Some physical properties of delignified and compressed *Melia dubia* wood

Shailendra Kumar
Nautiyal Ismita
Shikhar Shukla

1 Forest Research Institute

Forest Products Division

Dehradun

India

Auteur correspondant / Corresponding author:
Shailendra Kumar – Shailendra354@gmail.com

Citer l'article / To cite the article

RESUMÉ
Quelques propriétés physiques du bois de Melia dubia délignifié et comprimé

Cette étude explore les effets de la délignification dans l’amélioration de quelques propriétés physiques du bois comprimé. Les billes de bois d’une plantation de six ans d’âge de Melia dubia (densité = 0,39 g/cm³) ont été délignifiées dans une solution alcaline de NaOH et Na₂SO₃ pendant 4 heures. Les billes de bois délignifiées ont été séchées jusqu’à contenir 12 % d’humidité, et comprimées à deux températures (120 °C et 150 °C) pendant 2 heures et 4 heures. Les améliorations dans la densité, la recouvrance de la compression (%) et la perte d’épaisseur (%) après la compression ont été observées et comparées avec des échantillons non délignifiés. La densité moyenne du bois délignifié et comprimé (DCW) était de 0,825 g/cm³ (SD = 0,109) ; pour le bois comprimé sans délignification (CW), la densité moyenne était de 0,889 g/cm³ (SD = 0,049). Ces densités diffèrent significativement : les échantillons DCW presentèrent une recouvrance de la compression (2,97 % à 5,22 %), tandis que, comparativement, les échantillons de bois CW ont montré une haute recouvrance de la compression (48,47 % à 38,05 %). La perte moyenne d’épaisseur (%) dans les échantillons de CW a varié de 47,22 % à 52,26 %, et elle était approximativement de 10 % plus haute (58,77 % à 61,91 %) dans les échantillons de CW, sans délignification.

Mots-clés : bois comprimé, délignification, recouvrance de la compression, perte d’épaisseur, Inde.

ABSTRACT
Some physical properties of delignified and compressed Melia dubia wood

This study explores the effects of delignification in improving some physical properties of compressed wood. Blocks of six year-old plantation-grown Melia dubia wood (density = 0.39 g/cm³) were delignified in an alkaline solution of NaOH and Na₂SO₃ for 4 h. The delignified wood blocks were dried to 12% moisture content and compressed at two temperatures (120 °C and 150 °C) for 2 hours and 4 hours. Improvements in density, set recovery (%) and thickness loss (%) after compression were observed and compared with the non-delignified samples. The mean density of delignified and compressed (DCW) wood was 0.825 g/cm³ (SD = 0.109); for compressed wood without delignification (CW), the mean density was 0.889 g/cm³ (SD = 0.049). These densities differ significantly, with the DCW samples showing very low set recovery (2.97% to 5.22%), while comparatively, the CW wood samples showed very high set recovery (48.47% to 38.05%). Average loss of thickness (%) in the DCW samples varied from 47.22% to 52.26%, and was approximately 10% higher (58.77% to 61.91%) in the CW samples with no delignification.

Keywords: compressed wood, delignification, set recovery, thickness loss, India.

RESUMEN
Algunas propiedades físicas de la madera comprimida y deslignificada de Melia dubia

Este estudio explora los efectos de la deslignificación en la mejora de algunas propiedades físicas de la madera comprimida. Varias trozas de madera de plantaciones de seis años de edad de Melia dubia (densidad = 0.39 g/cm³) se deslignificaron en una solución alcalina de NaOH y Na₂SO₃ durante 4 h. Las trozas de madera deslignificada se secaron hasta alcanzar un contenido en humedad del 12 % y se comprimieron a dos temperaturas (120 °C y 150 °C) durante 2 horas y 4 horas. Se observaron mejoras en la densidad, recuperación de la compresión (%) y pérdida de espesor (%) después de la compresión. Estas propiedades se compararon con las de las muestras no deslignificadas. La densidad media de la madera deslignificada y comprimida (DCW) fue de 0,825 g/cm³ (SD = 0,109); para la madera comprimida sin deslignificación (CW) la densidad media fue de 0,889 g/cm³ (SD = 0,049). Estas densidades difieren significativamente: las muestras DCW presentaron una recupera- ción de la compresión muy baja (2,97 % a 5,22 %), mientras que, comparativa- mente, las muestras de madera CW presentaron una recuperación de la compresión muy elevada (48,47 % a 38,05 %). La pérdida de espesor promedio (%) en las muestras DCW varió de 47,22 % a 52,26 %, y fue aproximadamente el 10 % más elevada (58,77 % a 61,91 %) en las muestras CW, sin deslignificación.

