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Analysis of carotenoids in fruit of different apricot accessions

reveals large variability and highlights apricot as a rich source

of phytoene and phytofluene
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Summary

Introduction - Carotenoids are tetraterpene pig-
ments which have a major impact on fruit color and
nutritional value. Very little is known about the carot-
enoids’ profile and the extent of its variation within
different apricot (Prunus armeniaca) accessions. Ma-
terials and methods - We analyzed carotenoid content
and composition, as well as color criteria, of fruit
from 113 different apricot accessions from the Newe
Ya’ar germplasm collection in Israel. Results and discus-
sion - Apricot fruit contains a unique profile of carot-
enoids consisting mainly of B-carotene, phytoene and
phytofluene, and small amounts of other intermedi-
ates of the biosynthesis pathway, including cis-lyco-
pene. The different accessions show great variability
in total carotenoid content (5-95 pg g fresh weight)
as well as in carotenoid composition. The percentage
of B-carotene, phytoene and phytofluene varies be-
tween 2 to 67%, 6 to 59% and 12 to 44% respective-
ly. Conclusion - Our findings highlight apricot as one
of the richest natural sources of the colorless carot-
enoids phytoene and phytofluene, whose health ben-
efits were recently noted. The distinctive carotenoid
profile alongside the high diversity in fruit carotenoid
composition and content among apricot varieties can
assist future breeding programs and may help in un-
derstanding the factors contributing to color and nu-
tritional traits of apricot fruit.
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Résumé

L'analyse des caroténoides dans les fruits de
différentes accessions d’abricot révele une
grande variabilité et souligne la richesse de
'abricot en phytoéne et phytofluene.

Introduction - Les caroténoides sont des pigments
tétrastropenes qui ont un impact majeur sur la cou-
leur des fruits et leur valeur nutritive. Cette étude
vise a connaitre le profil des caroténoides de I'abri-
cot (Prunus armeniaca) et I'étendue de leur variation
dans un large éventail d’accessions. Matériel et mé-
thodes - Nous avons analysé la teneur et la compo-
sition en caroténoides, ainsi que les caractéristiques
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K Significance of this study

What is already known on this subject?

» Carotenoids are natural plant pigments contributing
to the color, taste and nutritional value of many fruits.
Little is known about carotenoids in apricot.

What are the new findings?

» Analysis of 113 apricot accessions revealed a great
variability in the carotenoid content and composition,
highlighting apricot as a rich source of phytoene and
phytofluene.

What is the expected impact on horticulture?

 This study could contribute to the identification of
genetic factors controlling carotenoid accumulation in
apricot, and in breeding varieties with desired carot-

enoid profiles. J

de couleur des fruits provenant de 113 accessions
différentes d’abricot provenant de la collection de
ressources génétiques de Newe Ya'ar en Israél. Résul-
tats et discussion - Le fruit de I'abricotier posséde un
profil unique en caroténoides, constitué principale-
ment de B-carotene, de phytoene et de phytofluene,
et de petites quantités d’autres composés intermé-
diaires de la voie de biosynthése, y compris du cis-ly-
copene. Les différentes accessions ont présenté une
grande variabilité de la teneur totale en caroténoides
(5 a 95 pg g poids frais) ainsi que de la composition
en caroténoides. Les pourcentages de (-caroténe,
de phytoene et de phytofluene ont varié de 2 a 67%,
de 6 a 59% et de 12 a 44%, respectivement. Conclu-
sion - Fort de ces résultats originaux l'abricot re-
présente 'une des sources naturelles les plus riches
en caroténoides incolores tels que le phytoene et le
phytofluéne, dont les bienfaits pour la santé ont été
récemment notés. Le profil distinctif en caroténoides
peut contribuer, a coté de la grande diversité de com-
position en caroténoides des fruits parmi les variétés
d’abricot, a élaborer des programmes de sélection et
a comprendre les facteurs contribuant a la couleur et
aux traits nutritionnels de I'abricot.

Mots-clés
Israél, abricot, Prunus armeniaca, lycopéne, carotene,
couleur du fruit, diversité des ressources génétiques
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Introduction

Carotenoids are 40 carbon isoprenoid molecules synthe-
sized by all photosynthetic organisms. In addition to their
functions as essential agents in the photosynthetic apparatus
and as precursors of the plant hormones abscisic acid (ABA)
and strigolactones (McQuinn et al., 2015; Nambara and Mar-
ion-Poll, 2005), carotenoids accumulate in tissues of many
fruits, providing their colors: yellow, orange and red. Carot-
enoid degradation products are important aroma volatiles
contributing greatly to the unique flavor and aroma of many
fruits (Auldridge et al, 2006; Lewinsohn et al., 2005). The
carotenoid biosynthesis pathway is well conserved among
plants and has been extensively studied in model plants such
as tomato and Arabidopsis (Cazzonelli and Pogson, 2010;

