Taghiyari et al.

Effets de l’ajout de nano-wollastonite, de résidus de palmier-dattier et de deux types de résine sur les propriétés physiques et mécaniques de panneaux de fibres de bois à densité moyenne

H. Taghiyari, F.A. Ghamsari, E. Salimifard


L’étude porte sur les effets de l’ajout de nano-wollastonite (NW) et de résidus de palmier-dattier sur les propriétés physiques et mécaniques de panneaux de fibres à densité moyenne. Des résines d’urée-formaldéhyde (UF) et d’isocyanate (IC) ont été utilisées à 10 % et 5 %, respectivement, du poids sec du matériau pour produire les panneaux. NW à granulométrie < 100 nm a été utilisé à 5 et 10 % du poids sec des résines, mélangé et pulvérisé sur le matériau avant formation du tapis de fibres. Les résultats ont été ensuite comparés à ceux pour les panneaux sans NW. Ils indiquent clairement une moindre absorption d’humidité et un moindre gonflement en épaisseur pour les panneaux produits avec ajout de résine IC. L’ajout de résidus de palmier-dattier a augmenté significativement les valeurs IB des panneaux produits avec les deux résines, UF et IC. L’ajout de NW a réduit les propriétés mécaniques des panneaux produits avec la résine UF, et amélioré celles des panneaux produits avec la résine IC. En conclusion, les résidus de palmier-dattier peuvent être considérés comme matière première potentielle pour la production de panneaux de fibres à moyenne densité en utilisant les deux résines, UF et IC. D’autre part, l’ajout de NW est recommandé pour la production de panneaux composites avec 10 % de résidus de palmier pour compenser en partie leur moindre résistance mécanique.



minéraux, nanomatériaux, fibres naturelles, feuilles de palmier, panneaux de particules, coefficient de conductivité thermique, wollastonite, matériau de bois composite, Inde

Texte intégral :

PDF HTML (English)


The authors acknowledge constant scientific support of Prof. Olaf Schmidt from the University of Hamburg, as well as the support of Alexander von Humboldt Stiftung.


Adamopoulos S., Gellerich A., Mantanis G., Kalaitzi T., Militz H., 2012. Resistance of Pinus leucodermis heartwood and sapwood against the brown-rot fungus Coniophora puteana. Wood Material Science and Engineering, 7 (4): 242-244.

Altuntas E., Narlioglu N., Alma M. H., 2017. Investigation of the fire, thermal, and mechanical properties of zinc borate and synergic fir retardants on composites produced with PP-MDF wastes. BioResources, 12 (4): 6971-6983.

Andrade A. C. D. A., Silva J. R. M. D., Braga Junior R. A., Moulin J. C., 2016. Distinction of mechanically processed wood surfaces with similar qualities using sunset laser technique. CERNE, 22 (2): 159-162.

Arce N., Moya R., 2015. Wood characterization of adult clones of Tectona grandis growing in Costa Rica. CERNE, 21 (3): 353-362.

Bastani A., Adamopoulos St., Militz H., 2016. Shear strength of furfurylated, N-methylol melamine and thermally modified wood bonded with three conventional adhesives. Wood Material Science and Engineering, 12 (4): 236-241.

Behling M., Piketty M.-G., Morello T. F., Bouillet J.-P., Mesquita Neto F., Laclau J.-P., 2011. Eucalyptus plantations and the steel industry in Amazonia – A contribution from the 3-PG model. Bois et Forêts des Tropiques, 309 (3): 37-49. http://revues.cirad.fr/index.php/BFT/article/view/20464

Behr G., Bollmus S., Gellerich A., Militz H., 2017. Improvement of mechanical properties of thermally modified hardwood through melamine treatment. Wood Material Science and Engineering. https://doi.org/10.1080/17480272.2017.1313313

Candan Z., Akbulut T., 2014. Nano-engineered plywood panels: Performance properties. Composites: Part B, 64: 15-161.

Chan-Hom T., Yamsaengsung W., Prapagdee B., Markpin T., Sombatsompop N., 2017. Flame retardancy, antigungal efficacies, and physical-mechanical properties for wood-polymer composites containing zinc borate. Fire and Materials, 41 (6): 675-687.

Daly-Hassen H., Kasraoui M., Karra C., 2014. Industrial timber production in Tunisia: Despite reforestation, dependence on imports is increasing. Bois et Forêts des Tropiques, 322 (4): 29-37. http://revues.cirad.fr/index.php/BFT/article/view/BFT322-29-37

de Medeiros F. C. M., Gouveia F. N., Bizzo H. R., Vieira R. F., Del Menezzi C. H. S., 2016. Fungicide activity of essential oils from Brazilian Cerrado species against wood decay fungi. International Biodeterioration and Biodegradation, 114: 87-93.

