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Abstract

North-eastern Thailand is an essential production area for high-quality fragrant rice for
domestic use and export. While rainfed conditions largely prevail, plans to extend
irrigation are drafted. This article compares paddy rice production under irrigation and
rainfed conditions. Techno-economic performances were analysed jointly with environ-
mental impacts, based upon life cycle analysis, and energy and water use analyses. Data
were collected in 2010 from 45 diverse rice cropping systems in the Lam Sieo Yai Basin,
according to three systems, namely wet-season rain-fed (Rw), wet-season irrigation (Iw),
and dry-season irrigation (Id) systems. Wide-ranging performances and impacts were
observed, while cropping practices were relatively homogeneous. Differentiation of
systems originated mostly from differences in yield, which were largely impacted by water
supply. The results highlight the low performances and high impacts of 1d systems. They
require mostly blue water, while the two other systems rely primarily on green water. Id
systems also require more energy and labour, due to increased water management needs.
The productivity of most production factors was higher in Rw and Iw systems. Emissions
proved relatively similar across systems, with the exception of CHy, which was markedly
lower in Rw systems due to specific water and organic residue management. Id systems
systematically emitted more nitrates, phosphates, and pesticides. Rw systems showed the
lowest environmental impacts per ha and per kg of paddy rice produced. The average
Global Warming Potential was 2.97 kg CO,-eq per kg rice in Rw systems, 4.87 in Iw
systems, and 5.55 in Id systems. This article further discusses the results in view of
contrasting perspectives, including societal objectives, farmer income and environmental
integrity, and possible irrigation development in north-eastern Thailand.

Key words: environmental impact; irrigation; life cycle analysis; productivity; rice.
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Résumé
Les impacts environnementaux du riz de bas-fonds : comparaison de systémes
irrigués et pluviaux en Thailande

Le Nord-Est de la Thailande est une région essentielle pour la production de riz parfumé de
haute qualité a usage domestique et a 'export. Alors que les systemes pluviaux dominent,
des plans d’extension de lirrigation sont préparés. Cet article compare la production de riz
en casier irrigué et en pluvial. Les performances technico-économiques et les impacts
environnementaux ont €té analysés conjointement, a I'aide des analyses du cycle de vie et
des usages de I‘énergie et de I'eau. Les données ont été collectées en 2010 dans 45 systemes
de culture du bassin de Lam Sieo Yai, selon trois systemes : pluvial de saison humide (Rw),
irrigué de saison humide (Iw) et irrigué de saison seche (Id). On observe des performances
et des impacts tres différenciés, alors que les systemes sont relativement homogenes. Ces
différences entre systémes proviennent essentiellement des rendements, eux-mémes
influencés par les apports d’eau. Les résultats soulignent les moindres performances et les
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orldwide, paddy rice sys-
tems provide food, income,
and a diversity of ecosys-

tem goods and services (Bouman et al.,
2007), yet they also have negative
impacts on the environment (Roger et
Joulian, 1998; Tilman et al., 2001). Rice
production requires large amounts of
resources and contributes to pollution
in all environmental compartments.
Flooded rice grows under anaerobic
conditions, which favours methane
formation (IPCC, 20006).

Thailand is the world’s sixth largest rice
producer and largest exporter. Rice is
grown on some 10 million hectares of
land, with more than half grown in the
north-eastern region (Isaan). Rice pro-
duction in Isaan is currently mostly
lowland rain-fed (85% of paddy land
area; only in the wet season) and
irrigated (15% of paddy land cover
during the wet season; only 7.5%
during the dry season), and shows
low yields of high-quality, high-value
varieties (Jasmine fragrant rice for
domestic use and export). Isaan pro-
duces approximately 80% of all jasmine
rice produced nationwide.