Moise et al., 2013; Nisar et al., 2015). The first carotenoid in
the pathway is the colorless molecule phytoene, which is a
product of the condensation of two geranylgeranyl diphos-
phate (GGPP) molecules. Four double bonds are introduced
into the phytoene molecule to form phytofluene, {-carotene,
neurosporene and lycopene respectively. The desaturation
process is accompanied by isomerization reactions, assuring
that the produced lycopene is in the all-trans configuration
(Figure 1). The biosynthetic pathway splits into two branches
after the synthesis of all-trans lycopene according to the type
of cyclization it undergoes. 3-Type cyclization at both ends of
the molecule leads to the formation of f3-carotene and to its
oxygenated products, the 3-xanthophylls. 3-type cyclization
of one side of the lycopene molecule and e-type cyclization at
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FIGURE 1. The carotenoid biosynthesis pathway in plants. GGPP, Geranylgeranyl diphosphate; Psy, Phytoene synthase; Pds,
phytoene desaturase; Zds, {-carotene desaturase; CrtISO, carotene isomerase; Ziso, {-carotene isomerase; Lcy-e, lycopene
e-cyclase; Lcy-b, lycopene B-cyclase; CrtR-b (1,2), carotene 3 hydroxylasel or 2.
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the other side generate a-carotene, which is the precursor of
a-xanthophylls such as lutein (Cazzonelli and Pogson, 2010;
Moise et al., 2013; Nisar et al., 2015).

Apricot (Prunus armeniaca L.) is an important Prunus
crop, along with peach, cherry and plum. Despite their short
harvest season, apricots are highly appreciated and con-
sumed fresh, dry or processed all over the world. The content
and composition of carotenoids in apricots determine their
color. Despite the vast knowledge on carotenoid biosynthe-
sis in plants, not much is known about the carotenoid pro-
file of apricot fruit. The first and most thorough carotenoid
characterization was done by Curl (1960) on a single variety
he obtained from the market. The main carotenoid in the
fruit Curl analyzed was found to be B-carotene (60%), yet,
substantial amounts of phytoene (10%), phytofluene (6%)
and cis-isomers of lycopene (5%) were also detected. A lat-
er survey conducted on two varieties with contrasting fruit
color (Marty et al,, 2005), and a selection of their progeny
(Ruiz et al., 2008), found B-carotene, phytoene and phytoflu-
ene to be the main carotenoid constituents in the fruit flesh
(10-30%, 25-36% and 42-51%, respectively) (Ruiz et al.,
2008). However, another survey of a single apricot variety
found a very different profile of carotenoids, including 98%
-carotene (Khachik et al.,, 1989). Most other surveys exam-
ining the carotenoid profiles of apricot fruit concentrated on
measuring a few specific carotenoids rather than trying to
provide a complete profile. Some surveys concentrated on
the pro-vitamin A type of carotenoids (y-carotene, -car-
otene and B-cryptoxanthin) (Ruiz et al., 2005), while other
surveys measured only major visible carotenoids (Katayama
et al,, 1979; Campbell et al., 2013; Radi et al., 1997; Dragov-
ic-Uzelac et al., 2007; Drogoudi et al., 2008). Thus knowledge
on carotenoid content and composition of apricot fruit, and
its variation among different accessions is lacking.

Carotenoids are essential in human and animal diets.
Carotenoids containing at least one unsubstituted (-ionone
end group, such as y-carotene, 3-carotene and -cryptoxan-
thin, are precursors of vitamin A and some carotenoids are
considered protective agents against different chronic dis-
eases, such as cancer and cardiovascular disorders. Among
the well-studied carotenoids in this respect are -carotene
and lycopene, as well as the xanthophylls lutein and zea-
xanthin (Fraser and Bramley, 2004; Krinsky and Johnson,
2005; Fiedor and Burda, 2014). Phytoene and phytofluene
have recently been highlighted as antioxidants that may
contribute to our health too (Engelmann et al., 2011; Melén-

dez-Martinez et al., 2015). Phytoene was shown to possess
antitumor activity in mice and in cell culture (Mathews-Roth,
1982; Nishino, 1998) as well as protective activity against
sunburn (Mathews-Roth and Pathak, 1975). Phytofluene was
suggested to act against cancer by inhibiting cell proliferation
(Kotake-Nara et al., 2001; Nara et al., 2001) and by activating
protective cellular pathways in vitro (Gijsbers et al., 2013).
Different in vitro studies suggest that the combination of
phytoene and phytofluene have various effects: an inhibito-
ry effect on cancer cells (Hirsch et al., 2007), involvement in
protecting LDL from oxidation (Shaish et al.,, 2008) and free
radical scavenging properties (Martinez et al., 2014). Sur-
veys presenting correlations between tomato products con-
sumption and health benefits found that along with lycopene
absorbance, high levels of phytoene and phytofluene were
also observed in body fluids and tissues (Aust et al., 2005;
Melendez-Martinez et al., 2013; Porrini et al.,, 2005). Aust et
al. (2005) showed that consumption of lycopene alone does
not provide similar levels of protection against UV radiation,
as did tomato products, leading the researchers to suggest
that phytoene and phytofluene contribute to these differenc-
es. Another study supported this assumption by finding that
the combination of phytoene, phytofluene and lycopene has
a synergistic anti-cancer effect when applied to a prostate
cancer cell-line (Linnewiel-Hermoni et al., 2015). These find-
ings suggest a beneficial role for phytoene and phytofluene,
though further investigation into their biological function is
required.

