Les mécanismes biochimiques développés par les *Pseudomonas* fluorescents dans la lutte biologique contre les maladies des plantes transmises par le sol

Philippe Jacques, Philippe Delfosse, Marc Ongena, Philippe Lepoivre, Pierre Cornélis, Nico Koedam, Louis Neirinckx, Philippe Thonart


| Tableau 1 |

Les principales maladies transmises par le sol contre lesquelles l'utilisation de *Pseudomonas* fluorescents a déjà été envisagée

<table>
<thead>
<tr>
<th>Maladie</th>
<th>Agent phytopathogène</th>
<th>Cultures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piéton échaudage [1, 16]</td>
<td>Gaeumannomyces graminis</td>
<td>Céréales, gazon</td>
</tr>
<tr>
<td>Fonte des semis [2-8]</td>
<td>Pythium ultimum, Rhizoctonia solani</td>
<td>Cotonnier, concombre, blé, pois chiches, pois, soja...</td>
</tr>
<tr>
<td>Verticilliose [9]</td>
<td>Verticillium dahliae</td>
<td>Pomme de terre</td>
</tr>
<tr>
<td>Pourriture des tubercules [10]</td>
<td>Erwinia carotovora</td>
<td>Pomme de terre</td>
</tr>
<tr>
<td>Galle du collet [17]</td>
<td></td>
<td>Lin, concombre, radis...</td>
</tr>
</tbody>
</table>

Soil borne diseases for which biocontrol with fluorescent *Pseudomonas* has already been considered
principaux agents phytopathogènes contre lesquels l’utilisation des *Pseudomonas* fluorescents a été proposée. Différents mécanismes, agissant seuls ou en combinaison, ont été avancés pour expliquer comment ces *Pseudomonas* fluorescents sont capables de réduire la gravité de ces maladies (figure 1) :

— la simple occupation des sites d’infection potentielle par colonisation de la rhizosphère, empêchant ainsi la croissance des pathogènes ;
— la production de métabolites inhibiteurs de la croissance des pathogènes ;
— la stimulation des mécanismes de résistance de l’hôte vis-à-vis des agents pathogènes.

**Colonisation de la rhizosphère**

Bien que peu étudiée, la phase de colonisation de la rhizosphère par les micro-organismes susceptibles d’exercer une protection contre les maladies du sol apparaît de plus en plus comme étant liée à un processus d’antagonisme, ou comme un préalable à l’expression de facteurs responsables de l’antagonisme (antibiose, stimulation de la résistance). Ce phénomène de colonisation peut être décomposé en trois étapes :

— le chimiotactisme, associé aux excudats racinaires ;
— l’adsorption des micro-organismes sur les racines ;
— la colonisation proprement dite de la rhizosphère, qui implique une consommation des excudats racinaires.

Différents auteurs ont entrepris des recherches afin de mesurer l’impact de la colonisation de la rhizosphère sur la protection contre les maladies du sol par les *Pseudomonas* fluorescents. Ces études ont également pour objet d’identifier les facteurs limitant une colonisation efficace.

Gamlil et Katan ont présenté récemment une série de résultats à ce propos [18, 19]. Ces auteurs observent que la solariation des sols a pour effet d’améliorer la croissance de plants de tomates. Les analyses de sols montrent que cette solariation s’accompagne d’un accroissement de la proportion de *Pseudomonas* fluorescents dans la rhizosphère, à la suite d’une augmentation du chimiotactisme exercé par les excudats racinaires de graines de tomates vis-à-vis des souches de *P. fluorescens* ou *P. putida*. Ces auteurs mettent en évidence le rôle des excudats sur la croissance des souches de *Pseudomonas* fluorescents ainsi que sur celle d’un champignon phytopathogène : *Penicillium pinophilum*. Dans le sol, les excudats de semences mises à germer dans des sols solariérent stimulent davantage la croissance des *Pseudomonas* que celle du champignon. Une analyse quantitative de la composition de ces excudats montre une augmentation très nette des composés aminés (y compris les acides aminés) dans les échantillons en provenance de sols solariérents. Cette augmentation serait le facteur responsable de l’influence positive des excudats sur le développement des *Pseudomonas* fluorescents. Cette influence positive pourrait cependant s'exercer par le biais du mécanisme de compétition pour le fer. Celui-ci repose sur la production de sidérophores, molécules chélatrices du fer, dont la biosynthèse chez les *Pseudomonas* fluorescents est, selon nos travaux, favorisée par une source organique d’azote [20]. Il pourrait en être de même pour la production de certains antibiotiques ou enzymes mycolyctiques. Paulitz [8] a étudié la compétition pour les excudats racinaires entre micro-organismes favorables à la croissance des plantes et phytopathogènes. Il suggère que *P. putida* N1R réduit le développement de la fonte des semis du pois et du soja en consommant les excudats volatils tels que l’éthanol ou l’acétaldéhyde produits par les semences en germination, les rendant ainsi inaccessibles pour la croissance du pathogène *Pythium ultimum*.

