

Follicule du strophantus laissant échapper ses graines

LA CORTISONE DONNERA-T-ELLE UNE TRÈS GRANDE VALEUR AU STROPHANTUS ?

WILL CORTISONE MAKE THE STOPHANTHUS A VALUABLE PLANT?

SUMMARY

That potent modern remedy, Cortisone, is synthethically obtainable from Strophanthus seeds. However, much uncertainty exists as to the value of the different species or varieties in this regard. Used by Pygmies to poison their arrow-points, the Strophanthus is already known, on the commercial market, as a heart tonic. Attemps at cultivating it have been made without much success. Eight species from the Cameroun are studied botanically.

LA CORTISONA PODRIA DAR UN GRAN VALOR AL STROPHANTHUS

RESUMEN

La cortisona es un potente remedio moderno cuya sintesis se ha revelado posible trațando semillas de Strophanthus. Subsisten grandes incertidumbres tanto sobre el valor de las diferentes especies o variedades, como sobre las posibilidades de cultivo.

Empleado por los pigmeos para envenenar sus flechas, hoy el Strophanthus constituye ya el objeto de un comercio, por tratarse de un medicamente conocido como tonico del corazon.

Los ensayos de cultivo que han sido emprendidos, no han dado grandes resultados. Se estan estudiando botanicamente ocho especies del Camerun.

La cortisone, remarquable découverte médicale

Depuis une dizaine d'anhées, des recherches entreprises tant en Europe qu'en Amérique, sur une hormone dite hormone E. (groupe des stéroïdes) et nommée cortisone, ont attiré l'attenment de certaines formes d'arthritisme, d'artérioscléroses, de maladies du œur, d'hypertension, de troubles mentaux et de carences diverses, ainsi que sur son efficacité dans l'accroissement de l'activité et des capacités mentales. De nombreux travaux, tant chiniques que chimiques, ont été effectués à ce sujet et ils ont valu à leurs principaux auteurs, les professeurs Kendall, Hench et Reichstein, le prix Nobel de médecine 1950.

La grande presse a relaté les résultats spectaculaires obtenus actuellement par l'emploi de cette substance dans le traitement des rhumatismes (paralytiques capables de se mouvoir après quelques jours de traitement). Les U.S.A. espèrent que la cortisone guérira peut-être un jour les sept millions d'arthritiques de son territoire. La France, elle-même, procède à des essais systématiques dans ses hôpitanx. Mais l'emploi de ce remède pose encore des problèmes et sa production reste à ce jour une opération fort complexe.

La synthèse de la cortisone, en partant des graines d'une plante forestière tropicale : le Strophanthus

La cortisone a été extraîte en 1935 par Kendall, de la glande cortico-surrénale des ruminants.

Les quantités infinitésimales de cortisone qu'il est possible d'extraire de ces glandes, justiflèrent des recherches sur les possibilités de la produire par synthèse. Kendall obtint ainsi en 1944 un produit très semblable (composé A), et Sarett en 1946, le composé E, on 17-hydroxy-11-déshydrocorticostérone.

En 1915, Jacobs et Heldelberger avaient isolé une substance, la « sarmentogénine » des graines d'une plante des régions tropicales, le Strophanthus; ces graines, utilisées comme poison de chasse par certaines populations autochtones, n'avaient jusqu'alors fourni que le produit appelé « strophanthine », connu comme médicament du cœur. En fait, la sarmentogénine passa en son temps inaperçue; et ce n'est que plusieurs années après que des chimistes, étudiant à nouveau les constituants de la graine de Strophanthus, extrayèrent un produit dénommé « sarmentocymarine » (Tschesche et Bohle, 1936) qui permit de retrouver la sarmentogénine (Reichstein, 1943). A partir de cette sarmentogénine, la synthèse de la cortisone se révéla possible bien qu'excessivement complexe.