All-trans-lycopene, the red pigment coloring tomatoes,
is well known, however, its accumulation in plant tissues in
nature is rare (Schaub et al., 2005) and usually correlates
with selection during domestication. It was shown that down
regulation of lycopene cyclase genes is responsible for lyco-
pene accumulation in the cultivated red tomato (Ronen et al.,
1999, 2000). Other fruits that accumulate lycopene, such as
pink guava, red watermelon and red grapefruit are likely also
lycopene cyclase mutant lines that were selected by humans.
In the majority of these fruits lycopene is usually found in
the all-trans configuration. Cis-isomers of lycopene, mainly
the tetra-cis lycopene (named prolycopene), were reported
primarily in mutant lines such as the ‘tangerine’ mutant of
tomato (Zechmeister et al., 1943), the ‘yofi’ mutant of mel-
on (Galpaz et al., 2013), the ‘Orangelo’ of watermelon (Tad-
mor et al., 2005) and the ‘Orange Queen’ of Chinese cabbage
(Watanabe et al., 2011). Research on lycopene and human
health has shown the benefits of its consumption [reviewed
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FIGURE 2. Pictures of ripe apricot fruit of selected accessions from the Newe Ya'ar germplasm collection.
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in Cdmara et al. (2013) and Friedman (2013)]. For example,
lycopene was linked to prevention and protection against
various cancers (Holzapfel et al., 2013; Okajima et al., 1998;
Zu et al.,, 2014) and cardiovascular diseases (Miiller et al.,
2015). Cis-isomers of lycopene originating from the tomato
mutant ‘tangerine’ were shown to have higher bioavailabil-
ity than lycopene in trans configuration from red tomatoes,
leading the researchers to suggest that cis lycopene might
have greater potential to exert its protective activity (Coo-
perstone et al.,, 2015).

Due to the lack of knowledge regarding the variation
in carotenoid profile of apricot and since previous studies
indicated that some apricot varieties accumulate unusual
amounts of phytoene, phytofluene and cis-isomers of lyco-
pene, our main objective was to characterize the carotenoid
content and composition of apricot fruit and to examine their
variation among accessions exhibiting wide range of fruit
color. To achieve this goal we used the apricot germplasm
collection at Newe-Ya'ar Research Center, Israel (Trainin et
al., 2013), which includes a wide range of fruit color pheno-
types, from very pale yellow to intense orange (Figure 2).
The germplasm collection includes international accessions,
local accessions, recently bred local cultivars, old local variet-
ies and landraces (Holland et al., 2006), and a set of hybrids.

Materials and methods

Plant material

The apricot accessions and hybrids used in this study are
all grown at the Newe Ya'ar Research Center, in the Jezreel
Valley (32°42’N, 35°11’E), two trees of each accession. The
germplasm collection can be divided into three groups ac-
cording to the origin of the accessions: the first group con-
sists of 65 “international” accessions (most of them originat-
ing from the USA and France, but some from other countries
as well); a second group consisting of local accessions, which
include 15 cultivars that were recently bred in Israel and 20
accessions which are old local varieties and landraces (Hol-
land et al., 2006). The third group consists of a set of hybrids,
progeny of the germplasm accessions. Fruits were harvest-
ed at their ripe stage (full size, full color, still firm) and were
chosen randomly. Fruits from international and local acces-
sions were picked from May 15t till July 6t, 2012. Fruits from
hybrids were picked from May 6t till June 4, 2013.

Color measurements

For each accession or hybrid 10 fruits were selected
and their external color was determined at three different
positions around the equatorial region of each fruit (blushed
areas were avoided). The color parameters L* (Lightness),
a* (red/green) and b* (blue/yellow) were measured by a
Konica-Minolta chromameter (CR-400), and the hue angle
(h°) was calculated [h° = arctangent (b*/a*)].

Carotenoid extraction

Three biological replicates, each replicate consisting of
a single fruit, were used for each accession. Each fruit was
peeled and diced. The pieces of flesh from each fruit were
mixed and a sample of about 1-2 g was collected, weighed
and frozen. Carotenoids were extracted from each sample by
grinding the tissue in an acetone:dichloromethane mixture
(1:1, v/v) by pestle and mortar, the solvent was collected
and filtered and the grinding and collecting of the solvent
was repeated until the solvent was colorless. Carotenoids
were extracted by partitioning the solvent mixture against
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an equal volume of diethyl ether and 0.2 volume of 12% w/v
NaCl/H,0. The colored upper ether fraction was collected,
dried under a stream of N, and then redissolved in 1 mL
acetone. 100 pL of the sample in acetone were diluted ten
folds in acetone and spared for spectroscopic quantification
(see below). The rest of the sample was again dried under
a stream of N, for concentration, and redissolved in acetone
(150-500 pL) for further analysis by HPLC. Of each sample,
a single injection of 50-100 pl (according to color intensity)
was applied to the HPLC. All steps were carried out under
dim light and, when possible, carotenoid samples were kept
under anaerobic conditions, on ice or at -20 °C.

