Nouvelles ressources sur les lignées cellulaires de tiques et d’insectes pour la recherche sur les maladies à transmission vectorielle provenant de la structure internationale Tick Cell Biobank

Auteurs

    C. Hartley, J.J. Khoo, A. Darby, B.L. Makepeace, L. Bell-Sakyi

DOI :

https://doi.org/10.19182/remvt.37774

Mots-clés


Lignée cellulaire, tique, moustique, moucheron, phlébotome, mouche tsétsé, punaise triatomine

Résumé

Contexte : Les lignées cellulaires d’arthropodes jouent un rôle important dans la recherche sur le contrôle des pathogènes à transmission vectorielle d’importance vétérinaire, médicale et agricole. La Tick Cell Biobank (TCB) de l’université de Liverpool est la seule collection au monde de lignées cellulaires dérivées de tiques et d’insectes vecteurs de pathogènes viraux, bactériens, protozoaires et helminthes. Objectif : Le TCB de Liverpool et ses avant-postes en Malaisie et au Brésil ont été créés pour faciliter l’accès des chercheurs du monde entier aux ressources en lignées cellulaires de tiques et d’insectes, ainsi que la formation à leur entretien, leur application et leur développement. Méthodes : Le TCB reçoit, stocke et distribue des lignées cellulaires d’arthropodes aux scientifiques qui en font la demande, et génère de nouvelles lignées cellulaires à partir de tiques et d’insectes vecteurs. Pour faciliter l’adoption des lignées cellulaires, le TCB et ses avant-postes assurent une formation à la culture des cellules d’arthropodes et fournissent des conseils et un soutien permanents aux bénéficiaires. Les lignées cellulaires sont fournies dans le cadre d’accords de transfert de matériel. Résultats : Le TCB abrite désormais plus de 90 lignées cellulaires dérivées de tiques ixodidae et argasidae, de moustiques, de moucherons piqueurs, de phlébotomes, de mouches tsé-tsé, de punaises triatomes et d’abeilles mellifères. Cet article décrit ces ressources nouvelles et récemment développées/acquises, notamment les lignées cellulaires dérivées des tiques Argas reflexus, Hyalomma lusitanicum, Hyalomma marginatum et Rhipicephalus bursa, et des insectes Anopheles stephensi, Apis mellifera, Culicoides sonorensis, Glossina morsitans, Phlebotomus argentipes et Triatoma infestans. Conclusions : La majorité des espèces de vecteurs représentées dans la collection sont d’origine tropicale ou subtropicale. Grâce à la distribution de ces lignées cellulaires existantes et nouvelles, le TCB et ses avant-postes continueront à soutenir la recherche mondiale sur les vecteurs arthropodes et les agents pathogènes pour le bétail et l’homme qu’ils transmettent.

Téléchargements

Les données relatives au téléchargement ne sont pas encore disponibles.

Affiliations

  • C. Hartley Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, United Kingdom
  • J.J. Khoo Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, United Kingdom
  • A. Darby Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, United Kingdom
  • B.L. Makepeace Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, United Kingdom
  • L. Bell-Sakyi Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, United Kingdom

Références

Ahmed, K. A., Karawita, A., Klein, M. J., Mincarelli, L. F., Secondini, B., Satta, G., Ancora, M., et al. (2025). Complete mitochondrial genomes of Culicoides brevitarsis and Culicoides imicola biting midge vectors of Bluetongue Virus. Mitochondrial DNA Part B: Resources, 10(1), 67-71. DOI: https://doi.org/10.1080/23802359.2024.2447750

Bell-Sakyi, L. (1991). Continuous Cell Lines from the Tick Hyalomma anatolicum anatolicum. Journal of Parasitology, 77(6), 1006-1008. DOI: https://doi.org/10.2307/3282757

Bell-Sakyi, L., Zweygarth, E., Blouin, E. F., Gould, E. A., & Jongejan, F. (2007). Tick cell lines: tools for tick and tick-borne disease research. Trends in Parasitology, 23(9), 450–457. DOI: https://doi.org/10.1016/j.pt.2007.07.009

