Image de la page couverture

Tolérance à l’engorgement d’eau chez les arbrisseaux de Parkia gigantocarpa Ducke

W. Viana de Andrade Júnior, B. Gomes dos Santos Filho, C. Ferreira de Oliveira Neto, E.D. Cruz, R. Shigueru Okumura, V. Resende do Nascimento, J. Taynara da Silva Martins, L. Corrêa Machado, D.J. Palheta de Sousa, J.S. Silva Teixeira

Résumé


Cette étude se propose d’évaluer les réponses biochimiques des arbrisseaux de Parkia gigantocarpa devant l’engorgement d’eau. L’engorgement est appliqué en inondant les arbrisseaux dans des pots de 14 kg jusqu’à approximativement 5 cm au-dessus de la surface du sol. Le plan expérimental a été façonné aléatoirement et comprenait deux types d’application de l’eau (contrôle et engorgement) sur cinq périodes d’évaluation (après 0, 4, 8, 12 et 16 jours d’engorgement), avec cinq réplications par traitement. Amidon, saccharose, hydrates de carbone solubles totaux et protéines solubles totales ont été mesurés. Les arbrisseaux soumis à engorgement ont montré des réductions significatives des concentrations d’amidon (62,50 %) et de protéines solubles totales (40,98 %), en particulier dans les feuilles. L’engorgement a réduit la concentration de saccharose dans les feuilles (44,38 %), tandis que cette concentration a augmenté dans les racines (76,78 %). La concentration d’hydrates de carbone solubles a augmenté de 106,9 % dans les racines des plantes exposées à l’engorgement. Cette étude a démontré la sensibilité des arbrisseaux de Parkia gigantocarpa à l’engorgement.


Mots-clés


amidon, saccharose, hydrates de carbone solubles totaux, protéines solubles totales, Brésil

Texte intégral :

PDF

Références


Andrade Júnior W. V., Santos Filho B. G., Oliveira Neto C. F., Pereira A. C. C., Silva R. T. L., Viegas I. J. M., et al., 2016. Ecophysiological and biochemical behavior in young plants of Parkia gigantocarpa Ducke subjected to waterlogging conditions. African Journal of Agricultural Research, 11: 284-297.

Araki H., Hossain M. A., Takahashi T., 2012. Waterlogging and hypoxia have permanent effects on wheat root growth and respiration. Journal of Agronomy and Crop Science, 198: 264-275. https://doi.org/10.1111/j.1439-037x.2012.00510.x

Arora K., Panda K. K., Mittal S., Mallikarjuna M. G., Rao A. R., Dash P. K., et al., 2017. RNAseq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize. Scientific Reports, 7: 1-12. https://doi.org/10.1038/s41598-017-10561-1

Bertolde F. Z., Almeida A.-A. F., Pirovani C. P., Gomes F. P., Ahnert D., Baligar V. C., et al., 2012. Physiological and biochemical responses of Theobroma cacao L. genotypes to flooding. Photosynthetica, 50: 447-457. https://doi.org/10.1007/s11099-012-0052-4

Bradford M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254. https://doi.org/10.1006/abio.1976.9999

Carvalho P. E. R., 2010. Espécies Arbóreas Brasileiras [Arboreal Brazilian species] Vol. 4. Embrapa Informação Tecnológica, Embrapa Florestas, 17 p. https://livimagens.sct.embrapa.br/amostras/00083860.pdf

Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F., 1956. Colorimetric method for determination of sugars and related substances. Analytical Biochemistry, 28: 350-356. https://doi.org/10.1021/ac60111a017

IPCC, 2012. Summary for Policymakers. In: Field C. B., Barros V., Stocker T. F., Qin D., Dokken D. J., Ebi K. L., et al. (eds). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation – A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. USA, Cambridge University Press, 3-19. https://www.ipcc.ch/site/assets/uploads/2018/03/SREX_Full_Report-1.pdf

Islam M. A., Macdonald S. E., 2004. Ecophysiological adaptations of black spruce (Piceamariana) and tamarack (Larixlaricina) seedlings to flooding. Trees, 18: 35-42. https://doi.org/10.1007/s00468-003-0276-9

Jaleel C. A., Manivannan P., Sankar B., Kishorekumar A., Panneerselvam R., 2007. Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus. Comptes Rendus Biologies, 330: 674-83. https://doi.org/10.1016/j.crvi.2007.07.002

Kreuzwieser J., Hauberg J., Howell K., Rennenberg A. C. H., Millar A. H., Whelan J., 2009. Differential Response of Gray Poplar Leaves and Roots Underpins Stress Adaptation during Hypoxia. Plant Physiology, 149: 461-473. https://doi.org/10.1104/pp.108.125989