HPLC analysis of carotenoids and quantification

HPLC analysis was performed on a Waters HPLC system
equipped with a Waters 600 pump, a Waters PDA detector
996 and a Waters 717 plus autosampler. A Spherisorb 0DS2
C18 column (Waters, 5 pm, 4.6 x 250 mm) coupled with a
guard cartridge system SecurityGuard™ (Phenomenex) was
used. A gradient was applied ata constant flow of 1.6 mL min-!
with acetonitrile:water (9:1; A) and ethylacetate (B) as
described (Isaacson et al., 2004). Spectra at a wave length
range of 250-600 nm of eluting HPLC solvent were recorded
and absorption peaks were recorded and analyzed by the
Empower software (Waters). Linear limit of detection was
estimated to be between 10-20 ng to 1.5-2 pg, depending
on the carotenoid. Carotenoids were identified by their
absorption spectra and retention time. -Carotene standard
was obtained from Sigma-Aldrich, phytoene standard
was obtained from CaroteNature (Switzerland), E. coli
cells transformed with plasmid pAC-Zeta (Cunningham
et al.,, 1994) served as a source for (-carotene standard, as
previously described (Isaacson et al, 2002). cis-lycopene
isomers, including prolycopene and di-cis lycopene, as well as
(-caroteneisomers, phytofluene and phytoene wereidentified
by comparison to the previously established carotenoid
profile from the fruit of the tomato mutant ‘tangerine’
(Zechmeister et al., 1943; Isaacson et al., 2002, 2004; Clough
and Pattenden, 1979). All carotenoid peaks were integrated
at their individual A,,, and were normalized to correct for
their specific mass extinction coefficients (Britton et al.,
2004) in relation to -carotene (= 1), using xanthophylls (1),
B-cryptoxanthin (1.086), y-carotene (0.788), cis-lycopene
isomers (0.965), (-carotene (1.014), phytofluene (1.920) and
phytoene (2.074). Total carotenoid content was determined
on an aliquot of the acetone extract as follows: first,
quantification of total carotenoids with spectral absorption
maximum at around 450 nm (xanthophylls, -cryptoxanthin,
[-carotene, y-carotene, cis-lycopene isomers) was performed
spectroscopically following Schiedt and Liaaen-Jensen
(1995) by measuring absorbance at 450 nm, and using an
averaged absorbance coefficient of 2,400. Then, quantities
of (-carotene, phytofluene and phytoene were calculated
according to their normalized peak areas in comparison with
the normalized peak areas of the carotenoids with spectral
absorption maximum at around 450 nm. The sum of total
carotenoids (xanthophylls, [-cryptoxanthin, [-carotene,
y-carotene, cis-lycopene isomers, (-carotene, phytofluene
and phytoene) is given as pg g1 (FW).

Statistical analysis

Correlation coefficients were determined by the coeffi-
cient of Pearson. Statistical analyses were performed using
Microsoft Excel (2007). Two-way Ward hierarchical cluster
analysis was performed by JMP (version 12).

and Subtropical Horticulture
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Results and discussion

Apricot cultivars exhibit a wide variability in terms of
carotenoid content and composition

Carotenoids were extracted from ripe apricot fruits of
three groups of accessions: international accessions (61),
Israeli accessions (old local cultivars and recently bred cul-
tivars; 25 accessions) and hybrids (27) (see Materials and
methods), and their content and composition were deter-
mined (Figure 3, Table 1). Carotenoid content and compo-
sition of 18 selected accessions, representing variation, is
depicted in Figure 4. In accordance with the great variability
in fruit color (Figure 2), a wide variation in carotenoid con-
tent and composition was observed. Total carotenoid content
varied from about 5 pug gt FW in the pale yellow (‘white’)
fruit of some accessions, to more than 90 pg gt FW in the
dark-orange fruits of other accessions (Figure 4, Table 1).
The proportion of each individual carotenoid also showed
great variation, with the main three carotenoids, 3-carotene,
phytoene and phytofluene, ranging between 2% to 67%,
6% to 59% and 12% to 45% of the total carotenoid content
respectively (Figure 4, Table 1). It is important to note that
great variation was also found within the different samples
of each accession, illustrated by the often high values of stan-
dard deviation (Table 1). Similar variation was described in
apricot fruit previously (Ruiz et al., 2005). This could be due
to the difficulty in determining fruit developmental stages
(‘ripe’) based on parameters of external color and firmness.
In this respect, it is also important to note that fruit samples
of some accessions were collected in 2012 while samples
for others were collected in 2013. However, our experience
shows that the variation between different samples of fruit
of a given accession seems to be greater than the variation
found within an accession over different years of harvest
(data not shown).

Apricot fruit contains a unique carotenoid composition
typified by large amounts of the first products of the
biosynthesis pathway: phytoene and phytofluene

In general, and as expected based on previous analysis
described in the literature, 3-carotene was found to be the
most dominant carotenoid in the fruit (Curl, 1960; Marty et
al,, 2005; Ruiz et al., 2005, 2008; Khachik et al., 1989; Ka-
tayama et al.,, 1971; Campbell et al,, 2013; Radi et al., 1997;
Dragovic-Uzelac et al., 2007; Drogoudi et al., 2008); however,
on average it constitutes only 33% of the total carotenoids
(Table 1). Surprisingly, the other dominant carotenoids were
mostly upstream intermediates of the carotenoid biosynthe-
sis pathway, mainly the first products of the pathway, phy-
toene and phytofluene, constituting on average 26% and
23% of the total carotenoids, respectively. Other interme-
diates of the pathway, {-carotene, lycopene cis-isomers and
y-carotene, constitute together almost 10% of the total ca-
rotenoids on average (Table 1).