**La mobilité**

D’autres auteurs ont étudié l’importance de la mobilité des *Pseudomonas* dans le phénomène de chimiotactisme dans la rhizosphère de pomme de terre [21] et de soja [22]. Dans ces expériences, les plantes, dont les racines ont été préalablement trempe dans des suspensions bactériennes, sont cultivées en serre dans des sols naturels non stérilisés. La colonisation de la rhizosphère par *Pseudomonas* est évaluée après 12 jours pour la pomme de terre et 7 jours pour le soja. De Weget et al. [21] concluent que la mobilité est nécessaire à la colonisation, en observant que quatre mutants de *P. fluorescens* WCS374 dépourvus de flagel-
les sont devenus incapables de coloniser les racines de pommes de terre. Pour Scher et al. [22], au contraire, le chimiotoractisme et la mobilité ne constituaient pas des critères de sélection d’une bactérie performante pour la colonisation des racines de soja. En effet, un mutant non mobile de *P. putida* RW3 colonise les racines avec la même efficacité que la souche sauvage mobile. Ceci met bien en évidence la différence de relations entre différentes souches bactériennes et différentes rhizosphères.

**L’adsorption**

Les bases moléculaires des mécanismes régissant la colonisation de la rhizosphère par les *Pseudomonas* sont imparfaitement connues. De nombreux résultats montrent le rôle actif des lipopolysaccharides (LPS) bactériens dans différents types d’interactions plantes/bactéries. Les fonctions des LPS concernent notamment l’adsorption des bactéries telles que *Agrobacterium* et *Rhizobium*, ainsi que l’induction des mécanismes de défense de la plante. Des résultats expérimentaux suggèrent que les chaînes polysaccharidiques latérales qui constituent l’antigène 0 des LPS bactériens seraient également impliquées dans la colonisation des rhizosphères par *Pseudomonas* sp., en intervenant dans l’étape de la fixation [23]. Les chaînes polysaccharidiques de l’antigène 0 sont des sites d’une diversité structurelle considérable, qui peuvent interagir avec les lectines de la plante. Ainsi, il a été montré que l’agglutination des souches de *Pseudomonas* par les agglutinines des racines était associée à une meilleure colonisation de la rhizosphère [24].

L’importance des pili dans les phénomènes d’adhérence spécifique des bactéries zoopathogènes sur les cellules de l’épithélium est bien connue. Ces pili seraient également impliqués dans des interactions entre plantes et bactéries au niveau de la rhizosphère. C’est ainsi que les pili de *Klebsiella* spp. (entérobactéries présentes dans la rhizosphère) sont responsables de leur adhésion aux racines [25]. Chez certaines espèces de *Rhizobium*, on a montré le rôle des adhérences Ca⁺⁺-dépendantes des pili dans le phénomène initial d’adhérence [26]. Les pili joueraient un rôle similaire dans la fixation de *P. fluorescens* sur les racines de maïs [27].

**Production de substances inhibitrices de la croissance des pathogènes**


A ces métabolites secondaires, il convient d’ajouter une molécule dérivant du métabolisme primaire, l’ammoniaque, qui, par l’alcalinisation du milieu qu’il provoque, peut avoir un effet inhibiteur, principalement sur la croissance d’espèces fongiques phytopathogènes.

**Les antibiotiques**

Le rôle joué par les antibiotiques produits par les *Pseudomonas* fluorescents ([figure 2](#)) dans l’inhibition d’agents pathogènes a été suspecté, soit en utilisant des mutants non producteurs, soit en mettant la substance inhibitrice en contact avec les racines ou encore directement dans le sol. Dans ce dernier cas, les résultats doivent, cependant, être interprétés avec précaution, d’une part, certains antibiotiques sont rapidement inactivés dans le sol [3] et, d’autre part, la mise en évidence de la toxicité potentielle d’une molécule vis-à-vis d’un pathogène ne signifie pas automatiquement que ce composé soit impliqué dans la lutte biologique. Ainsi, Howell et al. [2,3] montrent l’efficacité de la pyrrolnitrine comme inhibiteur de la croissance de pathogènes du cotonnier tels *Rhizoctonia solani*, *Thielaviopsis basicola*, *Alternaria* sp., et *Verticillium dahliae* dans des conditions non stériles, ainsi que l’activité inhibitrice de la pyoluteorine vis-à-vis de la croissance de *Pythium ultimum*. Le rôle de ces antibiotiques est cependant mis en doute par Kraus et al. [4] dans le cas de la fonte des semis du concombre provoquée par *P. ultimum*. Des mutants obtenus par transposition et incapables de produire ces substances se montrent, en effet, des agents de lutte biologique tout aussi efficaces que la souche sauvage.

