de vectores representadas en la colección son de origen tropical o subtropical. Gracias a la distribución de estas líneas celulares existentes y nuevas, el TCB y sus puestos avanzados continuarán apoyando la investigación mundial sobre los vectores artrópodos y los agentes patógenos para el ganado y el hombre que transmiten.
Descargas
Citas
Ahmed, K. A., Karawita, A., Klein, M. J., Mincarelli, L. F., Secondini, B., Satta, G., Ancora, M., et al. (2025). Complete mitochondrial genomes of Culicoides brevitarsis and Culicoides imicola biting midge vectors of Bluetongue Virus. Mitochondrial DNA Part B: Resources, 10(1), 67-71. DOI: https://doi.org/10.1080/23802359.2024.2447750
Bell-Sakyi, L. (1991). Continuous Cell Lines from the Tick Hyalomma anatolicum anatolicum. Journal of Parasitology, 77(6), 1006-1008. DOI: https://doi.org/10.2307/3282757
Bell-Sakyi, L., Zweygarth, E., Blouin, E. F., Gould, E. A., & Jongejan, F. (2007). Tick cell lines: tools for tick and tick-borne disease research. Trends in Parasitology, 23(9), 450–457. DOI: https://doi.org/10.1016/j.pt.2007.07.009
Bell-Sakyi, L., Růžek, D., & Gould, E. A. (2009). Cell lines from the soft tick Ornithodoros moubata. Experimental and Applied Acarology, 49(3), 209–219. DOI: https://doi.org/10.1007/s10493-009-9258-y
Bell-Sakyi, L., Darby, A., Baylis, M., & Makepeace, B. L. (2018). The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks and Tick-borne Diseases, 9(5), 1364–1371. DOI: https://doi.org/10.1016/j.ttbdis.2018.05.015
Bell-Sakyi, L., Jaafar, F. M., Monsion, B., Luu, L., Denison, E., Carpenter, S., Attoui, H., et al. (2020). Continuous Cell Lines from the European Biting Midge Culicoides nubeculosus (Meigen, 1830). Microorganisms, 8(6), 825. DOI: https://doi.org/10.3390/microorganisms8060825
Bell-Sakyi, L., Beliavskaia, A., Hartley, C. S., Jones, L., Luu, L., Haines, L. R., Hamilton, J. G. C., et al. (2021). Isolation in Natural Host Cell Lines of Wolbachia Strains wPip from the Mosquito Culex pipiens and wPap from the Sand Fly Phlebotomus papatasi. Insects, 12(10), 871. DOI: https://doi.org/10.3390/insects12100871
Bell-Sakyi, L., Hartley, C. S., Khoo, J. J., Forth, J. H., Palomar, A. M., & Makepeace, B. L. (2022). New Cell Lines Derived from European Tick Species. Microorganisms, 10(6), 1086. DOI: https://doi.org/10.3390/microorganisms10061086
Bell-Sakyi, L., Haines, L. R., Petrucci, G., Beliavskaia, A., Hartley, C., Khoo, J. J., Makepeace, B. L., et al. (2024). Establishment and partial characterisation of a new cell line derived from adult tissues of the tsetse fly Glossina morsitans morsitans. Parasites & Vectors, 17(1). DOI: https://doi.org/10.1186/s13071-024-06310-9
Black, W. C., & Piesman, J. (1994). Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proceedings of the National Academy of Sciences, 91(21), 10034–10038. DOI: https://doi.org/10.1073/pnas.91.21.10034
Cellosaurus. (2024). https://www.cellosaurus.org/. Accessed on 23 December 2024.
Condreay, L. D., & Brown, D. T. (1986). Exclusion of superinfecting homologous virus by Sindbis virus-infected Aedes albopictus (mosquito) cells. Journal of Virology, 58(1), 81–86. DOI: https://doi.org/10.1128/jvi.58.1.81-86.1986
Fallon, A. M., Leen, L. G., & Kurtti, T. J. (2023). Establishment of a new cell line from embryos of the mosquito, Culex pipiens. In Vitro Cellular & Developmental Biology - Animal. DOI: https://doi.org/10.1007/s11626-023-00771-5
Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
Ghosh, A., Dhall, H., Dietzgen, R. G., & Jain, R. K. (2020). Insect cell culture as a tool in plant virus research: a historical overview. Phytoparasitica, 48(2), 287–303. DOI: https://doi.org/10.1007/s12600-020-00795-7
Goblirsch, M. J., Spivak, M. S., & Kurtti, T. J. (2013). A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues. PLoS ONE, 8(7), e69831. DOI: https://doi.org/10.1371/journal.pone.0069831
Goodman, C. L., Kang, D. S., & Stanley, D. (2021). Cell Line Platforms Support Research into Arthropod Immunity. Insects, 12(8), 738. DOI: https://doi.org/10.3390/insects12080738
Guru, P. Y., Dhanda, V., & Gupta, N. P. (1976). Cell cultures derived from the developing adults of three species of ticks, by a simplified technique. Indian Journal of Medical Research, 64, 1041-1044.