Phytoene is the first product in the carotenoid biosynthe-
sis pathway; its spectral absorption maximum is at 286 nm,
making it colorless to our eyes. Insertion of one double bond
into the phytoene molecule results in the formation of phy-
tofluene (Figure 1), another colorless carotenoid, whose
spectral absorption maximum is at 350 nm. While -caro-
tene accumulation is quite common, phytoene and phytoflu-
ene are usually found in plant tissues in minute amounts. In
the analyzed accessions, phytoene and phytofluene content
varied from few pg gt FW, such as in ‘Amal, to more than
60 pg gt FW in ‘Avikaline’ (Figure 4, Table 1). The few studies
that measured phytoene and phytofluene content in apricot
fruit reported levels in the range of 15-95 pg gt FW (Ruiz
et al., 2008; Biehler et al., 2012; Miiller, 1997). Our results
confirm these observations in a wide number of different
apricot accessions and demonstrate that the occurrence of
both colorless carotenes in significant levels is a typical fea-
ture of apricot varieties. To our knowledge, no other plant
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FIGURE 3. Analysis by HPLC of carotenoids in the apricot fruit of the ‘Pazza’ cultivar. Chromatograms are given at three
different wave lengths: 286 nm, 350 nm, 450 nm. Peak 1, 3-cryptoxanthin; peak 2, unidentified cis-isomer of lycopene; peak 3,
di-cis lycopene; peak 4, prolycopene; peak 5, y-carotene; peak 6, unidentified; peak 7, 3-carotene isomer; peak 8, 3-carotene
isomer; peak 9, phytofluene; peak 10, phytoene. Absorption spectra of some peaks are presented in the inserts.
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tissue is as rich in phytoene and phytofluene as apricot fruit.
Other fruits that were reported to contain high amounts of
phytoene and phytofluene have substantially lower amounts
in comparison to apricot. For instance, tomato, which is con-
sidered a relatively rich source of phytoene and phytofluene,
was reported to contain between 0-18 ug gt FW (Biehler et
al, 2012; Miiller, 1997; Fraser et al., 1994). In carrot vary-
ing amounts of phytoene and phytofluene were reported
(Biehler et al.,, 2012; Jourdan et al., 2015; Maass et al., 2009;
Yahyaa et al, 2013) for different accessions, the highest
(~210 pg gt dry weight; ~30 pg gt FW) reported for a hybrid
(Jourdan et al.,, 2015).

Apricot accumulate cis-isomers of lycopene

We detected three cis-isomers of lycopene in apricot
fruit. We identified them by comparison to the well-
characterized lycopene isomers from the tomato mutant
‘tangerine’ (Zechmeister et al., 1943; Isaacson et al., 2002,
2004; Clough and Pattenden, 1979). We identified these
isomers as a possibly mono-cis isomer, a di-cis isomer, and
the tetra-cis isomer prolycopene (peaks number 2, 3, 4 in

Figure 3, respectively). The proportion of lycopene isomers
of the total carotenoids varies from none up to 14.5%, which
could translate to as much as 10 pg gt FW (Figure 4, Table 1).
The combination of high levels of phytoene and phytofluene,
with cis-lycopene, suggests a high nutritional value for
apricot fruit as was suggested for tomato (Aust et al., 2005;
Linnewiel-Hermoni et al.,, 2015).

The carotenoid profile of apricot, which contains
primarily early intermediates of the carotenoid biosynthesis
pathway, is unique when compared with the carotenoid
profiles reported for fruits from other Prunus species,
which are typically later products of the pathway. Peach, for
instance, contains mainly xanthophylls such as violaxanthin
(Katayama et al., 1971; Curl, 1959; Gross, 1979; Ma et al.,
2014), plum contains mainly 3-carotene and f3-cryptoxanthin
(Bobrich et al., 2014; Kaulmann et al., 2014), and Japanese
apricot (Prunus mume) accumulates mainly f-carotene and
lutein (Kita et al., 2007). The distinctive carotenoid profile of
apricot suggests that during the divergence of apricot from
other Prunus species they acquired genetic alterations that
led to the different profile.
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Apricot fruit exhibit a wide range of fruit color

To test for possible correlations between apricot fruit
color (appearance) and carotenoid content, we measured
color parameters (L* a* b* hue®) of ~10 ripe apricot
fruits from each accession (Table 2). Fruit from different
accessions exhibited a wide range of external color values.
The a* parameter (axis of red-green) ranged from negative
values of -5.1 in the pale apricots up to 22.4 in the dark
orange ones. The b* parameter (axis of yellow-blue) ranged
from 30.8 to 58.6. The L* (lightness) parameter ranged from
58.6 to 78.2. The h° angle parameter varied from 64.5 to 98.7
(Table 2). Fruits with the lowest a* values and highest L* and
hue® values were the pale-yellow well known accessions
‘Moniqui’ and ‘Real-Fino’, the local accessions ‘P.A.706-207’
and ‘P.A.754-255" and the hybrids 27/82 and 55/75. The
accessions with the deep orange colored fruit, ‘384LD362,
‘384LD373’,'58/5’, ‘MAS955’, ‘Paz’ and the hybrid 57/45, had
the highest a* values (Table 2). Previous studies examining

the correlation between fruit color and carotenoid content in
apricot fruit showed contrasting results. While some found
strong correlations when comparing total carotenoid content
of flesh or skin with the color indices of the respective tissue
(Ruiz et al., 2005, 2008), others found no correlations or
weak correlations when comparing total carotenoid content
of fruit tissue containing both flesh and skin, with color
indices of either flesh or skin (Campbell et al., 2013), or when
comparing total carotenoid content of flesh with color indices
of skin (Drogoudi et al., 2008). In order to effectively resolve
the possible correlation between apricot flesh carotenoid
composition and fruit color indices we calculated the amount
of visible carotenoids in the fruits, meaning only carotenoids
with spectral absorption maximum greater than 400 nm (i.e.,
excluding the abundant colorless carotenoids phytoene and
phytoflouene). Visible carotenoid content varied from 0.5
pg gt FW in the pale fruit accessions, such as ‘Moniqui’ and
‘Real Fino’, up to 47 ug gt FW in the intense-orange accession

TABLE 2. Mean (+SD) values of total carotenoid content (pug gt FW) of ripe apricot fruit and external color indices from
different apricot accessions and hybrids. Accessions are divided to 3 groups according to their origin and ordered by their

total carotenoid content.