Le Strophantus, ressource forestière de valeur, peut donner lieu à un commerce important Position du problème

Les premières études chimiques et thérapeutiques enfreprises sur les graines de Strophanthus ne datent que de la seconde moitié du xix* siècle. Les propriétés tonicardiaques de la strophantine (ou strophanthoside : glucoside digitalique et non alcaloïde comme on le croit volontiers) sont, depuis plusieurs dizaines d'années, assez bien établies dans leur ensemble (quoique bien souvent des erreurs d'identification botanique compliquent leur aspect chimique). Ces propriétés du Strophanthus en ont fait un produit donnant déjà lieu à des transactions assez importantes,

Mais ce sont, d'une part, le grand intérêt médical de la cortisone et, d'autre part, les possibilités de développement de sa consommation, qui mettent maintenant le Strophanthus en avant de l'actualité. Il peut devenir un sousproduit de haute valeur pour certains pays forestiers tropicaux, et donner lieu à un gros volume d'affaires. On conçoit donc que des firmes commerciales ou agricoles se soient préoccupées d'en intensifier la récolte, et même d'entreprendre la mise en culture de la plante sauvage.

Mais il ne faut pas se laisser facilement entraîner par de simples « règles de trois » optimistes, sans attacher suffisamment d'importance aux problèmes que posent la récolte des graines, leur richesse frès inégale en sarmentogénine, la possibilité et la rentabilité d'une mise en culture agricole, etc...

L'ufilité de cette mise au point est d'autant plus nette que d'autres modes de synthèse de la cortisone sont apparus. La firme américaine Merck produit à l'heure actuelle de petites quautités du produit, après une synthèse complexe utilisant au départ des quantités considérables de bile de bœuf, et le jour se fait aussi sur la possibilité de recourir à d'autres matières premières : graisse de laine, ergostérol, canne à sucre, Dioscoreas... En outre, la préparation de produits analogues à la cortisone ou aussi actifs (extrait de la glande pituitaire des porcs « ACTH » (adrenocorticotropic hormone), mélanges hormonovitaminės, adrėnosine-5-monophosphate, pourrait placer le problème du Strophanthus à nouveau au second plan.

Importance de la détermination exacte des espèces de Sirophanthus utilisables

Le premier Strophanthus connu a été décrit en 1802 par A. Pyrame de Candolle, Actuellement, le genre Strophanthus est assez bien déli-

Strophanius accroché sur un irbusté. Les rameaux de la liane, lépourvus de fenilles, ne porient que des fleurs.

mité dans la famille des Apocynacées, et groupe une cinquantaine d'espèces, dispersées de l'Afrique tropicale (et de Madagascar) aux Philippines : environ 10 en région indo-malaise, 2 à Madagascar, 1 ou 2 en Afrique australe subtropicale, 18 en Afrique orientale et centrale, 10 en Afrique occidentale. En fait, le Congo belge est le territoire le plus riche (15 à 18 espèces) et apparaît comme centre de l'aire générique.

Espèces et variétés sont encore assez mal délimitées, et les 2/3 sculement sont bien connues botaniquement. Une dizaine tout au plus ont été étudiées complètement au point de vue biochimique et, encore bien souvent, pour quelques autres espèces, scules les graines ont fait l'objet d'examen approfondi. Il y aurait également intérêt à étudier certains genres voisins (Périploca, par exemple).

En fait, les travaux de Jacobs et Heidelberger qui, en 1915, avaient abouti à l'extraction de la sarmentogénine, avaient été réalisés sur des graines de Strophanthus dont l'identification n'avait pas été faite, ce qui n'a pas permis de tirer de leur découverte tout le parti qui aurait été désirable, lorsqu'est apparue son utilité pour la synthèse de la cortisone.

Plus récemment, les recherches qui aboutirent à cette synthèse ont souffert, elles aussi, d'unc erreur ou d'une mauvaise détermination botanique, quant à l'espèce de Strophanthus qui avait été utilisée (une espèce ouest-africaine : S. sarmentosus, hispidus, Preussii ou une autre ?), rendant le problème beaucoup plus complexe qu'il n'était apparu au premier abord.