Overall, rice production systems con-
tribute 80% of freshwater extractions
in Thailand, and pesticide-related
toxicity has become a major concern.
There exist recurring plans to extend
irrigation in Isaan (Molle and Floch,
2008), which can be implemented
only through further exploitation of
the Mekong river and its tributaries
and wetlands.

impacts forts des systemes Id. Ils requierent de I'eau d’irrigation (eau bleue) alors que les
autres consomment avant tout les précipitations utiles et le stock d’eau du sol (eau verte).
Les systemes Id consomment aussi plus d’énergie et de main-d’oeuvre pour la gestion de
lirrigation. La productivité de la plupart des facteurs de production est supérieure dans les
systemes de saison humide Rw et Iw. Les rejets s’averent similaires dans tous les systémes, a
l'exception du CH4, nettement moins émis par Rw en raison des modalités de gestion de
I'eau et des résidus de culture. Les systemes Id rejettent systématiquement plus de nitrates,
de phosphates et de pesticides. Les systemes Rw montrent les impacts les plus faibles, par
hectare et par kilo de riz produit. Le potentiel de réchauffement climatique est en moyenne
de 2,97 kg CO,-eq par kilo de riz dans les systemes Rw, 4,87 dans les systemes Iw, et 5,55
dans les systemes Id. Enfin, 'article discute les résultats, au regard des objectifs sociétaux et
de ceux des producteurs, du respect de 'environnement, et du possible développement de
lirrigation dans le Nord-Est de la Thailande.

Mots clés : analyse du cycle de vie ; impact sur 'environnement ; irrigation ; productivité ;
riz.

Themes : eau ; productions végétales ; ressources naturelles et environnement.

Given the importance of the rice sector
in Thailand and growing concerns
about its sustainability, this research
aims at assessing the environmental
impacts of rice cropping systems in
Isaan as a main production area. In
view of existing plans to extend
irrigation in Isaan, the research also
compares the advantages of rice
production under controlled irrigation
and rain-fed conditions in both envi-
ronmental and economic terms.

Materials
and methods

Study area description

The Lam Sieo Yai basin (2,875 km?) is
located at the heart of the Isaan plateau
in North-eastern Thailand. The region
has a tropical savanna climate, with two
seasons: the dry season between
November and April, which commonly
includes severe drought conditions,
and the monsoon-affected wet season
between May and October. Annual
rainfall amounts to approximately
900 mm on average, yet with high
inter-annual variability.

Of the total area, 83% is agricultural
land, of which 96% is covered with
paddy fields. In the basin, 75% of
paddy fields are irrigated (i.e. with
controlled water supply). The other
25% are rainfed paddy fields. Lowland

rainfed rice is grown only during the
wet season, while irrigated rice may
be cultivated during both seasons.
Rainfed conditions refer to conditions
of lowland rice that is cropped under
flooding conditions with no control of
water supply. Rainfall, soil moisture,
and natural runoff alone (green water)
provide water to the paddy fields.

Joint LCA and techno-
economic analyses

General approach

Among other methodologies, life cycle
analysis (LCA) has recently emerged
as the leading methodology to assess
potential environmental impacts in
agriculture (Van der Werf and Petit,
2002). This approach is increasingly
used in the industry and the agriculture
sectors for assessing processes and
products and for the development
and implementation of environmental
policies (EU, 2010a). LCA is a struc-
tured, systematic, standardised method
(ISO 14040 and 14044) for quantifying
the emissions, resources consumed,
and environmental and health impacts
that are associated with the production
and use of goods and services (pro-
ducts). LCA consists of a thorough and
systematic inventory (life cycle inven-
tory, LCD of processes, emissions,
resource consumptions, and inputs
and outputs related to the provision
ofa good orservice. It then converts the
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inventory into impact indicators as per
impact categories. This step is the
life cycle impact assessment (LCIA)
phase (Baumann and Tillman, 2004;
EU, 2010b).

