New tick and insect cell line resources for vector-borne disease research from the Tick Cell Biobank
DOI:
https://doi.org/10.19182/remvt.37774Keywords
Cell line, tick, mosquito, midge, sand fly, tsetse fly, triatomine bugAbstract
Background: Arthropod cell lines play an important role in research on the control of vector-borne pathogens of veterinary, medical and agricultural importance. The Tick Cell Biobank (TCB) at the University of Liverpool is the world’s only dedicated collection of cell lines derived from tick and insect vectors of viral, bacterial, protozoan and helminth pathogens. Aim: The TCB in Liverpool and TCB Outposts in Malaysia and Brazil were established to facilitate access for researchers worldwide to tick and insect cell line resources, and training in their maintenance, application and development. Methods: The TCB receives, stores and distributes arthropod cell lines to scientists on request, and generates new cell lines from tick and insect vectors. To facilitate successful uptake of the cell lines, the TCB and its Outposts provide training in arthropod cell culture, and ongoing advice and support to recipients. Cell lines are supplied subject to Material Transfer Agreements. Results: The TCB now houses over 90 cell lines derived from ixodid and argasid ticks, mosquitoes, biting midges, sand flies, tsetse flies, triatomine bugs and honey bees. This paper describes new and recently-developed/acquired resources including cell lines derived from the ticks Argas reflexus, Hyalomma lusitanicum, Hyalomma marginatum and Rhipicephalus bursa, and the insects Anopheles stephensi, Apis mellifera, Culicoides sonorensis, Glossina morsitans, Phlebotomus argentipes and Triatoma infestans. Conclusions: The majority of vector species represented in the collection are of tropical or sub-tropical origin. Through distribution of these existing and new cell lines, the TCB and TCB Outposts will continue to underpin global research on arthropod vectors and the livestock and human pathogens that they transmit.
Downloads
References
Ahmed, K. A., Karawita, A., Klein, M. J., Mincarelli, L. F., Secondini, B., Satta, G., Ancora, M., et al. (2025). Complete mitochondrial genomes of Culicoides brevitarsis and Culicoides imicola biting midge vectors of Bluetongue Virus. Mitochondrial DNA Part B: Resources, 10(1), 67-71. DOI: https://doi.org/10.1080/23802359.2024.2447750
Bell-Sakyi, L. (1991). Continuous Cell Lines from the Tick Hyalomma anatolicum anatolicum. Journal of Parasitology, 77(6), 1006-1008. DOI: https://doi.org/10.2307/3282757
Bell-Sakyi, L., Zweygarth, E., Blouin, E. F., Gould, E. A., & Jongejan, F. (2007). Tick cell lines: tools for tick and tick-borne disease research. Trends in Parasitology, 23(9), 450–457. DOI: https://doi.org/10.1016/j.pt.2007.07.009
Bell-Sakyi, L., Růžek, D., & Gould, E. A. (2009). Cell lines from the soft tick Ornithodoros moubata. Experimental and Applied Acarology, 49(3), 209–219. DOI: https://doi.org/10.1007/s10493-009-9258-y
Bell-Sakyi, L., Darby, A., Baylis, M., & Makepeace, B. L. (2018). The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks and Tick-borne Diseases, 9(5), 1364–1371. DOI: https://doi.org/10.1016/j.ttbdis.2018.05.015
Bell-Sakyi, L., Jaafar, F. M., Monsion, B., Luu, L., Denison, E., Carpenter, S., Attoui, H., et al. (2020). Continuous Cell Lines from the European Biting Midge Culicoides nubeculosus (Meigen, 1830). Microorganisms, 8(6), 825. DOI: https://doi.org/10.3390/microorganisms8060825
Bell-Sakyi, L., Beliavskaia, A., Hartley, C. S., Jones, L., Luu, L., Haines, L. R., Hamilton, J. G. C., et al. (2021). Isolation in Natural Host Cell Lines of Wolbachia Strains wPip from the Mosquito Culex pipiens and wPap from the Sand Fly Phlebotomus papatasi. Insects, 12(10), 871. DOI: https://doi.org/10.3390/insects12100871
Bell-Sakyi, L., Hartley, C. S., Khoo, J. J., Forth, J. H., Palomar, A. M., & Makepeace, B. L. (2022). New Cell Lines Derived from European Tick Species. Microorganisms, 10(6), 1086. DOI: https://doi.org/10.3390/microorganisms10061086
Bell-Sakyi, L., Haines, L. R., Petrucci, G., Beliavskaia, A., Hartley, C., Khoo, J. J., Makepeace, B. L., et al. (2024). Establishment and partial characterisation of a new cell line derived from adult tissues of the tsetse fly Glossina morsitans morsitans. Parasites & Vectors, 17(1). DOI: https://doi.org/10.1186/s13071-024-06310-9
Black, W. C., & Piesman, J. (1994). Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proceedings of the National Academy of Sciences, 91(21), 10034–10038. DOI: https://doi.org/10.1073/pnas.91.21.10034
Cellosaurus. (2024). https://www.cellosaurus.org/. Accessed on 23 December 2024.