En fait, toutes les espèces examinées depuis lors se sont révélées excessivement pauvres en éléments de base. Il est possible aussi qu'il faille prendre en considération, à côté de la question spécifique, les conditions de crû, de maturité, etc... des graînes.

L'intérêt porté aux Strophanthus par plusieurs

missions américaines, suisses ou françaises, au cours de ces derniers mois, se justifie donc pleinement par l'espérance de retrouver des graines à haute teneur en sarmentogénine.

Jusqu'à ce jour, les chances semblaient diminuer. Mais l'esprit scientifique ne peut abandonner délibérément une voie sur laquelle il s'est engagé, et c'est ainsi que des analyses toutes récentes de graines de Strophanthus sarmentosus et de deux espèces d'Afrique orientale redonnent beaucoup d'espoir.

Pour apporter une contribution aux recherches actuellement en cours, il est donné, à la fin de cette étude, une description générale des Strophanthus du Cameroun, qui permettra facilement de les reconnaître en forêt, avec une liste des espèces que l'on y trouve, et une clef de détermination permettant de distinguer ces espèces les unes des autres.

Le Strophantus, poison de flèche

Les Pygmées de l'Afrique Centrale sont encore à ce jour les seuls Africains dont l'activité essentielle soit la chasse. Il y a quelques années, cette race de petits hommes agiles se groupait par familles et le village, formé de quatre ou cinq huttes de feuillage, se déplaçait dans la grande forêt au gré des saisons, des coutumes, de l'humeur. Le troc primitif de la viande de chasse contre du sel ou des menus objets, avec les « Grands Noirs » autochtones, s'est souvent transformé, à l'heure actuelle, en une vassalité et en une domesticité du village Pygmée qui tend à se sédentariser. La hutte de feuillage devient une case à paroi d'écorces ou de nattes ; les cultures de lubercules, de maïs, etc... se pratiquent de plus en plus. Mais le Pygmée reste eucore le grand chasseur de la forêt. Ses exploits cynégétiques sont dûs avant tout à sa constitution physique, à son caractère. L'emploi d'armes primitives (lances, arbalètes, etc...) avec

Campement Pygmée au Cameroun. Ce sont principalement les Pygmées qui se chargent de la cueillette des graines de Strophanthus.

lesquelles il attaque le gros gibier (éléphants, gorilles, etc...) rehausse encore la valeur de ces exploits. Depuis quand le Pygmée a-t-il en l'idée d'utiliser certaines préparations, telles que celles à base de Strophanthus, pour empoisonner ses flèches et ses armes? Comment a-t-il sélectionne dans le fouillis végétal de la forêt les éléments nécessaires? Ces questions resteront sans doute longtemps sans réponses objectives possibles.

Le Strophanthus africain, tout comme le Curare des Indiens de l'Amérique du Sud, n'est pas le seul produit utilisé comme poison de flèche ; le plus souvent, cet ingrédient principal est mélangé avec d'autres produits, bien mal connus et encore peu étudiés (peau d'une certaine espèce de grenouille, latex ou sucs divers, graines d'autres Apocynacées, viande putréfiée, etc...). Seules, les graines mûres de Strophanthus sont utilisées, sous forme de pâte, à l'exclusion de toute autre partie de la liane, quoique le latex semble parfois être considéré comme actif.

L'emploi du Strophanthus par les autres Noirs de la forêt, ou même par ceux de la savane, a peut-être son origine dans les contacts établis avec les Pygmées ; la chose n'est nullement certaine. Souvent le Pygmée fournit au chasseur « Grand Noir » les graines nécessaires à la préparation du poison de flèches, mais très souvent celui-ci récolte lui-même ses graines ; dans chaque village, il est possible de trouver une bouteille, une calebasse on un paquet de feuilles renfermant les précieuses graines. La valeur attribuée par les indigènes aux différentes espèces de Strophanthus n'est pas aussi constante, géographiquement, que l'on pourrait le croire et il n'est pas certain que les espèces les plus actives soient toujours les mieux utilisées.