LCA application in agriculture has
developed over the last 15 years
(Audsley er al., 1997) and addressed
most agricultural commodities (Williams
etal., 2005). Yet, paradoxically, rice has
been rarely studied. To the authors’
knowledge, there are only three com-
prehensive published applications of
LCA to rice (Blengini and Busto, 2009;
Wang et al., 2010; Hokazono and
Hayashi, 2012). The two former com-
pare an alternative, supposedly less
impacting, cropping system with an
existing one. Wang et a/.(2010) studied
only one system. In all cases, the
assessments focus on virtual systems
that represent average, ideal situations,
regardless of the diversity of local
situations and practices. Basset-Mens
etal.(2010) assessed rice LCA literature
and highlighted the overall paucity
and limitations, including a lack of
consideration of the actual diversity
of field and farm situations and of
water and energy use.

The research is an attempt to better
address the actual diversity of existing
systems. It collected, analysed, and

combined indicators of techno-
economic performances with environ-
mental impact indicators based upon
the life cycle approach, at cropping
system level. Techno-economic ana-
lysis typically results in monetary
values as per factor of production
while LCA expresses environmental
impacts as per selected functional
units FU. The FU for LCA is the mass
(kg) of raw paddy rice (unmilled) at
the farm gate (approximately 15%
moisture content).

Three cropping systems were investi-
gated based upon water management
system: wet-season rain-fed rice (Rw),
wet-season irrigated rice (Iw), and dry-
season irrigated rice (Id). Direct sowing
of dry seeds has become predominant
in Isaan. The results presented here
refer to this planting mode in each
water management system.

Primary data were collected by means
of field observations and interviews
with farmers; data refer to both dry
and wet seasons of 2010. Year 2010
received 1,219 mm of precipitation,
which is notably more than the 30-year
average (900 mm). For each system,
15 farm plots were selected with ex-
tension officers and farmers, based
upon representativeness and local
diversity.

The present LCA study covered the
rice production systems from the
mobilisation of all raw resources and
equipment to farm gate (unmilled
rice). Figure 1 shows the flow diagram
used for the study, where both direct
and indirect flows were considered in
the inventory.

Joint inventories

The common technical data and
specific data needed for LCI and
economic analyses for the main stages
of rice production are presented in
table 1. The inventory comprises the
following processes and operations:

- field operations with machinery;

- field operations performed manually;
- inputs and agro-chemical use;

- yields and market price at the farm
gate;

- cultivated areas.

Actual water consumption is un-
known in canal, gravity-based condi-
tions. Crop water requirements (CWR)
and irrigation water requirements
(IWR, blue water), both modelled
from soil, crop, and climate data, are
usually used as proxies (Allen et al.,
1998). Recent versions of the FAO’s
CropWat (FAO, 1992; Chapagain and
Hoekstra, 2011), coupled with water

<«—| Direct energy
. use
] Tillage
Machinery Puddling
Indirect energy > Direct field
use Sowing —b o
for manufactoring emissions
Direct blue
Chemicals Fertilisation <+ water use
. Bund management
Indirect energy = —%» Weed control
use Pest control :
for manufactoring ‘ Direct green
water use
Water management
Seeds "
Indirect energy = Harvesting ¢ ETIS Sd .
and water use Threshing o Un":j' © c;'ce
for production proauce

Figure 1. Flow diagram for rice cropping systems: general inventory of inputs and outputs from resources mobilisation to farm gate (unmilled rice).

Figure 1. Diagramme de flux en systémes rizicoles :

décortiqué).
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Type and source of data needed for life cycle inventory (LCl) and economic analyses.

Tableau 1. Type de données et leurs sources pour l'inventaire ACV (analyse du cycle de vie) et les analyses économiques.