Bell-Sakyi, L., Růžek, D., & Gould, E. A. (2009). Cell lines from the soft tick Ornithodoros moubata. Experimental and Applied Acarology, 49(3), 209–219. DOI: https://doi.org/10.1007/s10493-009-9258-y

Bell-Sakyi, L., Darby, A., Baylis, M., & Makepeace, B. L. (2018). The Tick Cell Biobank: A global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks and Tick-borne Diseases, 9(5), 1364–1371. DOI: https://doi.org/10.1016/j.ttbdis.2018.05.015

Bell-Sakyi, L., Jaafar, F. M., Monsion, B., Luu, L., Denison, E., Carpenter, S., Attoui, H., et al. (2020). Continuous Cell Lines from the European Biting Midge Culicoides nubeculosus (Meigen, 1830). Microorganisms, 8(6), 825. DOI: https://doi.org/10.3390/microorganisms8060825

Bell-Sakyi, L., Beliavskaia, A., Hartley, C. S., Jones, L., Luu, L., Haines, L. R., Hamilton, J. G. C., et al. (2021). Isolation in Natural Host Cell Lines of Wolbachia Strains wPip from the Mosquito Culex pipiens and wPap from the Sand Fly Phlebotomus papatasi. Insects, 12(10), 871. DOI: https://doi.org/10.3390/insects12100871

Bell-Sakyi, L., Hartley, C. S., Khoo, J. J., Forth, J. H., Palomar, A. M., & Makepeace, B. L. (2022). New Cell Lines Derived from European Tick Species. Microorganisms, 10(6), 1086. DOI: https://doi.org/10.3390/microorganisms10061086

Bell-Sakyi, L., Haines, L. R., Petrucci, G., Beliavskaia, A., Hartley, C., Khoo, J. J., Makepeace, B. L., et al. (2024). Establishment and partial characterisation of a new cell line derived from adult tissues of the tsetse fly Glossina morsitans morsitans. Parasites & Vectors, 17(1). DOI: https://doi.org/10.1186/s13071-024-06310-9

Black, W. C., & Piesman, J. (1994). Phylogeny of hard- and soft-tick taxa (Acari: Ixodida) based on mitochondrial 16S rDNA sequences. Proceedings of the National Academy of Sciences, 91(21), 10034–10038. DOI: https://doi.org/10.1073/pnas.91.21.10034

Cellosaurus. (2024). https://www.cellosaurus.org/. Accessed on 23 December 2024.

Condreay, L. D., & Brown, D. T. (1986). Exclusion of superinfecting homologous virus by Sindbis virus-infected Aedes albopictus (mosquito) cells. Journal of Virology, 58(1), 81–86. DOI: https://doi.org/10.1128/jvi.58.1.81-86.1986

Fallon, A. M., Leen, L. G., & Kurtti, T. J. (2023). Establishment of a new cell line from embryos of the mosquito, Culex pipiens. In Vitro Cellular & Developmental Biology - Animal. DOI: https://doi.org/10.1007/s11626-023-00771-5

Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294-299.

Ghosh, A., Dhall, H., Dietzgen, R. G., & Jain, R. K. (2020). Insect cell culture as a tool in plant virus research: a historical overview. Phytoparasitica, 48(2), 287–303. DOI: https://doi.org/10.1007/s12600-020-00795-7

Goblirsch, M. J., Spivak, M. S., & Kurtti, T. J. (2013). A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues. PLoS ONE, 8(7), e69831. DOI: https://doi.org/10.1371/journal.pone.0069831

Goodman, C. L., Kang, D. S., & Stanley, D. (2021). Cell Line Platforms Support Research into Arthropod Immunity. Insects, 12(8), 738. DOI: https://doi.org/10.3390/insects12080738

Guru, P. Y., Dhanda, V., & Gupta, N. P. (1976). Cell cultures derived from the developing adults of three species of ticks, by a simplified technique. Indian Journal of Medical Research, 64, 1041-1044.