Commerce actuel des graines de Strophantus au Cameroun

Dans les transactions commerciales qui s'effectuent actuellement entre l'Afrique et les pharmacopées des pays utilisateurs, on attribue une valeur différente aux graines de diverses espèces de Strophanthus, mais cette distinction ne repose pas uniquement sur de réelles différences pharmacodynamiques, elle repose aussi sur des intérêts commerciaux liés à la répartition géographique des espèces.

L'explication de ce rigorisme peut aussi être recherchée dans les efforts faits pour que les lots commercians d'une espèce donnée ne puissent pas être aisément frelatés, et les tractations ne se font ainsi avec certitude qu'autour d'un nombre très limité d'espèces dont les graines sont typiques et facilement identifiables. Strophanthus gratus, Strophanthus hispidus, Strophanthus Kombe sont, en fait, les seules espèces couramment admises,

En général, ce sont principalement les Pygmées qui se chargent de la cheillette, bien qu'il ne soit pas rare de voir également d'autres Noirs grimper aux lianes, pour récoller les fruits arrivés à maturité, mais non encore ouverts. Les follicules sont ensuite épluchés, séchés au solcil sur une loile ou sur des feuilles jusqu'à déhiscence ; les graines sont débarrassées de leur plumet de poils et, après être passées entre plusieurs mains, elles sont rassemblées par quantité de quelques kilogrammes chez des notabilités ou chez de petits commerçants africains. L'acheteur européen effectue alors le ramassage et assure l'expédition. Cette collecte, exigeant de nombreux déplacements et discussions quant au prix, entraine parfois une augmentation de 100 % du prix des graines entre l'achat à la collecte et la vente à l'exportation. D'autre part, ce commerce est assez aléatoire, car il est lié aux bonnes et aux mauvaises périodes de fructification, aux besoins monétaires des récolteurs, aux conditions de collecte, etc..., et tel commercant européen achetant deux tonnes de graines durant une bonne année ne s'en procure que 100 kilogrammes d'autres années. Au Cameroun, les centres principaux de ramassage sont Kribi et Yokadouma.

Lés chiffres relatifs au commerce africain d'exportation du Strophanthus n'apparaissent pas toujours très nettement dans les statistiques commerciales, économiques ou douanières. Ce produit secondaire de la forêt acquiert parfois une notable valeur, mais les faibles tonnages exportés ne justifient pas toujours sa prise en considération. Pour le Cameroun, les exportations (Strophanthus gratus presque uniquement) furent :

En 1948, de 3 t. 2 ; valeur : 1.200.000 fr. CFA.

En 1949, de 4 t. 9 (vers la France 1 t. 4, vers l'Angleterre 1 t. 6, vers les Pays-Bas 1 t. 6, vers l'Allemagne 0 t. 3); valeur globale : 2.228.000 fr. CFA.

Actuellement, les prix de vente à l'exportation oscillent autour de 400 à 500 fr. CFA le kilo, pour le Strophanthus gratus du Cameroun. Le Strophanthus Kombe de l'Est africain atteint sur les marchés des prix supérieurs. Quant à la récolte effective et à l'utilisation locale, il est encore impossible de les chiffrer, mais elles sont certainement considérables.

Les Strophantus camerounais actuellement utilisés

Le Strophanthus gratus mérite une mention particulière, car c'est l'espèce la plus commune au Cameroun, et ses graines constituent le principal ingrédient du poison de flèche, tel qu'il est préparé au Cameronn et an Gabon. Commercialement, cette espèce est désignée sous le nom de « Strophanthus glabre », et les exportations du Cameroun ont une assez bonne réputation quant à leur présentation. En fait, au lieu d'acheter directement les graines, le commerçant curopéen achéte souvent les fruits presque murs mais non encore ouverts. Débarrassés à la matchette ou au conteau de leur écorce extérieure et maintenus fermés par une ficelle d'écorce, les follieules sont mis à sécher au soleil pendant un jour on deux, Les graines sont alors extraites et séchées durant environ cinq jours, jusqu'à complète dessication.