Cependant, des antibiotiques peuvent être responsables de l’action antagoniste *in vivo* de *Pseudomonas* fluorescents vis-à-vis des agents phytopathogènes. Ainsi en est-il des dérivés de la phénazine tels que l’acide phénazène-1-carboxylique, actif contre *Gaumannomyces graminis* (agent du piétin échauage) [29] ou des dérivés phénoliques tels que le 2,4-diacectylphloroglucinol, actif également contre *G. graminis* et *Thielaviopsis basicola*, agent de la pourriture noire du tabac [30]. A plus fortes concentrations, ces molécules phénoliques peuvent cependant avoir un effet toxique sur la plante [30]. Enfin, Howie et Sislaw [31] ont récemment souligné, en utilisant un mutant non producteur, le rôle qui peut être joué par un nouvel antibiotique, l’oomicine A, dans le contrôle biologique de la fonte des semis du cotonnier.

![Figure 2. Métabolites secondaires à activité antifongique produits par les *Pseudomonas* fluorescents.](#)

**Figure 2.** Secondary metabolites with antifungal activity produced by fluorescent *Pseudomonas*.
Les sidérophores

Quoiqu’un des éléments les plus abondants de la surface terrestre, le fer se trouve le plus souvent dans des conditions de pH proches de la neutralité et dans un environnement aérobie sous la forme de polymères d’hydroxydes ferriques fortement insolubles (à pH 7, la concentration en Fe³⁺ soluble est évaluée à 10⁻¹⁰M). La plupart des micro-organismes ont donc développé un mécanisme hautement spécifique de captation des ions ferriques basé sur la production de sidérophores dans des conditions de carence en fer. Ce sont des substances de faible poids moléculaire, chélatrices du Fe³⁺ et servant de transporteur de l’ion ferrique à l’intérieur de la cellule microbienne [32]. Les Pseudomonas fluorescents produisent deux types de sidérophores, l’un de faible affinité (pyochéline) décelé chez P. aeruginosa [33] et l’autre, possédant une affinité élevée (pyoverdine ou pseudobactine) (figure 3). Les pyoverdines sont constituées d’une partie peptidique liée à un chromophore fluorescent et sont responsables de la fluorescence jaune-vert caractéristique de ces souches [34]. Certaines souches produisent, en outre, un composé appelé ferribactine, qui pourrait être un produit de dégradation ou un précurseur de la pyoverdine [35]. La production en quantités importantes de ces molécules chélatrices dans le sol permet aux Pseudomonas fluorescents de s’approprier tout le fer nécessaire à leur croissance et de le rendre inaccessible aux autres micro-organismes ne possédant pas de système de captation du fer à forte affinité. Certaines souches de Pseudomonas apparaissent même capables d’incorporer les sidérophores excrétés par d’autres micro-organismes [36]. Trois approches expérimentales différentes ont permis de mettre en évidence le rôle joué par la lutte biologique pour le fer dans l’action des souches de Pseudomonas contre certains agents pathogènes. La première approche consiste à comparer l’effet suppresseur des Pseudomonas fluorescents en présence ou en absence de fer disponible dans le sol [5]. La deuxième utilise des sidérophores purifiés ou des chélatants synthétiques du fer pour reproduire l’antagonisme observé en présence des Pseudomonas [15]. La troisième, enfin, compare l’activité supprimante développée par des mutants incapables de produire la pyoverdine et celle exprimée par les souches sauvages dont ils sont issus [5]. Bien que fréquemment citée comme mécanisme responsable de l’antagonisme, la production de sidérophore n’apparaît pas plus généralisable que les mécanismes précédents ; selon Keel et al. [11], elle n’est pas impliquée dans l’action des Pseudomonas fluorescents contre la pourriture noire du tabac. De même, les études que nous avons réalisées sur six souches des Pseudomonas fluorescents isolées de différentes rhizosphères n’ont pas montré de corrélation entre la production de sidérophores et l’antagonisme développé in vitro vis-à-vis de deux agents de la fonte des semis (Pythium et Rhizoctonia) [37]. Le fait que la protection conférée par l’agent de lutte biologique soit liée à la concentration en fer dans le sol n’est pas une preuve en soi du rôle joué par les sidérophores dans cet antagonisme. Nos travaux récents sur P. fluorescens ATCC 17400 montrent, en effet, que cette souche, qui présente un antagonisme réprimé par le fer, produit, outre sa pyoverdine, un deuxième sidérophone autre que la pyocheline et une substance à activité antifongique dont la production est également réprimée par le fer [38]. Un résultat comparable a été obtenu par Ownley et al. [39] avec la souche P. fluorescens 2-79. Ce micro-organisme excrète, outre son sidérophone et l’acide phénazine-1-carboxylique, une substance inhibitrice in vitro de la croissance de G. graminis, dont
Summary