Palabras clave: madera comprimida, deslignificación, recuperación de conjunto, pérdida de grosor, India.
Introduction

Over-exploitation of natural grown long rotation timber along with public awareness has forced the industries to use plantation based woods for furniture, joinery, flooring and decking etc. However, certain demerits like lower density, lower strength properties etc. are associated with the fast growing plantation wood. Compressing wood at higher temperature, pressure in absence or presence of resins and other additives have been attempted by various researchers to improve the wood properties.

It has been reported that the wood compression can improve the trade value of low density plantation grown wood manifold (Senol and Budakci, 2016). Set recovery or spring back is the excessive swelling in compressed wood when subjected to high humidity or liquid water conditions. Set recovery is a major challenge in utilization of compressed wood (Morsing and Hoffmeyer, 1998).

Many researchers have adopted different approaches to lower the set recovery of compressed wood. Inoue (1993a) and Ito et al. (1998) have used pre-steaming and temperature increase to reduce spring back. Partial hydrolysis of para-crystalline region of cellulose was identified as the main reason behind effectiveness of pre-steaming. Dwianto et al. (1999) proposed chain scission of hemicelluloses accompanied by a slight cleavage of lignin during pre-steaming. Hemicelluloses leach out during steaming, followed by cellulose degradation has been found to be responsible for fixation of compressed wood (Higashihara et al., 2004). Other workers have used heat treatment (190 °C) after delignification for effective reduction in compression set recovery (Esteves et al., 2017). Senol and Budakci (2016) reported the use of hydrothermal post treatments at 200 °C for fixation of compressed wood. 240 grams of sodium hydroxide (NaOH) was mixed in the water by stirring with a glass rod. After NaOH got dissolved, 120 g of the sodium sulphite (Na2SO3) was added and stirred. The solution was put on hot plate at a constant temperature 100 °C. Eight wood blocks from the first set were dipped in the solution for 4 h. As water from the solution evaporated, additional water was added to maintain a constant level. After completion of 4 h, a new solution was prepared for another set of wooden blocks. Thus, in 4 cycles of delignification all the 32 wood samples in the first set were treated. The delignified samples were again kiln dried to bring moisture content to 12%.

Materials and methods

Wood samples preparation

Freshly felled wood logs were selected from six years old plantation of M. dubia (Dehradun, India, 30.3165° N, 78.0322° E). The logs were sawn into planks of thickness 5 cm. The planks were dried to bring moisture content up-to 12%. The dried planks were planed and reconverted to 64 blocks of size 6 cm x 4.5 cm x 6 cm (length x thickness x width). The wood blocks were randomly divided in two equal sets. First set of 32 blocks was used for delignification and compression (DCW) and the second set was used for compressed without any delignification treatment (CW).

Delignification and drying

A glass container filled with 2 L water was used for preparation of delignifying solution. 240 grams of sodium hydroxide (NaOH) was mixed in the water by stirring with a glass rod. After NaOH got dissolved, 120 g of the sodium sulphite (Na2SO3) was added and stirred. The solution was put on hot plate at a constant temperature 100 °C. Eight wood blocks from the first set were dipped in the solution for 4 h. As water from the solution evaporated, additional water was added to maintain a constant level. After completion of 4 h, a new solution was prepared for another set of wooden blocks. Thus, in 4 cycles of delignification all the 32 wood samples in the first set were treated. The delignified samples were again kiln dried to bring moisture content to 12%.

Compression

The 64 wooden samples (32 DCW and 32 CW) were pressed at 96.5 bar in a multi day-light press. The temperature and time durations used for pressing are given in table I:

After the compression, the specimens were kept in room conditions for 48 h.

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td>120</td>
</tr>
</tbody>
</table>
Determination of density

Small blocks of size of 3 cm x 3 cm on tangential face were cut from each of the 4 compressed wood specimens. The dimensions of all the specimens were measured with the help of digital micrometer to calculate volume. These specimens were then oven dried at 103 ± 2 °C until a constant weight was achieved. The oven dry weight was measured. The density was calculated using formula:

\[
\text{Density} = \frac{W_o}{V_g}
\]

Where, \(W_o\) = oven dry weight of test sample (gm)
\(V_g\) = Initial volume at test (cm\(^3\))

Determination of compression set recovery (Cr) (%)

To examine the effect of water absorption on compressed wood a set recovery test was conducted on each sample. This test consisted of soaking of specimens in water at 60 °C for 4 h and drying in room temperature for 24 h.