Areas of inventory Data sources Unit

Common technical Input use (seeds, chemicals) Primary data (farm level) Kgorg
data Direct energy consumption Primary data (farm level) MJ

(machinery, portable equipment)

Water consumption Modeling from IWR (Water m?

balance model and CropWat)
Yield Primary data (farm level) kg/ha
Land use Primary data (farm level) ha/production cycle

LCl-specific data

Indirect energy consumption
(from manufacturing and

(in SimaPro)

transport of machinery and

chemicals)

Direct field emissions

Modelling (secondary data

Ecoinvent database MJ

Kg substance per

IPCC and tier-2 references)

Economic data

Production costs (labour,

chemicals, machinery, energy)

Economic value (total value

product)
Labour

Primary data (farm level) Thai Baht
Primary data (market price Thai Baht
at farm gate)

Primary data (farm level) h

IWR: irrigation water requirements; IPCC: International Panel on Climate Change.
Thai Baht (THB): currency of Thailand, equal to approximately 0.033 US$ at the time of data collection (2010).

balance modelling in ponding condi-
tions, have been used.

The inventory for the manufacturing
and delivery of machinery, agroche-
micals and seeds, equipment, machinery,
inputs, and energy carriers used
during field operations were calculat-
ed with SimaPro 7 from field data and
based upon existing conversion rates,
methods, and databases (Ecoinvent
database). These flows are shown on
the left side of figure 1. Flows related
to direct field emissions, energy
use, and blue (irrigation) and green
(rainfall) water use are shown on the
right side of figure 1. Human labour
is being considered only in techno-
economic calculations.

CHy emissions were modelled based
upon tier-1 methods established by the
International Panel on Climate Change
(IPCC, 2000) for paddy under different
water regimes, adjusted with tier-2
baseline emission factors determined
by Yan et al. (2003a) for Thailand. For
N,O, NHj, and NOx emissions, the
methods developed by Yan et al
(2003b) were used. They suggested
tier-2 methods for flooded paddy fields
in South East Asia. Carbon dioxide was
considered neutral (Williams et al.,

2005). The observed average length
of cropping cycles is 120 days, from
sowing to harvesting.

Water-soluble nitrates and phosphates
have been considered to be the two
potential pollutants emitted to the
water compartments during rice crop-
ping. A similar approach was carried
out for both of these pollutants.
Because urea and ammonium-based
fertilisers prevail in Isaan, direct nitrate
emissions result mostly from nitrifi-
cation and the whole nitrogen cycle
and balance, rather than direct
fertiliserloss. The principles underlying
the nitrate emission assessment are
that: i) nitrates form the remaining
components of the overall nitrogen
mass balance the other components of
which were determined in earlier
sections; ii) these water-soluble nitrates
may leach to the water compartment
through surface drainage and deep
percolation; and iii) such a portion
refers to the ratio between water that is
not used by the crop and overall water
supply (that is water use efficiency).
Accordingly, nitrates potentially leach-
ing from a paddy field are modelled
according to a dual N and water
mass balance approach suggested

by Brentrup et al. (2000) and Pathak
et al. (2004).

A similar approach was applied to
phosphates, under similar assumptions
regarding the stability of long-term
contents, the absence of erosion, and
with a similar modelling approach.
P inputs from fertiliser were calculated
from fertiliser formulae and application
doses.

In the cropping systems under study,
the pesticides typically used included
a molluscicide (metaldehyde), an
insecticide  (isoprocarb-based — with
CaCO3), and an herbicide (glypho-
sate); all are hand-sprayed at different
stages while the field is flooded most
of the time. It was assumed that 100%
of pesticides ultimately end up in both
soil and water compartments. Straw
and rooting systems are left in the
field to decay. It was decided to split
emissions equally between soil and
water compartments (50%-50%).