Condreay, L. D., & Brown, D. T. (1986). Exclusion of superinfecting homologous virus by Sindbis virus-infected Aedes albopictus (mosquito) cells. Journal of Virology, 58(1), 81–86. DOI: https://doi.org/10.1128/jvi.58.1.81-86.1986
Fallon, A. M., Leen, L. G., & Kurtti, T. J. (2023). Establishment of a new cell line from embryos of the mosquito, Culex pipiens. In Vitro Cellular & Developmental Biology - Animal. DOI: https://doi.org/10.1007/s11626-023-00771-5
Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.
Ghosh, A., Dhall, H., Dietzgen, R. G., & Jain, R. K. (2020). Insect cell culture as a tool in plant virus research: a historical overview. Phytoparasitica, 48(2), 287–303. DOI: https://doi.org/10.1007/s12600-020-00795-7
Goblirsch, M. J., Spivak, M. S., & Kurtti, T. J. (2013). A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues. PLoS ONE, 8(7), e69831. DOI: https://doi.org/10.1371/journal.pone.0069831
Goodman, C. L., Kang, D. S., & Stanley, D. (2021). Cell Line Platforms Support Research into Arthropod Immunity. Insects, 12(8), 738. DOI: https://doi.org/10.3390/insects12080738
Guru, P. Y., Dhanda, V., & Gupta, N. P. (1976). Cell cultures derived from the developing adults of three species of ticks, by a simplified technique. Indian Journal of Medical Research, 64, 1041-1044.
Halvorson, K., Baumung, R., Leroy, G., Chen, C., & Boettcher, P. (2021). Protection of honeybees and other pollinators: one global study. Apidologie, 52(3), 535–547. DOI: https://doi.org/10.1007/s13592-021-00841-1
He, X., Lu, L., Huang, P., Yu, B., Peng, L., Zou, L., & Ren, Y. (2023). Insect Cell-Based Models: Cell line establishment and application in insecticide screening and toxicology research. Insects, 14(2), 104. DOI: https://doi.org/10.3390/insects14020104
Hsu, S. H., Mao, W. H., & Cross, J. H. (1970). Establishment of a Line of Cells Derived from Ovarian Tissue of Culex quinquefasciatus Say. Journal of Medical Entomology, 7(6), 703–707. DOI: https://doi.org/10.1093/jmedent/7.6.703
Igarashi, A. (1978). Isolation of a Singh’s Aedes albopictus Cell Clone Sensitive to Dengue and Chikungunya Viruses. Journal of General Virology, 40(3), 531–544. DOI: https://doi.org/10.1099/0022-1317-40-3-531
Kurtti, T. J., Munderloh, U. G., Ahlstrand, G. G., & Johnson, R. C. (1988). Borrelia burgdorferi in Tick Cell Culture: Growth and Cellular Adherence. Journal of Medical Entomology, 25(4), 256–261. DOI: https://doi.org/10.1093/jmedent/25.4.256
Lan, Q., & Fallon, A. M. (1990). Small Heat Shock Proteins Distinguish between two Mosquito Species and Confirm Identity of Their Cell Lines. American Journal of Tropical Medicine and Hygiene, 43(6), 669–676. DOI: https://doi.org/10.4269/ajtmh.1990.43.669
Lim, F., Khoo, J., Chen, F., Bell-Sakyi, L., Khor, C., Chang, L., & Bakar, S. A. (2017). Initiation of primary cell cultures from embryonic Haemaphysalis bispinosa ticks. Systematic and Applied Acarology, 22(3), 323. DOI: https://doi.org/10.11158/saa.22.3.1
Lima-Duarte, L., Camargo, J. V., Castro-Santiago, A. C., Machado, R. Z., André, M. R., Cabral-de-Mello, D. C., Camargo-Mathias, M. I., et al. (2021). Establishment and characterization of a cell line (RBME-6) of Rhipicephalus (Boophilus) microplus from Brazil. Ticks and Tick-borne Diseases, 12(5), 101770. DOI: https://doi.org/10.1016/j.ttbdis.2021.101770
Lima-Duarte, L., Castro-Santiago, A. C., Camargo, J. V., Ferretti, A. B. S. M., Anholeto, L. A., Pereira, M. C., Ikeda, P., et al. (2022). Establishment and multiapproach characterization of Amblyomma sculptum (Acari: Ixodidae) cell line (ASE-14) from Brazil. Ticks and Tick-borne Diseases, 13(4), 101951. DOI: https://doi.org/10.1016/j.ttbdis.2022.101951
Monteiro, F. A., Peretolchina, T., Lazoski, C., Harris, K., Dotson, E. M., Abad-Franch, F., Tamayo, E., et al. (2013). Phylogeographic Pattern and Extensive Mitochondrial DNA Divergence Disclose a Species Complex within the Chagas Disease Vector Triatoma dimidiata. PLoS ONE, 8(8), e70974. DOI: https://doi.org/10.1371/journal.pone.0070974