The compression set recovery was calculated using following expression:

\[
\text{Cr(\%)} = \left(\frac{L_i - L_o}{L_i} \right) \times 100
\]

\(L_i\) = initial thickness before immersion
\(L_o\) = thickness after immersing at 60 °C for 4 h

Determination of thickness loss (Tl) (%)

Thicknesses of the specimens were measured before and after pressing. To obtain thickness loss (%), following formulae was used:

\[
\text{Tl(\%)} = \left(\frac{T_i - T_f}{T_i} \right) \times 100
\]

\(T_i\) = thickness loss
\(T_f\) = thickness after pressing

Results and discussion

Appearance of compressed wood specimens

Figure 1 presents the cross section of compressed wood blocks. Upper two layers of blocks (A) denotes compressed wood without delignification (CW), whereas, lower two layers (B) denotes compression after delignification (DCW).

It can be seen from the figure 1 that the color of wood specimens changed from pale white to brown due to delignification. By seeing layer B color profile, it is observed that the delignification could not be achieved evenly along the entire cross section of the wood. It is likely that delignification followed by compression could have resulted in vertical density profile due to differential extent of delignification across thicknesses.

Density

Table II presents mean densities of delignified and undelignified wood specimens are 0.825 g/cm\(^3\) and 0.889 g/cm\(^3\) respectively. The densities varied from 0.73 g/cm\(^3\) to 0.91 g/cm\(^3\). Thermo-hygro-mechanic (THM) densification of wood carried out by Navi and Girardet (2000) on Fagus (Fagus silvatica), Norway spruce (Picea abies) and maritime pine (Pinus pinaster) at temperature and pressure 150 °C and 130 bar, resulted in mean densities of 1.27 g/cm\(^3\), 1.30 g/cm\(^3\), 1.32 g/cm\(^3\) respectively. In the current study, the densities are lower as compared with Navi and Girardet (2000). There may be two reasons behind this: the initial wood densities of the woods taken by Navi and Girardet (2000) were already higher i.e. 0.67 g/cm\(^3\) (89.5% increase in density), 0.42 g/cm\(^3\) (209% increase in density), 0.50 g/cm\(^3\) (164% increase in density) respectively, and the pressure applied was also approximately 35% higher.

Higher density in DCW compressed for longer duration (4 h) as compared with short duration (2 h) may be attributed to reduced spring-back due to re-arrangement of wood fibrils was helped by extended heating duration as well removal of lignin (Song et al., 2018).

Figure 2 presents mean densities of compressed samples with and without delignification irrespective of pressing time and temperature. Mean density of DCW was 0.825 g/cm\(^3\) (SD = 0.109) and that of CW, 0.889 g/cm\(^3\) (SD = 0.049). Thus, the DCW and CW samples showed overall improvement of 112.8% and 125% over the raw wood density.

An independent samples t-test for equality of means of densities of DCW and CW samples indicated that the means were significantly different (t (56) = – 2.757, p = 0.008). This significant difference can be attributed to the loss of lignin material during delignification, which ultimately could have resulted in loss of wood mass. The ray cells on outer wood surfaces were apparently diluted during delignification. Some thermal degradation of lignin can also occur at lower temperature resulting in breakdown of various phenolic compounds (Sandermann and Augustin, 1964).
The difference in densities of DCW and CW was significant ($F (58) = 10.955, p = 0.002$). Moreover, the densities of DCW pressed at 2 h and 4 h were also significantly different ($t (30) = – 4.331, p \leq 0.001$). 2 h pressing resulted in mean density of 0.758 g/cm3 (SD = 0.08) whereas 4 h pressing resulted in 0.892 g/cm3 (SD = 0.92) density (figure 3). Thus, it can be concluded that pressing time affects the density of delignified wood during compression. The difference in densities due to the pressing temperature used in the study (120 °C and 150 °C) was not significant ($F = 0.013, p = 0.911$).