Biochemical mechanisms involved in the biological control of soilborne plant diseases by fluorescent Pseudomonas

Fluorescent Pseudomonas appear as potential biocontrol agents of take-all in wheat, damping-off in cotton, cucumber, wheat, chickpea, pea and soybean, Verticillium wilt and root rot of potato, black root rot of tobacco, root rot of peanut. Fusarium crown and root rot of tomato and bean, and vascular wilt of flax, cucumber and radish. Many different mechanisms have been put forward to explain this biocontrol effect.

First of all, Pseudomonas should be able to colonize the rhizosphere according to three different mechanisms. The microorganisms should show chemotaxis towards root exudates, attach to the root surface and, finally, multiply in the rhizosphere. Various authors have linked these processes to the suppressive properties of Pseudomonas. Fluorescent Pseudomonas are also well-known for their ability to produce many different antibiotics. Among them, pyrrolnitrin, pyoluteorin, phenazin-1-carboxylic acid, 2,4-diacyltetrahydroquinol and oomycin A, appear to be involved in the antagonism developed by Pseudomonas against different phytopathogens. The most studied mechanism is the competition for iron by siderophores, substances chelating ferric ions with a high affinity. These molecules are produced under conditions of iron deficiency thus supplying the microbial cells with iron. The production of siderophores by fluorescent Pseudomonas in the soil makes iron less available for the growth of pathogens. For most authors, this mechanism can explain the prevalence of Pseudomonas in the rhizosphere. Nevertheless, the fact that antagonism is linked to the concentration of iron in the soil does not prove the role of siderophores in this antagonism. In some cases, the production of antibiotics also appears to be iron-dependent. Other compounds, like enzymes (chitinase or laminarase), cyanhydric acid or ammoniac may also play a role in biocontrol by fluorescent Pseudomonas.

Finally, some authors have shown that fluorescent Pseudomonas can interact with plant cells by stimulating their resistance to pathogens. This could be achieved by enhancing the availability of certain ions, like manganese, or by stimulating the production of phytoalexins active against pathogens.

The study of fluorescent pseudomonads as biocontrol agents is a good example of the complexity of the interactions between harmful and beneficial microorganisms, plant cells and the abiotic environment within the rhizosphere. The mechanisms involved in the suppressive activity of fluorescent Pseudomonas appear to be very variable, according to the plant, the pathogen or the environment being considered. In order to understand these interactions better, it is necessary to study all the mechanisms involved in a given environment, and also to compare their effects in different rhizospheres. Global approaches should integrate such mechanisms, in order to select Pseudomonas with an improved efficiency as biological control agents.

plante de phytoalexines présentant une toxicité vis-à-vis de Fusarium oxysporum. Enfin, la production par les Pseudomonas fluorescents de composés promoteurs de la croissance des plantes tels que l’acide indole-3-acétique, a également été évoquée à plusieurs reprises, bien que leur rôle dans la protection contre les agents phytopathogènes n’ait jamais été clairement démontré [30].

Conclusion

Les Pseudomonas fluorescents constituent l’un des groupes les plus étudiés dans le cadre de la lutte biologique. Ces micro-organismes n’ont cependant pas encore leur place sur le marché des biocides. La diversité et la complexité des mécanismes évoqués ici n’y sont pas étrangères. Au cours de ces vingt dernières années, de nombreux auteurs se sont efforcés de détailler chacune des propriétés susceptibles d’expliquer la prédominance des Pseudomonas fluorescents dans le sol et plus particulièrement au niveau de la rhizosphère. Cette approche analytique a le mérite de nous avoir fait découvrir de nombreuses mécanismes chimiques passionnants tels que la compétition pour le fer par le biais des sidérophores. Elle a conduit à l’application de critères relativement simplistes pour la sélection de biocides (antagonisme in vitro, production de sidérophores...). Ces critères ne peuvent, cependant, rendre compte à eux seuls du comportement global des micro-organismes dans la rhizosphère. D’autres éléments interviennent tels que le contenu des exsudats racinaires, la réaction de la plante au phytopathogène, la flore saprophyte au rôle souvent (à tort ?) minimisé, l’environnement abiotique dont les propriétés physico-chimiques peuvent être essentielles...