Total Hue angle
carotenoids = & 2 ho ’
International accessions
Real Fino 6.2+3.6 782+1.1 -3.7+1 338+1.8 96.3+1.6
MA.46 81148 742+0.7 42+36 494 +32 85.2+3.9
Rouge de Rivesaltes 9.7+£19 M+17 85+28 47 +£ 2.1 79.8+3.2
Pelese di Giovanniello 9927 712+19 2+27 464 +24 875+3.3
A1758 11.3+45 69.2+29 6.1+1.8 4832+27 827+23
Moniqui 13.8+5.1 758 +24 4+2.1 39.7+18 95.7 + 3.1
Tardif de Bordaneil 13.8+64 70+15 98+38 50.7 £ 2.6 7924
A.1740 142+04 66.3 £ 2.4 10.3+1.6 50+22 784+18
A.S.1875 15.1+£8.3 69+14 39+27 477+1.6 85.3+3.2
A.S.3445 155+ 10.2 66.6 2.5 112+29 446+ 2.1 76+34
Screara 155+4.3 68525 71+£12 502+ 34 819+1.3
Amal 16.3+£7.1 66.8 £ 2 159+£1.8 51.8+3.2 73+1.2
Quardi 17+73 65.4 + 3.1 102+ 2.1 474 £ 3.5 779+25
Sayeb 19.7+5 68.1+0.9 152+15 51427 735+15
Poppy 21+86 66.4 £ 2 10522 433117 764 £2.7
772-833 221+86 68.1+1.8 0.7+27 449+25 89+35
79GE 2 242126 62+2 13.5+£2.3 45+17 732+28
774-835 242+6.5 69.8+1.5 49+0.8 436+ 1.6 8361
58/5 25559 63.1+1.2 208+2.2 49.3+14 67.1+2
47 EA10 26.4 +£20.8 66.8 +1.8 5.6 +2.1 42+ 1.1 824+28
A.1570 26.7+85 65+4.7 128 +1.7 512+38 759+18
Luizet 287+99 63.3+£0.9 19.2+1.1 474 £1.7 68+0.9
Rouge du Roussillion 29+11.9 70.3+2.8 88+28 439+23 78.7+3.6
48 G 1105 292 +13.9 66.5+ 1.4 85+25 47+19 799+28
392 LD 358 294+238 66.6+1.9 99+16 428+18 77+21
Canino 2997 M+£17 93+3 546+1.5 804 +29
MA.170 313112 705+15 95+33 50.5%2 79.3+3.7
Selecta CNEEE 4 316+12.8 70419 113+£1.2 536+1.8 78113
Spring Giant 316+£10.7 649+24 14+29 4834 +22 74+£28
A.1625 328 +8.1 63+26 105+2 436+ 3.5 77917
MA.283 341+£14.6 648+14 131+22 447+18 73727
Flamingold 372+£10.2 63+1.3 196+1.2 481+15 67.9+12
5EA293 3177 67615 134124 476+ 1.1 743+25
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TABLE 2. Continued.