Halvorson, K., Baumung, R., Leroy, G., Chen, C., & Boettcher, P. (2021). Protection of honeybees and other pollinators: one global study. Apidologie, 52(3), 535–547. DOI: https://doi.org/10.1007/s13592-021-00841-1
He, X., Lu, L., Huang, P., Yu, B., Peng, L., Zou, L., & Ren, Y. (2023). Insect Cell-Based Models: Cell line establishment and application in insecticide screening and toxicology research. Insects, 14(2), 104. DOI: https://doi.org/10.3390/insects14020104
Hsu, S. H., Mao, W. H., & Cross, J. H. (1970). Establishment of a Line of Cells Derived from Ovarian Tissue of Culex quinquefasciatus Say. Journal of Medical Entomology, 7(6), 703–707. DOI: https://doi.org/10.1093/jmedent/7.6.703
Igarashi, A. (1978). Isolation of a Singh’s Aedes albopictus Cell Clone Sensitive to Dengue and Chikungunya Viruses. Journal of General Virology, 40(3), 531–544. DOI: https://doi.org/10.1099/0022-1317-40-3-531
Kurtti, T. J., Munderloh, U. G., Ahlstrand, G. G., & Johnson, R. C. (1988). Borrelia burgdorferi in Tick Cell Culture: Growth and Cellular Adherence. Journal of Medical Entomology, 25(4), 256–261. DOI: https://doi.org/10.1093/jmedent/25.4.256
Lan, Q., & Fallon, A. M. (1990). Small Heat Shock Proteins Distinguish between two Mosquito Species and Confirm Identity of Their Cell Lines. American Journal of Tropical Medicine and Hygiene, 43(6), 669–676. DOI: https://doi.org/10.4269/ajtmh.1990.43.669
Lim, F., Khoo, J., Chen, F., Bell-Sakyi, L., Khor, C., Chang, L., & Bakar, S. A. (2017). Initiation of primary cell cultures from embryonic Haemaphysalis bispinosa ticks. Systematic and Applied Acarology, 22(3), 323. DOI: https://doi.org/10.11158/saa.22.3.1
Lima-Duarte, L., Camargo, J. V., Castro-Santiago, A. C., Machado, R. Z., André, M. R., Cabral-de-Mello, D. C., Camargo-Mathias, M. I., et al. (2021). Establishment and characterization of a cell line (RBME-6) of Rhipicephalus (Boophilus) microplus from Brazil. Ticks and Tick-borne Diseases, 12(5), 101770. DOI: https://doi.org/10.1016/j.ttbdis.2021.101770
Lima-Duarte, L., Castro-Santiago, A. C., Camargo, J. V., Ferretti, A. B. S. M., Anholeto, L. A., Pereira, M. C., Ikeda, P., et al. (2022). Establishment and multiapproach characterization of Amblyomma sculptum (Acari: Ixodidae) cell line (ASE-14) from Brazil. Ticks and Tick-borne Diseases, 13(4), 101951. DOI: https://doi.org/10.1016/j.ttbdis.2022.101951
Monteiro, F. A., Peretolchina, T., Lazoski, C., Harris, K., Dotson, E. M., Abad-Franch, F., Tamayo, E., et al. (2013). Phylogeographic Pattern and Extensive Mitochondrial DNA Divergence Disclose a Species Complex within the Chagas Disease Vector Triatoma dimidiata. PLoS ONE, 8(8), e70974. DOI: https://doi.org/10.1371/journal.pone.0070974
Munderloh, U. G., Liu, Y., Wang, M., Chen, C., & Kurtti, T. J. (1994). Establishment, Maintenance and Description of Cell Lines from the Tick Ixodes scapularis. Journal of Parasitology, 80(4), 533. DOI: https://doi.org/10.2307/3283188
Peleg, J. (1969). Inapparent Persistent Virus Infection in Continuously Grown Aedes aegypti Mosquito Cells. Journal of General Virology, 5(4), 463–471. DOI: https://doi.org/10.1099/0022-1317-5-4-463
Penrice-Randal, R., Hartley, C., Beliavskaia, A., Dong, X., Brandner-Garrod, L., Whitten, M., & Bell-Sakyi, L. (2022). New Cell Lines Derived from Laboratory Colony Triatoma infestans and Rhodnius prolixus, Vectors of Trypanosoma cruzi, Do Not Harbour Triatoma Virus. Insects, 13(10), 906. DOI: https://doi.org/10.3390/insects13100906