Ce constat ne nie pas les potentialités d’utilisation des souches microbiennes en tant que biocides ; il constitue un des éléments explicatifs de l’absence de ce type de bactéries sur le marché des pesticides biologiques. Il rend compte en outre de la complexité de la phase de sélection de l’agent de lutte biologique.

Trois approches s’attachent à lever cette pierre d’achoppement. La première [46] suggère la co-inoculation de micro-organismes aux propriétés complémentaires. Elle nécessite cependant une forte réduction des coûts de production de ces bactéries, considérées aujourd’hui encore comme peu rentables. La deuxième propose la mise au point par génie génétique d’un micro-organisme performant. De longue haleine, cette méthode présuppose que les micro-organismes manipulés génétiquement soient agréés. Enfin, la troisième envisage la mise au point de techniques de sélection reflétant au mieux la réalité in vivo et ce, afin de révéler, au sein d’une population naturelle, le meilleur agent de lutte biologique.

Quelle que soit l’approche considérée, il importe de développer des études permettant, d’une part, de mesurer, dans un même système plante/micro-organisme, l’importance de chacun des mécanismes de résistance-tolérance et, d’autre part, d’analyser le comportement d’une souche donnée dans différentes rhizosphères. Ces travaux permettront d’associer différents types de mécanismes (colonisation, antibiose, sidérophore). Une telle intégration pourrait améliorer l’efficacité des agents de lutte biologique en cause : c’est là le pari d’une approche synthétique du problème.

Résumé

Les Pseudomonas fluorescents ont été étudiés comme agents potentiels de lutte biologique contre des maladies aussi diverses que le piétin échaudage, les fontes de semis, les pourritures de racines et les fusarioses. Cet article propose une synthèse sur les différents mécanismes évoqués pour rendre compte des propriétés antagonistes de ces Pseudomonas dans le sol.

Ces bactéries doivent avant tout coloniser la rhizosphère concernée. Cette colonisation implique un chimioractisme envers les exsudats racinaires, une adsorption micro-organismes sur les racines, et enfin une compétition pour les substrats nutritifs présents. Cette seule colonisation peut entraîner une occupation de sites suffisante pour empêcher la croissance d’autres micro-organismes, dont les pathogènes. Les Pseudomonas sont également en mesure d’excréter de molécules qui inhibent la croissance des phytopathogènes. Les substances les plus étudiées sont, d’une part, les antibiotiques tels que la pyrotilintrine, la pyoluteurine, les dérivés de la phénazine, le diacetylphloroglucinol ou l’oomicine A et, d’autre part, les sidérophores, molécules chélatrices du fer servant de transpor- teurs de l’ion ferrique à l’intérieur de la cellule microbienne. La production de ces sidérophores dans des conditions de carence en fer pourrait rendre l’ion ferrique inaccessible aux autres micro-organismes. D’autres métabolites produits par les Pseudomonas fluorescents peuvent également interférer avec la croissance des phytopathogènes ; il s’agit d’enzymes mycolytiques, de l’acide cyanhydrique ou de l’ammoniaque. Enfin, les Pseudomonas fluorescents peuvent augmenter la résistance des cellules de la plante aux attaques des micro-organismes, soit en augmentant la disponibilité de certains ions, tel le manganèse, soit encore en stimulant la production par la plante de phytoalexines toxiques vis-à-vis du pathogène.

Cependant, aucun des mécanismes évoqués ne rend compte à lui seul de la protection exercée par les Pseudomonas fluorescents dans le sol. Ce constat ne nie pas les potentialités d’utilisation de ces souches en tant que biocides, mais rend très complexe la phase de sélection de l’agent de lutte biologique par la seule mise en œuvre, par exemple, de tests d’antibiose in vitro. Afin de mieux maîtriser la complexité de ces interactions, il faut développer des études permettant, d’une part, de mesurer, dans un même système plante/micro-organisme, l’importance de chacun de ces mécanismes et, d’autre part, d’analyser le comportement d’une souche donnée dans différentes rhizosphères. Ces travaux permettront de relier des ensembles de mécanismes (colonisation, antibiose, sidérophore) dont l’intégration pourrait améliorer l’efficacité des agents de lutte biologique : c’est là le pari d’une approche plus synthétique du problème de la lutte biologique à l’aide de Pseudomonas.
Références