LC impact assessment

The selected environmental impact
indicators first include resource-use
indicators: energy use (EU), fresh-
water use (WU), and land use (LU).
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It should be noted that no characteri-
sation towards indicators of potential
water resource depletion was used.
Current methodologies (Pfister et al.,
2009) that calculate regional Water
Stress Index (WSD do not provide
satisfactory results in tropical mon-
soon areas. Indeed, the algorithm
considers the high monthly variations
of precipitations, and results in artifi-
cially high WSI. Second, they include
environmental impact indicators: eu-
trophication (EP), acidification (AP),
global warming potential for a 100-
year time horizon (GWP ), freshwa-
ter aquatic ecotoxicity (FWAE), and
ozone depletion (ODP). These impact
categories were chosen based upon
their widespread use in agricultural
LCA studies, allowing for comparison.
More specifically, FWAE was selected
because freshwater is a key compart-
ment of paddy rice cropping systems.
Characterisation was performed with
the SimaPro platform using CML
baseline 2002/world, 1995 methodol-
ogy. All units are provided in table 2.
GWPo was calculated according to
IPCC (Guinée ef al., 2002). EP, FWAE,
and ODP were calculated with factors
recommended by Guinée et al. (2002).
AP was calculated using the generic
method proposed by Heijungs et al.
(1992). Energy use was calculated

based upon direct and indirect fossil
fuel use, including physical (machi-
nery) and chemical (fertilisers and
pesticides) energy. Crop evaporative
consumption was modelled with wa-
ter balance and CropWat models
(FAO, 1992); it included the evapora-
tion of rainfall from cropland (green
water use, WU,) and the evaporation
of irrigation water from cropland (blue
water use, WUy,). Land use refers to the
loss of land as a resource in the sense
of being temporarily unavailable for
other purposes. Details on CML 2002
calculations, impact factors, and nor-
malisation may be found in Guinée
et al. (2002). CML 2002 methodologies
and necessary databases are included
in the SimaPro 7.3 modelling platform,
which was used for this research.
Commercial pesticides were modelled
according to their active ingredients
and the inventory data from Ecoinvent
database within SimaPro.

Results

Utilisation of production
factors and performances

Table 3 shows the techno-economic
performances of the three cropping

systems per area cultivated (ha). The
results highlight the low performances
of Id systems, the production factor
requirements of which are systemati-
cally higher than those of the two
other systems. In addition, the Id
system yielded markedly lower pro-
duction. The Id system also requires
mostly blue water, while the other two
rely predominantly on green water.
The Id system requires three pumping
episodes, on average, to replenish
ponding conditions in paddy fields;
therefore, it requires more labour and
energy (pumps).

Labour, energy, and pesticide require-
ments are markedly lower in rain-fed
conditions due to lesser water mana-
gement requirements (no pumping)
and an absence of treatment against
the golden snail (Pomacea canalicu-
lata) which cannot reproduce during
the cropless dry season of rain-fed
plots.

The high level of homogeneity of
fertiliser and pesticide application
practices within each cropping sys-
tem resulted in relatively homoge-
neous production costs per system,
however, there were diverse out-
comes in terms of yield and, there-
fore, of gross and net income. Net
income per system was wide-rang-
ing, with the Id system being the least

Environmental impact indicators in selected rice cropping systems in the Lam Sieo Yai basin

in 2010.

Tableau 2. Indicateurs d'impacts environnementaux de systémes rizicoles du bassin de Lam Sieo Yai, année 2010.

Rain-fed Wet-season irrigated rice dry-season irrigated rice
:::ipi'::ttor Esifte'e""e Max. Median Min.  Max. Median Min.  Max. Median  Min.
Ref. Unit/1 kg of paddy rice
GWP,00 kg CO5-eq 3.450 2.970 2.840 5.120 4.870 4.510 6.200 5.550 5.060
EP kg PO4-eq 0.093 0.075 0.070 0.087 0.079 0.069 0.119 0.099 0.084
ﬁ‘;}g:;‘;‘a‘ed AP kg SO,-eq 0.052 0.044 0.042 0.044 0.040 0.036 0.057 0.049 0.043
ODP mgCFC-11-eq 0.084 0.071 0.067 0.073 0.068 0.061 0.096 0.082 0.072
FWAE kg 1,4-DBeq 0.329 0.276 0.261 0.325 0.303 0.269 0.431 0.371 0.323
Wu m?3 3.1563 2.646 2.518 2.886 2.676 2.395 3.87 3.317 2.902
::gi“;;z'fs‘ed LU ha 0.00050 0.00042 0.00040 0.00041 0.00038 0.00034 0.00053 0.00046 0.00040
EU MJ 8.680 7.262 6.913 8.037 7.44 6.6 9.774 9.529 7.913

Results are expressed per kg rice produced.
GWP: global warming potential; EP: eutrophication; AP: acidification; ODP: ozone depletion; FWAE: freshwater aquatic ecotoxicity; WU: freshwater use; LU: land use;
EU: energy use.
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Production factor use and techno-economic performances per hectare in selected rice
cropping systems in the Lam Sieo Yai basin in 2010.