Le S. Thollonii et le S. congoensis qui sont peut-être employés çà et là pour les poisons de flèche, sont deux espèces abondantes. Plusieurs tonnes de graines pourraient être récoltées annuellement au Cameroun, si cela présentait un jour quelque intérêt.

Le S. hispidus existe dans toute la zone de forêt dense, par pieds très isolés. Ses graines sont également utilisées comme ingrédient de poison de flèche ; elles fournissent le « Strophantus brun », exporté de l'Ouest africain. Mais, au Cameroun, cette espèce ne donne lieu à aucune tractation commerciale.

La culture du Strophantus

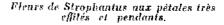
Plusieurs Strophanthus ont été cultivés, par pieds isolés, dans des jardins botaniques divers, particulièrement pour la beauté de leurs fleurs. C'est ainsi qu'au Cameroun, il existe çà et là des pieds ornementaux de S. gratus, voir de S. Thollonii. L'Africain plante parfois, à proximité de sa case, des boutures ou des graines de S. gratus ou de S. hispidus, mais en pleine ambiance forestière, laissant la liane grimper sur de grands arbres. La fructification est alors tout à fait comparable à celle des lianes sauvages.

Par contre, tous les essais de plantation de « type agricole » entrepris (Bipindi au Cameroun, Bitam au Gabon...) se soldent à ce jour par des échees. Les plantations sont, en ellesmêmes, faciles à établir à partir de graines ou de boutures. Les supports trop peu résistants constitués par de simples piquets semblent à

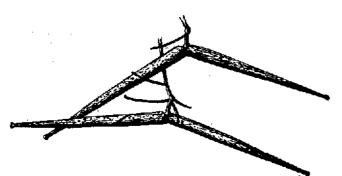
proscrire, et l'utilisation de petits arbres bien accrochés au sol (Coula, Spondias, Mangifera...) est préférable, également pour la cueillette. Si toutes les conditions écologiques sont favorables, ce qui n'est pas tonjours le cas (terrains, précipitations, etc.), ces plantations établies en plein découvert présentent une remarquable floraison qui leur donne un aspect de roseraie. Mais la fructification qui pourrait suivre est pratiquement nulle. Alors qu'une grande liane naturelle de S. gratus arrive à produire plusieurs dizaines de doubles follicules (le pourcentage de fleurs fertiles étant cependant très minime), un pied de S. gratus en plantation fructifie à partir de trois au quatre aus, mais ne produit encore, vers huit ans, que un à trois fruits.

Que sera devenu l'intérèt de la cortisone et du Strophanthus dans plusieurs années, lorsque les plantations pourraient entrer en rapport ? Ce dernier résultat suppose d'ailleurs que l'on découvre immédiatement toutes les conditions agronomiques requises pour produire économiquement une fructification rentable, en étant parti de l'espèce ou de la variété convenable riche en sarmentogénine. Il restera encore que l'influence de la taille, l'influence des pluies sur la « coulure » des fleurs, le rôle possible des insectes dans la pollinisation, l'importance de la position des fleurs à un nœud (naturel on artificiel) de la liane pour la fécondation, etc., sont des problèmes encore peu étudiés.

Peut-être, les travaux agronomiques entrepris au Libéria sur les Strophanthus par des chercheurs américains, apporteront-ils une réponse au problème de la culture? L'utilisation thérapeutique possible du latex, on des écorces de racine, ou de tige, amènerait également une simplification de la production. Mais cette utilisation reste encore du domaine de l'hypothèse.