Prata, J. C., & Da Costa, P. M. (2024). Honeybees and the one health approach. Environments, 11(8), 161. DOI: https://doi.org/10.3390/environments11080161
Pudney, M., & Lanar, D. (1977). Establishment and characterization of a cell line (BTC-32) from the triatomine bug, Triatoma infestans (Klug) (Hemiptera: Reduviidae). Annals of Tropical Medicine and Parasitology, 71(1), 109–118. DOI: https://doi.org/10.1080/00034983.1977.11687167
Salata, C., Moutailler, S., Attoui, H., Zweygarth, E., Decker, L., & Bell-Sakyi, L. (2021). How relevant are in vitro culture models for study of tick-pathogen interactions? Pathogens and Global Health, 115(7–8), 437–455. DOI: https://doi.org/10.1080/20477724.2021.1944539
Schneider, I. (1979). Tsetse fly tissue culture and its application to the propagation of African trypanosomes in vitro. In: Maramorosch, K, Hirumi, H (eds.), Practical Tissue Culture Applications (373-386). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-470285-1.50030-0
Singh, K. R. P. (1967). Cell Cultures Derived from Larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.). Current Science, 36, 506-508.
Steiger, R. F., Steiger, E., Trager, W., & Schneider, I. (1977). Trypanosoma congolense: Partial Cyclic Development in a Glossina Cell System and Oxygen Consumption. Journal of Parasitology, 63(5), 861. DOI: https://doi.org/10.2307/3279895
Tesh, R. B., & Modi, G. B. (1983). Development of a Continuous Cell Line from the Sand Fly Lutzomyia longipalpis (Diptera: Psychodidae), and its Susceptibility to Infection with Arboviruses. Journal of Medical Entomology, 20(2), 199–202. DOI: https://doi.org/10.1093/jmedent/20.2.199
Varma, M. G. R., Pudney, M., & Leake, C. J. (1975). The Establishment of Three Cell Lines from the Tick Rhipicephalus appendiculatus (Agari: Ixodidae) and their Infection with Some Arboviruses. Journal of Medical Entomology, 11(6), 698–706. DOI: https://doi.org/10.1093/jmedent/11.6.698
Walker, T., Jeffries, C. L., Mansfield, K. L., & Johnson, N. (2014). Mosquito cell lines: history, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom. Parasites & Vectors, 7(1). DOI: https://doi.org/10.1186/1756-3305-7-382
Wechsler, S., McHolland, L., & Wilson, W. (1991). A RNA virus in cells from Culicoides variipennis. Journal of Invertebrate Pathology, 57(2), 200–205. DOI: https://doi.org/10.1016/0022-2011(91)90117-9
Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. DOI: https://doi.org/10.1128/jb.173.2.697-703.1991
Yean, S., Prasetyo, D. B., Marcombe, S., Hadi, U. K., Kazim, A. R., Tiawsirisup, S., Chinh, V. D., et al. (2024). Challenges for ticks and tick borne diseases research in Southeast Asia: Insight from the first international symposium in Cambodia. PLoS Neglected Tropical Diseases, 18(7), e0012269. DOI: https://doi.org/10.1371/journal.pntd.0012269

Descargas
-
Resumen493
-
pdf 248
Recibido
Aceptado
Publicado
Cómo citar
Licencia
© C.Hartley et al., publicado por CIRAD 2025

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Datos de los fondos
-
Wellcome Trust
Números de la subvención 223743/Z/21/Z -
Biotechnology and Biological Sciences Research Council
Números de la subvención BB/P024270/1;BB/P024378/1 -
Horizon 2020 Framework Programme
Números de la subvención 727393-2 -
Department for Environment, Food and Rural Affairs, UK Government
Números de la subvención VM0546