Esmailpour A., Taghiyari H. R., Nouri P., Jahangiri A., 2017. Fire-retarding properties of nanowollastonite in particleboard. Fire and Materials. https://doi.org/10.1002/fam.2493

Fernandez-Puratich H., Oliver-Villanueva J. V., 2014. Quantification of biomass and energetic value of young natural regenerated stands of Quercus ilex under Mediterranean conditions. Bosque, 35 (1): 65-74.

Fernandes C., Gaspar M. J., Pires J., Alves A., Simoes R., Rodrigues J. C., et al., 2017. Physical, chemical and mechanical properties of Pinus sylvestris wood at five sites in Portugal. IForest Biogeosciences and Forestry, 10: 669-670.

Gbètoho A. J., Aoudji A. K. N., Roxburgh L., Ganglo J. C., 2017. Assessing the suitability of pioneer species for secondary forest restoration in Benin in the context of global climate change. Bois et Forêts des Tropiques, 332 (2): 43-55. http://revues.cirad.fr/index.php/BFT/article/view/ID-BFT-161025

Harsini I., Matalkah F., Soroushian P., Balachandra A. M., 2017. Robust, carbon nanotube/polymer nanolayered composites with enhanced ductility and strength. Journal of Nanomaterials and Molecular Nanotechnology, 6 (3). https://doi.org/10.4172/2324-8777.1000218

He X., Li X. J., Zhong Z., Mou Q., Yan Y., Chen H., et al., 2016. Effectiveness of impregnation of ammonium polyphosphate fire retardant in poplar wood using microwave heating. Fire and Materials, 40 (6): 818-825.

Hill C. A. S., 2006. Wood Modification: Chemical, Thermal, and Other Processes. John Wiley and Sons Ltd., 260 p. ISBN: 978-0-470-02172-9

Hosseinkhani H., 2015. MDF production from date palm pruning residues in pilot plant scale. Iranian Journal of Wood and Paper Science Research, 29 (4): 591-604.

Hosseinpourpia R., Adamopoulos S., Mai C., 2016. Dynamic vapour sorption of wood and holocellulose modified with thermosetting resins. Wood Science and Technology, 50: 165-178

Hosseinpourpia R., Adamopoulos S., Holstein N., Mai C., 2017. Dynamic vapour sorption and water-related properties of thermally modified Scots pine (Pinus sylvestris L.) wood pre-treated with proton acid. Polymer Degradation and Stability, 138: 161-168.

Hubbe M. A., Smith R. D., Zou X., Katuscak S., Potthast A., Ahn K., 2017. Deacidification of acidic books and paper by means of non-aqueous dispersions of alkaline particles: A review focusing on completeness of the reaction. BioResources, 12 (2): 4410-4477.

Huuskonen M. S., Jarvisalo J., Koskinen H., Nickels J., Rasanen J., Asp S., 1983a. Preliminary results from a cohort of workers exposed to wollastonite in a Finnish limestone quarry. Scandinavian Journal of Work, Environment, and Health, 9 (2): 169-175.

Huuskonen M. S., Tossavainen A., Koskinen H., Zitting A., Korhonen O., Nickels J., et al., 1983b. Wollastonite exposure and lung fibrosis. Environmental Research, 30 (2): 291-304.

Karimi A., Taghiyari H. R., Fattahi A., Karimi S., Ebrahimi Gh., Tarmian T., 2013. Effects of wollastonite nanofibers on biological durability of poplar wood (Populus nigra) against Trametes versicolor. BioResrouces, 8 (3): 4134-4141.

Koch J. W., 2006. Physical and mechanical properties of chicken feather materials. A thesis presented in partial fulfillment of the requirements for the degree of Master of Science in the School of Civil Environmental Engineering; Georgia Institute of Technology, May, 2006.

Lu H., Liu Y., Huang W. M., Wang C., Hui D., Fu Y. Q, 2017. Controlled evolution of surface patterns for ZnO coated on stretched PMMA upon thermal and solvent treatments. Composites, Part B: Engineering, 132 (1): 1-9.

Majidi R., 2016. Electronic properties of graphyne nanotubes filled with small fullerenes: A density functional theory study. Journal of Computational Electronics, 15: 1263-1268.

Matinise N., Fuku X., Maaza M., 2016. Fabrication of Mixed Phase Bimetallic Zinc Cobaltite Nanocomposite via Moringa oleifera Green Synthesis. Journal of Nanomaterial and Molecular Nanotechnology, 5: 6. https://doi.org/10.4172/2324-8777.1000197

Mantanis GI., Athanassiadou Eth., Barbu M. C., Wijnendaele K., 2017. Adhesive systems used in the European particleboard, MDF and OSB industries. Wood Material Science and Engineering. https://doi.org/10.1080/17480272.2017.1396622

Maxim L. D., McConnell E. E., 2005. A review of the toxicology and epidemiology of wollastonite. Inhalation Toxicology, 17 (9): 451-466.