Halvorson, K., Baumung, R., Leroy, G., Chen, C., & Boettcher, P. (2021). Protection of honeybees and other pollinators: one global study. Apidologie, 52(3), 535–547. DOI: https://doi.org/10.1007/s13592-021-00841-1

He, X., Lu, L., Huang, P., Yu, B., Peng, L., Zou, L., & Ren, Y. (2023). Insect Cell-Based Models: Cell line establishment and application in insecticide screening and toxicology research. Insects, 14(2), 104. DOI: https://doi.org/10.3390/insects14020104

Hsu, S. H., Mao, W. H., & Cross, J. H. (1970). Establishment of a Line of Cells Derived from Ovarian Tissue of Culex quinquefasciatus Say. Journal of Medical Entomology, 7(6), 703–707. DOI: https://doi.org/10.1093/jmedent/7.6.703

Igarashi, A. (1978). Isolation of a Singh’s Aedes albopictus Cell Clone Sensitive to Dengue and Chikungunya Viruses. Journal of General Virology, 40(3), 531–544. DOI: https://doi.org/10.1099/0022-1317-40-3-531

Kurtti, T. J., Munderloh, U. G., Ahlstrand, G. G., & Johnson, R. C. (1988). Borrelia burgdorferi in Tick Cell Culture: Growth and Cellular Adherence. Journal of Medical Entomology, 25(4), 256–261. DOI: https://doi.org/10.1093/jmedent/25.4.256

Lan, Q., & Fallon, A. M. (1990). Small Heat Shock Proteins Distinguish between two Mosquito Species and Confirm Identity of Their Cell Lines. American Journal of Tropical Medicine and Hygiene, 43(6), 669–676. DOI: https://doi.org/10.4269/ajtmh.1990.43.669

Lim, F., Khoo, J., Chen, F., Bell-Sakyi, L., Khor, C., Chang, L., & Bakar, S. A. (2017). Initiation of primary cell cultures from embryonic Haemaphysalis bispinosa ticks. Systematic and Applied Acarology, 22(3), 323. DOI: https://doi.org/10.11158/saa.22.3.1

Lima-Duarte, L., Camargo, J. V., Castro-Santiago, A. C., Machado, R. Z., André, M. R., Cabral-de-Mello, D. C., Camargo-Mathias, M. I., et al. (2021). Establishment and characterization of a cell line (RBME-6) of Rhipicephalus (Boophilus) microplus from Brazil. Ticks and Tick-borne Diseases, 12(5), 101770. DOI: https://doi.org/10.1016/j.ttbdis.2021.101770

Lima-Duarte, L., Castro-Santiago, A. C., Camargo, J. V., Ferretti, A. B. S. M., Anholeto, L. A., Pereira, M. C., Ikeda, P., et al. (2022). Establishment and multiapproach characterization of Amblyomma sculptum (Acari: Ixodidae) cell line (ASE-14) from Brazil. Ticks and Tick-borne Diseases, 13(4), 101951. DOI: https://doi.org/10.1016/j.ttbdis.2022.101951

Monteiro, F. A., Peretolchina, T., Lazoski, C., Harris, K., Dotson, E. M., Abad-Franch, F., Tamayo, E., et al. (2013). Phylogeographic Pattern and Extensive Mitochondrial DNA Divergence Disclose a Species Complex within the Chagas Disease Vector Triatoma dimidiata. PLoS ONE, 8(8), e70974. DOI: https://doi.org/10.1371/journal.pone.0070974

Munderloh, U. G., Liu, Y., Wang, M., Chen, C., & Kurtti, T. J. (1994). Establishment, Maintenance and Description of Cell Lines from the Tick Ixodes scapularis. Journal of Parasitology, 80(4), 533. DOI: https://doi.org/10.2307/3283188

Peleg, J. (1969). Inapparent Persistent Virus Infection in Continuously Grown Aedes aegypti Mosquito Cells. Journal of General Virology, 5(4), 463–471. DOI: https://doi.org/10.1099/0022-1317-5-4-463

Penrice-Randal, R., Hartley, C., Beliavskaia, A., Dong, X., Brandner-Garrod, L., Whitten, M., & Bell-Sakyi, L. (2022). New Cell Lines Derived from Laboratory Colony Triatoma infestans and Rhodnius prolixus, Vectors of Trypanosoma cruzi, Do Not Harbour Triatoma Virus. Insects, 13(10), 906. DOI: https://doi.org/10.3390/insects13100906