Total . . . Hue angle

carotenoids s a g he ’
Precoce de Tyrinthe 39.1+£16 66.6 + 1.8 155+2.2 46.7+2 7.7+£27
Castle Bright 391171 647115 1731241 47+0.9 69.9+22
Dr. Mascle 40+10 66.1+ 1.6 19.3+1.8 523+24 69.7 £2
Precoce de Portugal 4178 69.5+1.3 14.7+£25 50+ 1.3 736+28
Gabriel 41+17.8 63.6+1.6 16.1+£3.5 48.8+2.2 71.8+3.9
Helena 41.3+171 65.6 + 0.6 172 498 +1 711£22
384 LD 362 425+4.4 65.8 +1.6 201 +1.7 50.7+1.3 685+1.5
Barracca 42.7+9.6 68.5+1.2 129+2.1 486 +22 752+24
Skaha 446+99 65.7 £ 1.1 143+24 49.7£1.7 74+25
Clutha Gold 447 £ 16 63.1+1.8 12.3+1.9 496+ 1.7 7612
Earliril 51.3+16.6 628+1.9 145+21 46.2+1.7 726124
Precoce de Boulbon 521+9.7 66.7 + 1.8 151+14 543+1.6 745+13
Earlicot 53.7+17.8 67.9+1.2 13+1.3 494 +1.2 752+ 14
Sundrop 54.1+18.6 65.8+1.3 15.7+28 51.8+14 732+28
MAS955 571+21.3 61+£0.8 203+2 47 +1 66.7 £1.9
Plasteyn 585+ 7 61.1+1.8 149+2 437+£33 71127
Rival 59.4 +23.6 63.5+1.3 155+2.2 46.9+1.3 71.7+£23
Royal Rosa 60 £ 17.1 658+ 1.9 146 +4.1 513125 742+43
Perfection 66.8 £ 15.1 62.6+0.8 15.7+24 475+15 718126
Castleton 75.8 £29.7 63.3+1.2 198+15 453+15 66.4 + 1.7
Pazza 79.6 £33.5 66.4 +1.7 145+2.1 504 +14 739+21
384 LD 373 91.2+ 351 625+0.9 201+23 483+ 1.6 67.4+22
Local accessions
P.A.811-312 9774 69.4+29 28+24 494+18 86.9+2.8
P.A.706-207 127177 75.1+£1.6 4.7 +1 344+£13 97.7+14
P.A.658-159 16.9+2.8 70.1+£22 10.8+25 55.7+1.1 7925
P.A.803-304 17.1+3.8 589+ 14 6.6+14 44 +19 8152
P.A.638-139 18+5.9 69.1+1.6 6.7+1.9 552+29 83118
P.A 648-149 18.8+2.5 66.9+1.9 78+22 496+1.5 81.1+26
P.A755-256 20255 684 +2.2 92+16 47.7+2 791+£19
Eden 2025 71615 75+19 4742 81.1+£22
Nitzan 23877 69.3+1 92+19 472114 79+22
Behor Shotan 248 £13.7 63.6+2 10.7+241 46.9+19 772+23
P.A.757-258 25.7+6.2 639+15 58+28 482+23 83133
P.A.802-303 269+ 3.1 586+ 1.2 36+26 417113 85+ 3.4
Shiler 286+ 11.1 63.7+2 1161 459+ 14 758+ 1.3
P.A647-148 31+6.2 72.3+21 7+32 549+14 828+3.2
P.A.754-255 315+17.7 75.7+21 -39+13 30.8 +3.1 97.2+1.9
Gal 326+6.2 622+1.8 11.3+2 425+18 752+23
P.A 705-206 344157 704 +14 10.7+£1.6 578 +1 795114
P.A 650-151 383145 629 +2.1 58+14 42425 822+15
P.A.660-161 432 +13.2 68.5+0.9 11.8+24 546+2.2 778+22
311 472 £ 121 66.2 2.1 13426 453+18 735+3
Tarog 435+ 12.8 66.8 £ 1.1 16.8+1.6 523+2 722+16
Daniel 60.6 + 9.1 675+15 124 +£1.2 484 +1.1 75615
P.A.631-132 64.1+6.9 639+1.8 114+18 53.1+2 779+18
Paz 68.9+12.6 64.3+1.2 224+141 47 +2 645+1.3
Orange Gold 724 +19.8 66.1+1.2 18.6£1.5 474 +2 68.6+1.8
Hybrids
55/30 58+2 73209 31+24 502+15 86.5+2.7
58/53 17.9+6.5 7242 54+27 473+1.2 835+3.3
27/82 18.5+59 784+18 51114 332126 98.7+2
55/75 204 + 11 65.8 + 1.6 24+45 38+29 939+7
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TABLE 2. Continued.

Total " . . Hue angle

carotenoids - a 9 he ’
60/36 231184 71616 10.7+£3.8 586 %29 798+ 34
58/56 233142 69.7 £1.7 8.6+16 42226 784 %21
57/81 24+3 61.8+2 192+£1.6 496+1.8 68.8+1.3

22/84 25377 586+24 7.7+32 445+238 80.2+4
57/66 255+29 65+1.2 18212 53.1+11 71117
53/7 288+6.4 69.2 +1 121+£1.3 52+14 76.9+1.1
53/50 29+75 64.4+1.2 14+3 509+1.2 746+ 3.1
60/27 29.1+6.6 66.7 £2.4 123127 445+0.8 746 +3.2
53/71 294 +11 63.3+1.3 13+2 488 +2 77+£1.9
60/23 31887 68414 10.8+1.8 451+0.6 76.5%2.2
14/71 335+6.1 64.6 2.1 10.3+2.1 419125 762+2.6
28/71 352+11.8 64.1+1.5 15+1.8 461 +£1.7 72+138
53/60 36+4.3 65.3+14 145+ 1.6 484 +0.5 73.3+1.6
53/6 36.1£13.7 63.2+0.7 74+15 442 +1.2 80.5+1.7
34/8 40.3+10.5 674+25 13.8+2 50.6 £ 2.7 747+25

60/38 M1+77 69.1+14 6.8+39 483+25 823+4
54/88 414+24 66.2 +1.1 10+ 2.1 48117 783+22
57/45 415+20.9 64.1+24 20.2+1.6 51+1.2 68418
58/138 495+37 644+04 12714 512%1 76.1+£1.6
15/99 548 +1.4 65+1.7 10+£3.2 453+26 77.7+£32
37/68 62 +£23.2 67.9+2.1 13.6 £ 1.7 498+1.9 7471138

‘Pazza’. According to these results neither total carotenoid
content nor total visible carotenoid content of the fruit
flesh correlated well with the fruit (skin) color parameters,
showing best ‘r’ values of 0.62 and 0.66 respectively when
correlated with a* values or a*/b* values (Table 3). Trans-
lycopene is known as a red colorant; however its cis isomers,
which are the ones found in apricots, have a lower spectral
absorbance range, and more of an orange hue. We wanted to
find out whether the presence of the lycopene isomers in the
fruit tissue correlates with its external color. Again we found
no significant correlation between the lycopene content
and a* (r = 0.59) or a*/b* (r = 0.60) (Table 3). Interestingly,
y-carotene which is a carotenoid with a color that is redder
than B-carotene, showed a relatively higher correlation
to a* (r = 0.66) and to a*/b* (r = 0.67) (Table 3) despite its
small fraction (on average 2.1%) of the total carotenoids in
apricot (Table 1). The results indicate that the fruit external
color is not generally a good predictor of carotenoid content
in the flesh of the apricot fruit. It is possible that the lack of
correlation is due to the different tissues compared: total
carotenoids were extracted from the flesh tissue of the fruit,
while color indices were measured on the external skin of
the fruit.