Tableau 3. Utilisation des facteurs de production et performances technico-économiques de systémes rizicoles du bassin de

Lam Sieo Yai, année 2010.

Rain-fed Wet-season irrigated rice Dry-season irrigated rice
Production factors Reference Max. Median Min. Max. Median Min. Max. Median Min.
and performances Unit
Ref. Unit/ha

Labour man hr. 8.494 6.625 5.677 15.234 11.949 8.013 16.447 16.447 11.250
Fertiliser kg of 625.00 625.00 625.00 687.50 687.50 687.50 687.50 687.50 687.50

fertiliser
Pesticide kg of active 5.070 5.070 5.070 7.356 7.356 7.356 11.575 11.575 11.575

matter
Total water m? 6,285 6,285 6,285 7,026 7,026 7,025 7,256 7,256 7,256
Green water m? 6,285 6,285 6,285 6,285 6,285 6,285 1,172 1,172 1,172
Blue water m? 0.288 0.250 0.208 740.539 740.539 740.444 6,084 6,084 6,084
Total energy MJ 17,360 17,281 17,222 19,590 19,530 19,388 20,846 19,783 18,327
Production cost THB 20,868 20,843 20,822 22,435 22,354 22,243 23,415 22,943 20,884
Gross income THB 28,521 27,095 22,817 33,512 29,947 27,808 30,000 26,250 22,500
Net income THB 7,653 6,252 1,995 11,077 7,593 5,565 6,585 3,307 1,616

Note: THB =Thai Baht, currency of Thailand, equal to approximately 0.033 US$ at the time of data collection (2010).

profitable and the most variable.
Conditions during the dry season
are less favourable temperature-wise
and more uncertain and variable in
terms of water management. Iw
systems showed higher homogeneity
of results and a potential for the
highest yields and net income.

Table 4 shows the productivities of
production factors and the techno-
economic performances of the three
rice cropping systems. Overall, the
results confirm that the productivities
of most factors are higher in the Rw
system, in which farmers produce
more rice per labour unit, pesticide
unit, and total energy unit. Interest-
ingly, the productivities in the Rw and
Iw systems are similar with regards to
factors such as fertiliser, total water,
and green water. Return on invest-
ment (mass of rice produced per
production cost) is slightly higher in
the Iw system compared to the Rw
system (0.117 kg/THB and 0.114 kg/
THB, respectively; [1 THB=0.03 USS])
and is lowest in the Id system
(0.095 kg/THB). Median yields (land
productivity) vary from 2,625 kg/ha in

the Iw system to 2,375 in the Rw
system, and 2,188 in the Id system.
Finally, the amount of rice per net
income unit is markedly lower in the
Iw system (0.297 kg/THB earned as
net income) and Rw system (0.310)
compared to the Id system, in which
farmers need to produce twice as
much rice (0.662 kg) to obtain the
same net income.

Environmental impacts

On a land use basis, LCIA results
show that GWP,y, is markedly dif-
ferent between rain-fed and irrigated
systems, Iw showing the highest
impact (table 2). Differences in CH4
emissions (because of straw incor-
poration and water management
during pre-cultivation times) account
for this result. In all other impact
categories, Rw systems systematically
show lower impacts per ha than Iw
and Id systems, with the latter having
the highest impacts. However, AP,
ODP, and total water use are of
the same magnitude across systems
(figure 2).