Liu C. C., Liu Y., Liu K., Guo K., Fan D., Li G., Zheng Y., et al., 2011. Effect of trought on pigments, osmotic adjustment and antioxidante enzymes in six Woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany, 71: 174-183. https://doi.org/10.1016/j.envexpbot.2010.11.012

Merchant A., Peuke A. D., Keitel C., Macfarlane C., Warren C. R., Adams M. A., 2010. Phloem sap and leaf δ13C, carbohydrates, and amino acid concentrations in Eucalyptus globulus change systematically according to flooding and water deficit treatment. Journal of Experimental Botany, 61: 1785-1793. https://doi.org/10.1093/jxb/erq045

Miro B., Ismail A. M., 2013. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Frontiers in Plant Science, 4: 1-18. https://doi.org/10.3389/fpls.2013.00269

Mollard F. P. O., Striker G. G., Ploschuk E. L., Insausti P., 2010. Subtle topographical differences along a floodplain promote different plant strategies among Paspalum dilatatum subspecies and populations. Austral Ecology, 35: 189-196. https://doi.org/10.1111/j.1442-9993.2009.02026.x

Nanjo Y., Skultety L., Ashraf Y., Komatsu S., 2010. Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. Journal of Proteome Research, 9: 3989-4002. https://doi.org/10.1021/pr100179f

Oliveira A. K. M., Ribeiro J. W. F., Pereira K. C. L., Rondon E. V., Becker T. J. A., Barbosa L. A., 2012. Superação de dormência em sementes de Parkia gigantocarpa (Fabaceae – Mimosidae). Ciência Florestal, 22: 533-540. https://doi.org/10.5902/198050986620

Patel P. K., Singh A. K., Tripathi N., Yadav D., Hemantaranjan A., 2014. Flooding: Abiotic Constraint Limiting Vegetable Productivity. Advances in Plants & Agriculture Research, 1: 1-9. https://doi.org/10.15406/apar.2014.01.00016

Peuke A. D., Gessler A., Strumbore S., Windt C. W., Homan N., Gerkema E., et al., 2015. Phloem flow and sugar transport in Ricinus communis L. is inhibited under anoxic conditions of shoot or roots. Plant, Cell & Environment, 38: 433-447.

Reggiani R., Nebuloni M., Mattana M., Brambilla I., 2000. Anaerobic accumulation of amino acids in rice roots: role of the glutamine synthetase/glutamate synthase cycle. Amino Acids, 18: 207-217. https://doi.org/10.1007/s007260050018

Reis L. P., Carvalho J. O. P., Reis P. C. M., Gomes J. M., Ruschel A. R., Silva M. G., 2014. Crescimento de mudas de Parkia gigantocarpa Ducke, em um sistema de enriquecimento em clareiras após a colheita de madeira. Ciência Florestal, 24: 431-436. https://doi.org/10.5902/1980509814583

Rosa M., Prado C., Podazza G., Interdonato R., González J. A., Hilal M., et al., 2009. Soluble sugars Metabolism, sensing and abiotic stress. Plant Signal Behavior, 4: 388-393.

Statistical Analisys System Institute – SAS, 2007. SAS® 9.1.3 (TS1M3) for Windows Microsoft. SAS Institute Inc., 212 p. https://doi.org/10.4161/psb.4.5.8294

Steel R. G. D., Torrie J. H., Dickey D. A., 2006. Principles and procedures of statistics: A biometrical approach. 3rd edition. Moorpark, Ca, USA, Academic Internet Publishers, 666 p.

Van Handel E., 1968. Direct microdetermination of sucrose. Analytical Biochemistry, 22: 280-283. https://doi.org/10.1016/0003-2697(68)90317-5

Zabalza A., Dongen J. T. V., Froehlich A., Oliver S. N., Faix B., Gupta K. J., et al., 2009. Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiology, 149: 1087-1098. https://doi.org/10.1104/pp.108.129288




DOI: https://doi.org/10.19182/bft2019.341.a31759



Renvois

  • Il n'y a présentement aucun renvoi.




Droit d'auteur (c) 2019, BOIS & FORETS DES TROPIQUES

Licence Creative Commons
Ce(tte) œuvre est mise à disposition selon les termes de la Licence Creative Commons Attribution - Pas de Modification 4.0 International.

Bois et forêts des tropiques - Revue scientifique du Cirad

Cirad - Campus international de Baillarguet, 34398 Montpellier Cedex 5, France - Contact - ISSN: L-0006-579X