Mendes R. F., Junior G. B., De Almeida N. F., Surdi P. G., Barbeiro I. N., 2013. Effects of thermal pre-treatment and variables of production on properties of OSB panels of Pinus taeda. Maderas. Ciencia y tecnologia, 15 (2): 141-152.

Parkinson G., 1998. Chementator: A higher use for lowly chicken feathers? Chemical Engineering Journal, 105, 21.

Pethig R., 2017. Review – Where is dielectrophoresis (DEP) going? Journal of The Electrochemical Society, 164 (5): B3049-B3055.

Schmidt O., 2006. Wood and Tree Fungi: Biology, damage, protection, and use. Berlin, Springer, 334 p. https://doi.org/10.1007/3-540-32139-X

Schmidt O., Magel E., Frühwald A., Glukhykh L., Erdt K., Kaschuro S., 2016. Influence of sugar and starch content of palm wood on fungal development and prevention of fungal colonization by acid treatment. Holzforschung, 70 (8): 783-791.

Sheikholeslami M., Pizzi A., Mirshokraie A., 2016. Determination of reaction rate parameters for the acid copper chromate fixation reactions on oak (Quercus castaneifolia C. A. Mey) sapwood. Wood Material Science and Engineering, 13 (1). https://doi.org/10.1080/17480272.2016.1213311

Suganya S., Kumar P. S., Saravanan A., 2017. Construction of active bio-nanocomposite by inseminated metal nanoparticles onto activated carbon: probing to antimicrobial activity. IET Nanobiotechnology, 11 (6): 746-753.

Taghiyari H. R., Karimi A., Tahir P. M. D., 2013a. Nano-wollastonite in particleboard: Physical and mechanical properties. BioResources, 8 (4): 5721-5732.

Taghiyari H. R., Mobini K., Sarvari Samadi Y., Doosti Z., Karimi F., Asghari M., et al., 2013b. Effects of nano-wollastonite on thermal conductivity coefficient of medium-density fiberboard. Journal of Nanomaterials and Molecular Nanotechnology, 2: 1. https://doi.org/10.4172/2324-8777.1000106

Taghiyari H. R., Bari E., Schmidt O., Tajick Ghanbary M. A., Karimi A., Tahir P. M. D., 2014a. Effects of nanowollastonite on biological resistance of particleboard made from wood chips and chicken feather against Antrodia vaillantii. International Biodeterioration and Biodegradation, 90: 93-98.

Taghiyari H. R., Bari E., Schmidt O., 2014b. Effects of nanowollastonite on biological resistance of medium-density fiberboard against Antrodia vaillantii. European Journal of Wood and Wood Products https://doi.org/10.1007/s00107-014-0794-8

Taghiyari H. R., Sarvari Samadi Y., 2016. Effects of wollastonite nanofibers on fluid flow in medium-density fiberboard. Journal of Forestry Research, 27 (1): 209-217.

Taghiyari H. R., Mohammad-Panah B., Morrell J. J., 2016a. Effects of wollastonite on the properties of medium-density fiberboard (MDF) made from wood fibers and camel-thorn. Maderas Ciencia y tecnologia, 18 (1): 157-166.

Taghiyari H. R., Majidi R., Jahangiri A., 2016b. Adsorption of nano-wollastonite on cellulose surface: Effects on physical and mechanical properties of medium-density fiberboard (MDF). CERNE, 22 (2): 215-222.

Taghiyari H. R., Taheri A., Omrani P., 2017. Correlation between acoustic and physical-mechanical properties of insulating composite boards made from sunflower stalk and wood chips. European Journal of Wood and Wood Products, 75 (3): 409-418.

Tajvidi M., Gardner D. J., Bousfield D. W., 2016. Cellulose Nanomaterials as Binders: Laminate and Particulate Systems. Journal of Renewable Materials. https://doi.org/10.7569/JRM.2016.634103

Valenzuela J., von Leyser E., Pizzi A., Westermeyer C., Gorrini B., 2012. Industrial production of pine tannin-bonded particleboard and MDF. European Journal of Wood and Wood Products, 70: 735-740. https://doi.org/10.1007/s00107-012-0610-2

DOI: https://doi.org/10.19182/bft2018.335.a31517


  • Il n'y a présentement aucun renvoi.

Droit d'auteur (c) 2018, BOIS & FORETS DES TROPIQUES

Licence Creative Commons
Ce(tte) œuvre est mise à disposition selon les termes de la Licence Creative Commons Attribution - Pas de Modification 4.0 International.

Bois et forêts des tropiques - Revue scientifique du Cirad

Cirad - Campus international de Baillarguet, 34398 Montpellier Cedex 5, France - Contact - ISSN: L-0006-579X