Munderloh, U. G., Liu, Y., Wang, M., Chen, C., & Kurtti, T. J. (1994). Establishment, Maintenance and Description of Cell Lines from the Tick Ixodes scapularis. Journal of Parasitology, 80(4), 533. DOI: https://doi.org/10.2307/3283188
Peleg, J. (1969). Inapparent Persistent Virus Infection in Continuously Grown Aedes aegypti Mosquito Cells. Journal of General Virology, 5(4), 463–471. DOI: https://doi.org/10.1099/0022-1317-5-4-463
Penrice-Randal, R., Hartley, C., Beliavskaia, A., Dong, X., Brandner-Garrod, L., Whitten, M., & Bell-Sakyi, L. (2022). New Cell Lines Derived from Laboratory Colony Triatoma infestans and Rhodnius prolixus, Vectors of Trypanosoma cruzi, Do Not Harbour Triatoma Virus. Insects, 13(10), 906. DOI: https://doi.org/10.3390/insects13100906
Prata, J. C., & Da Costa, P. M. (2024). Honeybees and the one health approach. Environments, 11(8), 161. DOI: https://doi.org/10.3390/environments11080161
Pudney, M., & Lanar, D. (1977). Establishment and characterization of a cell line (BTC-32) from the triatomine bug, Triatoma infestans (Klug) (Hemiptera: Reduviidae). Annals of Tropical Medicine and Parasitology, 71(1), 109–118. DOI: https://doi.org/10.1080/00034983.1977.11687167
Salata, C., Moutailler, S., Attoui, H., Zweygarth, E., Decker, L., & Bell-Sakyi, L. (2021). How relevant are in vitro culture models for study of tick-pathogen interactions? Pathogens and Global Health, 115(7–8), 437–455. DOI: https://doi.org/10.1080/20477724.2021.1944539
Schneider, I. (1979). Tsetse fly tissue culture and its application to the propagation of African trypanosomes in vitro. In: Maramorosch, K, Hirumi, H (eds.), Practical Tissue Culture Applications (373-386). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-470285-1.50030-0
Singh, K. R. P. (1967). Cell Cultures Derived from Larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.). Current Science, 36, 506-508.
Steiger, R. F., Steiger, E., Trager, W., & Schneider, I. (1977). Trypanosoma congolense: Partial Cyclic Development in a Glossina Cell System and Oxygen Consumption. Journal of Parasitology, 63(5), 861. DOI: https://doi.org/10.2307/3279895
Tesh, R. B., & Modi, G. B. (1983). Development of a Continuous Cell Line from the Sand Fly Lutzomyia longipalpis (Diptera: Psychodidae), and its Susceptibility to Infection with Arboviruses. Journal of Medical Entomology, 20(2), 199–202. DOI: https://doi.org/10.1093/jmedent/20.2.199
Varma, M. G. R., Pudney, M., & Leake, C. J. (1975). The Establishment of Three Cell Lines from the Tick Rhipicephalus appendiculatus (Agari: Ixodidae) and their Infection with Some Arboviruses. Journal of Medical Entomology, 11(6), 698–706. DOI: https://doi.org/10.1093/jmedent/11.6.698
Walker, T., Jeffries, C. L., Mansfield, K. L., & Johnson, N. (2014). Mosquito cell lines: history, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom. Parasites & Vectors, 7(1). DOI: https://doi.org/10.1186/1756-3305-7-382
Wechsler, S., McHolland, L., & Wilson, W. (1991). A RNA virus in cells from Culicoides variipennis. Journal of Invertebrate Pathology, 57(2), 200–205. DOI: https://doi.org/10.1016/0022-2011(91)90117-9
Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. DOI: https://doi.org/10.1128/jb.173.2.697-703.1991
Yean, S., Prasetyo, D. B., Marcombe, S., Hadi, U. K., Kazim, A. R., Tiawsirisup, S., Chinh, V. D., et al. (2024). Challenges for ticks and tick borne diseases research in Southeast Asia: Insight from the first international symposium in Cambodia. PLoS Neglected Tropical Diseases, 18(7), e0012269. DOI: https://doi.org/10.1371/journal.pntd.0012269

Downloads
-
Abstract493
-
pdf248
Received
Accepted
Published
How to Cite
License
© C.Hartley et al., hosted by CIRAD 2025

This work is licensed under a Creative Commons Attribution 4.0 International License.
Funding data
-
Wellcome Trust
Grant numbers 223743/Z/21/Z -
Biotechnology and Biological Sciences Research Council
Grant numbers BB/P024270/1;BB/P024378/1 -
Horizon 2020 Framework Programme
Grant numbers 727393-2 -
Department for Environment, Food and Rural Affairs, UK Government
Grant numbers VM0546