Hierarchical clustering and Heat-Map analysis

A multivariate cluster analysis of carotenoid composition
of fruit samples from the different apricot accessions
suggests hierarchies of both accessions and carotenoids
(Figure 5). The apricot accessions are divided to two major
clusters. Roughly, one cluster of accessions show relatively
low proportion of phytoene and phytofluene and relatively
high -carotene, and the second cluster show high proportion
of phytoene and phytofluene and low {3-carotene (Figure 5;
right). In general, within these two major clusters there
are subgroups, each sharing somewhat similar carotenoid
composition. None of the accessions of each subgroup seems
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to share a common origin. In addition, the accessions of each
subgroup, but one, do not seem to have similar fruit color.
The exception is a cluster of seven accessions at the top of
the heat-map (‘Moniqui, ‘Real-Fino, ‘774-835, ‘P.A.754-
255’, ‘PA.706-207’, 58/53 and 27/82). The total carotenoid
content of fruit of these seven accessions is not very high,
ranging between 6.2 pg gt FW in ‘Real-Fino’ to 31.5 pg gt FW
in ‘P.A.754-255’ (Table 1). However, more than 88% of the
total carotenoid in fruit of these accessions is composed of
phytoene and phytofluene, leaving less than 12% to colored
carotenoid such as of -carotene (Table 1). Accordingly, the
fruit color of these seven accessions is pale, with a* values
of -5.1 to 5.4 (Table 2). This might indicate a correlation
between the unique carotenoid composition and the fruit
color of the accessions in this group. In this respect, the
clustering of the individual carotenoids shows that phytoene
is paired with phytofluene (Figure 5; bottom). Phytofluene
is an asymmetric carotenoid, the intermediate of phytoene
desaturation to {-carotene (Figure 1). The pairing of these
consecutive intermediates: phytoene with phytofluene, as
well as the high correlation between their amounts (r = 0.86;
Table 3) show that they tend to accumulate together and
suggest that the early steps might represent a bottleneck in
the carotenoid biosynthesis pathway in apricot. Hence, it is
possible that the reason for the pale color in these accessions
is a blockage in the first step of the carotenoid biosynthesis
pathway; phytoene desaturation (Figure 1), which could lead
to accumulation of phytoene and phytofluene and to limited
production and accumulation of colored carotenoids.

Similarly, y-carotene is an asymmetric intermediate of
lycopene cyclization to 3-carotene (Figure 1). The coupling of
y-carotene and lycopene together (Figure 5; bottom), and the
high correlation between their amounts (r = 0.82; Table 3)
might indicate that lycopene isomerization and cyclization
represent an additional bottleneck in the biosynthesis
pathway in apricot.
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Conclusion

Our survey demonstrates that the distinctive carotenoid
profile of apricot fruit, which includes high levels of phytoene
and phytofluene as well as small amounts of lycopene in cis
isomers is common to a wide range of accessions. However,
the different accessions exhibit great variation in both
total carotenoid content and ratios between the individual
carotenoids (composition). We did not find correlations
between specific compositions, total carotenoid content
and fruit external color except for one exception; accessions
with very high percentage of phytoene and phytofluene and
very low percentage of f-carotene in their fruits are all
characterized by pale color and relatively low carotenoid
content (Figure 5; Tables 1 and 2).

Our results suggest that apricot has a nutritional
advantage over other f-carotene accumulating fruits,
since it can serve as a rich natural source of phytoene and
phytofluene. It is interesting to note that despite the high
portion of phytoene and phytofluene in the pale fruit of the
accessions with pale fruitdescribed above, the actualamounts
of accumulated phytoene, phytofluene and cis-lycopene in
their fruit is relatively low (up to 30 pg gt FW in ‘PA.754-
255’) and therefore they do not seem to have a nutritional
advantage over accessions with fruit of more intense color
(Tables 1 and 2). For instance, the accessions ‘384LD373’
and ‘Avikaline’, which contain levels higher than 6 pg gt FW,
25 pg gt FW, and 23 pg gt FW of phytoene, phytofluene and
cis-lycopene respectively, represent accessions with high
potential of nutritional value.

The data obtained may pave the way to understand
the genetic factors regulating carotenoid accumulation
in apricot, and may be used for breeding more nutritious
apricot cultivars.
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FIGURE 5. Hierarchical clustering of apricot accessions based
on fruit carotenoid composition. Clustering was calculated
by two-way Ward cluster analysis (JMP; version 12) and
is presented as a heatmap. Standardization of carotenoid
composition is done by subtracting the mean and dividing
by standard deviation for each carotenoid compound. Red,
grey and blue colors represent high, average and low values
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