Prata, J. C., & Da Costa, P. M. (2024). Honeybees and the one health approach. Environments, 11(8), 161. DOI: https://doi.org/10.3390/environments11080161

Pudney, M., & Lanar, D. (1977). Establishment and characterization of a cell line (BTC-32) from the triatomine bug, Triatoma infestans (Klug) (Hemiptera: Reduviidae). Annals of Tropical Medicine and Parasitology, 71(1), 109–118. DOI: https://doi.org/10.1080/00034983.1977.11687167

Salata, C., Moutailler, S., Attoui, H., Zweygarth, E., Decker, L., & Bell-Sakyi, L. (2021). How relevant are in vitro culture models for study of tick-pathogen interactions? Pathogens and Global Health, 115(7–8), 437–455. DOI: https://doi.org/10.1080/20477724.2021.1944539

Schneider, I. (1979). Tsetse fly tissue culture and its application to the propagation of African trypanosomes in vitro. In: Maramorosch, K, Hirumi, H (eds.), Practical Tissue Culture Applications (373-386). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-470285-1.50030-0

Singh, K. R. P. (1967). Cell Cultures Derived from Larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.). Current Science, 36, 506-508.

Steiger, R. F., Steiger, E., Trager, W., & Schneider, I. (1977). Trypanosoma congolense: Partial Cyclic Development in a Glossina Cell System and Oxygen Consumption. Journal of Parasitology, 63(5), 861. DOI: https://doi.org/10.2307/3279895

Tesh, R. B., & Modi, G. B. (1983). Development of a Continuous Cell Line from the Sand Fly Lutzomyia longipalpis (Diptera: Psychodidae), and its Susceptibility to Infection with Arboviruses. Journal of Medical Entomology, 20(2), 199–202. DOI: https://doi.org/10.1093/jmedent/20.2.199

Varma, M. G. R., Pudney, M., & Leake, C. J. (1975). The Establishment of Three Cell Lines from the Tick Rhipicephalus appendiculatus (Agari: Ixodidae) and their Infection with Some Arboviruses. Journal of Medical Entomology, 11(6), 698–706. DOI: https://doi.org/10.1093/jmedent/11.6.698

Walker, T., Jeffries, C. L., Mansfield, K. L., & Johnson, N. (2014). Mosquito cell lines: history, isolation, availability and application to assess the threat of arboviral transmission in the United Kingdom. Parasites & Vectors, 7(1). DOI: https://doi.org/10.1186/1756-3305-7-382

Wechsler, S., McHolland, L., & Wilson, W. (1991). A RNA virus in cells from Culicoides variipennis. Journal of Invertebrate Pathology, 57(2), 200–205. DOI: https://doi.org/10.1016/0022-2011(91)90117-9

Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. DOI: https://doi.org/10.1128/jb.173.2.697-703.1991

Yean, S., Prasetyo, D. B., Marcombe, S., Hadi, U. K., Kazim, A. R., Tiawsirisup, S., Chinh, V. D., et al. (2024). Challenges for ticks and tick borne diseases research in Southeast Asia: Insight from the first international symposium in Cambodia. PLoS Neglected Tropical Diseases, 18(7), e0012269. DOI: https://doi.org/10.1371/journal.pntd.0012269

Tique_chèvre@F. Stachursky, Cirad

Téléchargements

Métriques
Vues/Téléchargements
  • Résumé
    493
  • pdf
    248

Reçu

26-03-2025

Accepté

13-06-2025

Publié

29-07-2025

Comment citer

Hartley, C. ., Khoo, J. J., Darby, A., Makepeace, B. L., & Bell-Sakyi, L. (2025). Nouvelles ressources sur les lignées cellulaires de tiques et d’insectes pour la recherche sur les maladies à transmission vectorielle provenant de la structure internationale Tick Cell Biobank. Revue d’élevage Et De médecine vétérinaire Des Pays Tropicaux, 78, 1–10. https://doi.org/10.19182/remvt.37774

Numéro

Rubrique

Santé animale et épidémiologie

Catégories

Données de Fonds

Articles similaires

1 2 3 4 5 6 7 8 9 10 > >> 

Vous pouvez également Lancer une recherche avancée de similarité pour cet article.