On a rice mass basis, differences are
more marked, due to yield differences.
In table 2, the environmental impacts
for selected impact categories, per kg
of unmilled rice produced, are
reported. The impacts of Id systems
are higher than those of the two other
systems due to the lower vyields.
GWP,y becomes higher in Id systems
(5.55 kg COz-eq) compared to Iw
systems (4.87). Rw systems remain
the least impacting, with 2.97 kg CO,-
eq. Total energy use is higher in Id
systems (9.64 MJ/kg rice) compared to
Iw and Rw systems (7.50 and 7.29,
respectively). Figure 3 reports a rela-
tive comparison of selected environ-
mental impacts by the three systems,
and highlights the same differences,
and the high impacts of Id systems.
It was calculated that Rw systems
value each ton of CO;-eq emitted at
4,040 THB, or approximately 134 USS.
Iw and Id systems value each ton of
CO,-eq emitted at 82 and 72 USS$,
respectively.

Figure 2 shows the diversity of water
consumption in the sampled cropping
systems. Variations in water use are
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Productivity of production factors and techno-economic performances in selected rice
cropping systems in the Lam Sieo Yai basin in 2010.

Tableau 4. Productivités des facteurs de production et performances technico-économiques de systémes rizicoles du bassin
de Lam Sieo Yai, année 2010.

Rain-fed Wet-season irrigated rice Dry-season irrigated rice
:;%d:::;g?njggfgss Eil;:zrence Max. Median Min. Max. Median Min. Max. Median Min.
Kg of paddy rice/Ref. Unit
Land ha 2,500 2,375 2,000 2,938 2,625 2,438 2,500 2,188 1,875
Labour man hr. 440.37 358.49 235.47 366.60 219.69 160.00 222.22 133.00 160.00
Fertiliser kg of 4.000 3.800 3.200 4.273 3.818 3.545 3.636 3.182 2.727
fertiliser
Pesticide kg of active 493.10 468.44 394.48 399.32 356.84 331.35 215.98 188.98 161.99
matter
Total water m3 0.398 0.378 0.318 0.418 0.374 0.347 0.345 0.301 0.258
Green water m3 0.398 0.378 0.318 0.467 0.418 0.388 2.133 1.866 1.600
Blue water m3 12,000 9,500 6,933 3.97 3.545 3.292 0.411 0.360 0.308
Total energy MJ 0.145 0.1379 0.115 0.15151 0.13441 0.12442 0.1264 0.10494 0.1023
Production cost THB 0.120 0.114 0.096 0.131 0.117 0.110 0.107 0.095 0.090
Gross income THB 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083
Net income THB 0.629 0.310 0.274 0.348 0.287 0.229 1.160 0.662 0.380

Note: THB = Thai Baht; currency of Thailand, equal to approximately 0.033 US$ at the time of data collection (2010).
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Figure 2. Total water use (WU) per kg of paddy rice produced, modelled for the 45 rice cropping systems
(wet and dry seasons in 2010).

Figure 2. Usage total en eau par kilo de paddy produit, modélisé pour les 45 systémes rizicoles (saisons

humide et séche 2010).

Rainfed; Iw: Irrigated wet season; Id: Irrigated dry season.
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especially marked in dry-season irri-
gation, showing diversity of practices
in farmers’ decisions and strategies
regarding water supplies (pumping
episodes).

A contribution analysis showed the
relative contribution of cropping sub-
systems to each impact category.
Direct field emissions to air and water
overwhelmingly contribute to AP, EP,
GWPpy, and FWAE; they mostly
depend on water management prac-
tices for methane emissions, and both
agro-chemical and water management
for other emissions. Field operations
with machinery and equipment con-
tribute 20% of all energy use and a
large part of ODP. Fertiliser applica-
tion and manufacturing contribute a
majority of total energy use, a large
part of ODP, FWUE, and a marginal
amount to AP, EP, and GWP . Rice
seeds contribute marginally to FWAE
and EU. Pesticide application requires
small amounts of water, and the main
contributor to WU remains crop water
use.
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Figure 3. Comparative environmental impacts of the three rice cropping systems.