Set recovery (%)

Set recovery or spring back is a form of excessive swelling when the compressed wood is exposed to moisture content and heat. Table III presents mean set recovery (%) of both sets compressed wood samples (DCW and CW). The DCW wood samples showed very small set recovery around 2.97% (2 h) and 5.22% (4 h). On the other hand, the CW wood samples showed comparatively very high set recovery of 48.47% (2 h) and 38.05% (4 h). In the case of beech wood without delignification, the set recovery was 44.72% with simple pressing while it was from 15 to 23% for compression through thermo-hygro-mechanical method (Hwang and Lee, 2011). It can be seen from the present study that delignification of wood helps in reducing set recovery during preparation of compressed wood.
Moreover, permanent fixation is not reported to be associated with decomposition of cell wall polymers, the cross linking of cell wall and constituents, or crystallisation but is dominated by formation of cohesive structures (Higashihara et al., 2004). The delignification of wood helps in re-arranging of the cellulose nanofibers due to weakening of the cell wall. Delignification in NaOH and Na₂SO₃ followed by hot pressing leads to total collapse of cell walls and complete delignification of wood (Song et al., 2018). Thus, removal of lignin helps in realignment of cells to form compact cellulose nanofibers.

Some other reports suggest that the set recovery is also affected by compression ratio. Higher the compression ratio, higher is the time required for uptake of water (Abe et al., 2001). Oxidation during heat treatment is reported to affect positively on fixation of compression (JieYing et al., 2000).

Thickness loss (%)

After compression of the wood specimens to equal thickness, the wood specimens immediately showed spring back after removing them from pressing machine. However, the dimensions of the specimens attained stability after putting them in room condition for two days. Thereafter, thickness loss was calculated as per methodology described earlier. Table IV presents total thickness loss in compressed wood specimens with and without delignifications.

It can be seen from the table IV that mean thickness loss for delignified samples varied from 47.22% to 52.26%, whereas, compressed samples without any delignification showed approximately 10% higher thickness loss (58.77% to 61.91%). Figure 4 presents mean thickness loss in DCW and CW samples.

Mean of thickness loss of delignified samples (49.11%, SD = 3.06) was significantly lower to that of without delignification (60.45%, SD = 2.61) (F = 284.26, p ≤ 0.001). Higher thickness loss in the samples without delignification can be attributed to the breaking of cell walls during the compression, whereas, in delignified samples, cell re-alignment occurs.

Conclusion

Mean density of delignified and compressed wood was 0.825 g/cm³ (SD = 0.109) and that of only compressed wood was 0.889 g/cm³ (SD = 0.049) and these densities were found to be significantly different. The delignified wood samples showed very small set recovery in the range of 2.97% to 5.22%. Whereas, the wood samples without delignifications showed comparatively very high set recovery in the range of 48.47% to 38.05%. Mean thickness loss for delignified samples varied from 47.22% to 52.26%, whereas, compressed samples without any delignification showed approximately 10% higher thickness loss (58.77% to 61.91%). The study shows that partial delignification can be an important tool to reduce set recovery in compressed wood.

Table IV.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Pressing time (h)</th>
<th>Pressing temperature (°C)</th>
<th>Mean thickness loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delignified and compressed (DCW)</td>
<td>2 h</td>
<td>120 °C</td>
<td>47.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 °C</td>
<td>48.22</td>
</tr>
<tr>
<td></td>
<td>4 h</td>
<td>120 °C</td>
<td>48.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 °C</td>
<td>52.26</td>
</tr>
<tr>
<td>Compressed without delignification (CW)</td>
<td>2 h</td>
<td>120 °C</td>
<td>58.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 °C</td>
<td>59.64</td>
</tr>
<tr>
<td></td>
<td>4 h</td>
<td>120 °C</td>
<td>61.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150 °C</td>
<td>61.51</td>
</tr>
</tbody>
</table>
References

Kumar et al. – Author’s contributions

<table>
<thead>
<tr>
<th>Contributor role</th>
<th>Contributor names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptualization</td>
<td>S. Kumar</td>
</tr>
<tr>
<td>Data Curation</td>
<td>S. Kumar</td>
</tr>
<tr>
<td>Formal Analysis</td>
<td>S. Kumar</td>
</tr>
<tr>
<td>Project Administration</td>
<td>S. Kumar</td>
</tr>
<tr>
<td>Resources</td>
<td>I. Nautiyal, S. Shukla</td>
</tr>
<tr>
<td>Supervision</td>
<td>S. Kumar</td>
</tr>
<tr>
<td>Writing – Original Draft Preparation</td>
<td>S. Kumar</td>
</tr>
<tr>
<td>Writing – Review & Editing</td>
<td>S. Kumar</td>
</tr>
</tbody>
</table>