Les caractères botaniques des Strophantus du Cameroun

Les Strophanthus cameronnais ont un port assez variable; arbrisseaux buissonnants (zone des savanes en particulier), on sarmenteux (défrichements et clairières), on grandes lianes ligneuses (zone de forêt dense) atteignant plusieurs dizaines de mêtres et souvent 10 à 15 centimètres de diamètre à la base. Les laticifères de la plante exsudent un latex amer, à écoulement assez lent, d'aspect aqueux au premier abord mais où apparaissent rapidement des taches laiteuses blanc-grisâtre (et en cela les Strophanthus se reconnaissent assez aisément par une simple entaille). L'écorce des rameaux


âgés est en général liègeuse, mais il est difficile d'établir des différences spécifiques, et les confusions entre les espèces ou avec d'autres genres, à partir de ce seul caractère, sont fréquentes. Les jeunes rameaux sont lisses et parfois couverts de lenticelles arrondies caractéristiques. La plante est toujours dépourvue de vrilles.

Les feuilles n'ont pas de stipules; elles sont pétiolées, entières, elliptiques, cunéiformes à la base et plus ou moins acuminées au sommet, et toujours opposées (exceptionnellement verticillées par 3: S. sarmentosus variété ogowensis, S. hispidus...); le limbe est penninervé. La présence de poils, d'écailles sur les rameaux, sur les limbes, sur les nervures, est spécifique, mais non toujours très nettement caractéristique. (Il est, par exemple, possible de trouver, pour le S. gracilis, simultanément sur la même plante, des feuilles glabres, des feuilles scahres, et des feuilles opposées dont l'une est glabre et l'autre scabre).

Les inflorescences sont terminales, en cymes denses ou corymbiformes), multi- ou pauci-flores (rarement uniflores), et les fleurs sont le plus souvent colorées de blanc, de jaune, de rouge ou de pourpre. Le calice, gianduleux

Deux fruits de Strophantus, composés chacun de deux follicules opposés accrochés horizontalement sur le rumeau.

intérieurement, est formé de 5 sépales libres; la corolle est très remarquable : en entonnoir ou en cloche, à tabe long ou court, portant entre les 5 pétales soudés 5 écailles bipartites ; les 5 lobes sont plus ou moins longuement caudés, les appendices sont parfois filiformes et peuvent atteindre 15 ou 30 centimètres ; ces lobes, dans la fleur non épanouie, se recouvent en spirale; 5 étamines à court filet sont fixées vers le sommet du tube, et les anthères en forme de fer de lance entourent un stigmate capité sillonné, surmontant 2 carpelles séparés à très nombreux oyules.

Le fruit est formé de 2 follieules divergents, oblongs, fusiformes ou linéaires, longs de 10 à 60 centimètres et épais de 1 à 10 centimètres, suspendus horizontalement et perpendiculairement au rameau. Parfois, les follicules ne sont plus sur une même ligne, et ils se trouvent légèrement inclinés vers le bas, sans toutefois jamais être pendants parallèles ; ces follicules se fendent sur leur face inférieure ; leur extrémité distale peut être arrondie, ou pointue, ou aplatic transversalement (« groin de pore ») ou en forme de disque. Les graines, au nombre de plusieurs dizaines à plusieurs centaines par follicule, sont fusiformes, comprimées, pour vues à la base d'une touffe de poils, et terminées en longue arête plumeuse. La graine elle-même est glabre, on plus ou moins pubescente ; le goût des graines est amer comme celui du latex.

Les espèces de Strophantus présentes au Cameroun

Il est à l'heure actuelle signalé au Cameronn français huit espèces de Strophanthus : S. congoensis, S. erythroleucus, S. gracilis, S. gratus, S. hispidus, S. Prenssii, S. sarmentosus, S. Tholtonii. A côté de ces huit espèces, il faut signaler l'existence probable du S. Bullenianus de Nigéria, du Cameroun britannique et du Gabon, l'existence possible du S. Barteri d'A.O.F., et la possibilité de trouver dans la partie Sud-Est de la zone forestière rattachée au bassin du Congo et encore mal connue, des espèces du Congo beige. Le S. Schlechteri de la littérature reste une énigme et semble provenir d'erreurs taxonimiques.