Figure 3. Comparaison des impacts environnementaux des trois systémes rizicoles.
Rw: Rain-fed; Iw: Irrigated wet season; Id: Irrigated dry season.

FWAE: freshwater aquatic ecotoxicity; GWP: global warming potential; EP: eutrophication; ODP: ozone depletion; AP:

acidification.

Discussion
and conclusion

In spite of the relative homogeneity
of cropping practices, overall and per
sub-cropping system, outcomes in
both economic and environmental
terms show significant diversity. Net
income and global warming potential
are particularly wide-ranging in the

different systems. This variation
mostly results from large differences
in yields, overall and per sub-

cropping system. Yields and resulting
net incomes are more diverse (less
stable) in Rw and Id systems com-
pared to Iw systems, due to a lack of
control of the water supply and a
lack of water, respectively. It was

observed that, while Id farmers
usually try to refill their paddy fields
three times per season, many do not
actually obtain enough water (e.g.,
canal tail-enders). The precipitation
levels of the dry season of 2010 were
relatively high compared to 30-year
average precipitation levels; the lack
of water for Id system farmers could
have been even more damaging to
yields in normal or drier years. This
would potentially result in lower
yields and increased differences in
performances and impacts between
wet-season and dry-season systems.
The same rationale applies to Rw
systems, which showed relatively
high performances and low impacts
in 2010, but would perform well
below the level of Iw systems under
drier conditions.

The results contribute insights and
data to the debate on the need to
further develop irrigation in the con-
text of Isaan, with necessary precau-
tions due to limited data. Rain-fed
systems are reasonable alternatives
and compete well against irrigation
during the wet season. Proponents of
irrigation development in Isaan advo-
cate that rain-fed systems only provide
cropping opportunity during the wet
season and force farmers to resort
to alternative livelihoods in the dry
season.

For a societal objective of higher rice
production and limitation of outmigra-
tion, irrigation during both seasons
guarantees higher production overall,
and keeps farmers busy all year round.
From a farmer’s viewpoint, dry-season
irrigation requires more inputs, higher
costs and labour, and ultimately shows
lower efficiency. Furthermore, if envi-
ronmental integrity is factored into
decisions, irrigation during the dry
season is clearly not the best option.
Furthermore, the shift from traditional
transplanting to direct sowing of dry
seeds illustrates the fact that rice
farmers in Isaan are seeking labour
efficiency and time-saving solutions,
rather than high yields, in a context of
labour scarcity, massive seasonal out-
migration, and diversified rural liveli-
hood systems. Direct seedling results
in lower yields, yet with lower labour
requirements.

All results converge and establish that
dry-season irrigated systems are per-
forming less well than other systems.
They use blue water, require more
energy, labour, and agrochemicals,
and ultimately yield lower production.
As a result, gross and net incomes are
lower. Although these results refer to
only one year, they tend to account for
why only half of irrigated land is
actually cultivated during the dry
season.

Also, there is a striking match between
Rw and Iw systems. Indeed, perfor-
mances of rain-fed and wet-season
irrigated rice are comparable in both
economic and environmental terms.
The productivities of most production
factors are higher in Rw systems,
although Iw systems vyield higher
production. Yet again, it must be
reiterated that 2010 was a wet year,
favourable to Rw systems.

Direct field emissions are comparable
in all systems, with the notable

376 Cah Agric, vol. 22, n° 5, septembre-octobre 2013



exception of CHy, which is markedly
lower in Rw systems due to water and
organic residue management. All envi-
ronmental impacts are higher in Id
systems, whether they are expressed
per area used or per mass product.
The type of research performed here
is demanding. It is multidisciplinary
by nature, requires a huge primary
data basis, and involves complex
modelling. However, the methodolo-
gical combination shows great potential
for multi-criteria assessment of crop-
ping systems and allows for detailed
eco-efficiency analyses. Wl
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