Différenciation de ces diverses espèces

Il semble intéressant de donner quelques clefs de détermination sommaire concernant ces espèces :

- D'après les caractères végétatifs et la répartition.
 - a) feuilles absolument glabres ;
 - h.) à nervures bien proéminentes ;
 - c.) 7 à 10 paires de nervures ; petite liane sarmenteuse qui n'existerait que dans la région côtière où elle semble excessivement rare. S. erythroleneus
 - c₂) 4 à 7 paires de nervures ; grande liane ou de taille moyenne qui existe dans toute la zone de forêt dense mais par pieds très isolés S. Preussii
 - b_s) à nervures déprimées ou tout au moins non proéminentes à la face inférieure du limbe
 - d.) 6 à 8 paires de nervures ; grande liane très commune et très fréquente dans toute la zone de forêt dense (où elle est connue sous le nom yaoundéboulou d'énaé) S. gratus
 - da) 6 paires de nervures; liane de taille moyenne cantonnée aux berges des rivières à proximité de la zone littorale et qui est particulièrement abondante. S. Thollonii
 - a2) feuilles marbrées de blanc à la face inférieure du limbe
 - e.) feuilles opposées, petites (30-80 sur 20-40 mm.); grande liane de la zone de forêt dense, à répartition assez irrégulière, cantonnée, semble-t-il, aux altitudes inférieures à 200 mètres. S. congoensis e.) feuilles opposées ou ternées (en général, dans la variété ogowensis), grandes (50-110 sur 25-60 mm.); grande liane dans la zone de forêt dense (var. ogowensis) où elle remplace S. congoensis dans tout l'arrière pays montagneux; sous forme sarmenteuse ou arbustive dans la zone des savanes. S. sarmentosus

- II. D'après les fleurs.
 - a) lobes de la corolle non caudée, écailles de grande taille
 - bi) lobes du calice et de la corolle obtus, fleurs blanches ou pourpres. S. gratus
 - b₂) lobes du calice et de la corolle aigus ; fleurs pourpres et fleurs jaune soufre. S. Thollonii
 - a₂) lobes de la corolle caudés en appendices, écailles de faible taille
 - c_i) appendices linéaires
 - d_i) appendices longs de 15-25 mm. S. congoensis
 - d₀) appendices longs de 50-65 mm. S. sarmentosus
 - ca) appendices filiformes
 - e_i) rameaux glabres
 - f.) appendices longs de 15 mm.
 - S. erythvoleneus
 - f₂) appendices longs de 200-300 mm. S. Preussii
 - e₂) rameaux poilus; appendices longs de 150-200 mm. S. hispidus
 - es) rameaux scabres; appendiçes longs de 150 mm. S. gracilis
- III. D'après les fruits.
 - a_i) extrémité du follicule en disque; follicule fusiforme dépassant 25 cm.

- b₁) rameaux glabres S. Preussii b₂) rameaux hispides ; graines velues à pilosité jaune-grisatre S. hispidus 12) extrémité du follicule aplatie transversalement (« groin de porc »)
 - e_i) follicule fusiforme
 - d_i) inférieur à 15 cm. . . . S. congoensis
 - (d₂) dépassant 15 cm. S. surmentosus
 (e₃) follicule linéaire dépassant 25 cm.
 - S. gracilis
- a_z) extrémité du follicule pointue ; follicule fusiforme
 - e_i) follicule inférieur à 15 cm.
 - S. congoensis
 - c₂) follicule dépassant 25 cm.
 - f.) teinte verdâtre à maturité ; graines glabres S. grains
- a_i) extrémité du follicule acuminée émoussée ou arrondie
 - g_i) follicule fusiforme
 - h.) inférieur à 15 cm. . . S. congoensis
 - h₂) dépassant 15 cm. . . S. sarmentosus (var. ogowensis)
 - ga) follicule linéaire dépassant 25 cm.
 - S. erythroleneus

R. LETOUZEY,

Inspecteur principal des Eaux et Forêts d'Outre-Mer, Chef de la Section de Recherches Forestlères du Gameronn.

