Fernandez-Solis et al.

Formation de duramen et prédictivité des paramètres associés pour des plantations de Tectona grandis L.f. au Costa Rica

D. Fernández-Sólis, A. Berrocal, R. Moya

Résumé


La présente étude vise à établir les variations du duramen (pourcentage, diamètre, rayon, volume) rapportées à la hauteur des arbres et à l’épaisseur de l’aubier, ainsi que l’âge de début de formation du duramen et sa hauteur maximale pour les arbres de l’essence Tectona grandis. Les résultats de l’échantillonnage de seize plantations réparties dans différentes zones du Costa Rica, âgées de 2 à 22 ans, montrent que l’aubier est plus épais entre 2 et 10 ans d’âge qu’entre 10 et 22 ans. La formation du duramen commence à la base des arbres âgés de 2 à 3 ans, mais il n’apparaît à hauteur de poitrine qu’à partir de 3 à 4 ans. Le duramen disparaît à une hauteur allant de 0 à 90 % de la hauteur totale selon l’âge de l’arbre. Enfin, des modèles statistiques prédictifs ont été développés pour l’épaisseur de l’aubier et pour le rayon, la hauteur maximale et le pourcentage du duramen, en se basant sur le modèle Y = K0 + K1*(épaisseur de l’aubier) + K2*(hauteur relative de l’échantillonnage) + K3*(diamètre à hauteur de poitrine) + K4*(âge de l’arbre). Ces modèles indiquent des coefficients de détermination de 70 %, 90 %, 95 %, 73 % et 31 %, respectivement.

  


Mots-clés


duramen, aubier, Tectona grandis, variation verticale, modèles prédictifs

Texte intégral :

PDF HTML (English)

Références


Anish M. C., Anoop E. V., Vishnu R., Sreejith B., Jijeesh C. M., 2015. Effect of growth rate on wood quality of teak (Tectona grandis L. f.): a comparative study of teak grown under differing site quality conditions. Journal of the Indian Academy of Wood Science, 12 (1): 81-88.

Arce N., Moya R., 2015. Wood characterization of adult clones of Tectona grandis growing in Costa Rica. Cerne, 21 (3): 353-362.

Berthier S., Kokutse A. D., Stokes A., Fourcaud T. 2001. Irregular heartwood formation in maritime pine (Pinus pinaster Ait): consequences for biomechanical and hydraulic tree functioning. Annals of Botany, 87 (1): 19-25.

Climent J., Chambel M. R., Gil L., Pardos J. A., 2003. Vertical heartwood variation patterns and prediction of heartwood volume in Pinus canariensis Sm. Forest Ecology and Management, 174 (1): 203-211.

Crespo R., Jiménez E., Suatuance P., Law G., Sánchez C., 2008. Comparative analysis of physical-mechanical properties of teak (Tectona grandis LF) from Quevedo and Baltazar. Ciencia y Tecnologia, 1: 55-63.

Galeano E., Vasconcelos T. S., Vidal M., Mejia-Guerra M. K., Carrer H., 2015. Large-scale transcriptional profiling of lignified tissues in Tectona grandis. BMC Plant Biology, 15 (1): 221.

García H., da Silva M. L. M., Binoti D. H. B., Fardin L., Takizawa F. H., 2011a. Estimation of inside-bark diameter and heartwood diameter for Tectona grandis Linn. trees using artificial neural networks. European Journal of Forest Research, 130 (2): 263-269.

García H., de Oliveira Neto R. R., Monte M. A., Fardin L., de Alcantara A. M., Binoti M. D. S., et al., 2011b. Models of heartwood of Tectona grandis Lf. Scientia Forestalis, 39 (89): 53-59.

Gominho J., Figueira J., Rodríguez J. C., Pereira H.. 2001. Within-tree variation of heartwood, extractives and wood density in the eucalypt hybrid urograndis (Eucalyptus grandis× E. urophylla). Wood and Fiber Science, 33 (1): 3-8.

Gominho J., Pereira H., 2000. Variability of heartwood content in plantation-grown Eucalyptus globulus Labill. Wood and Fiber Science, 32 (2): 189-195.

Hegde H. T., Kalkoor M. A., Jha S. K., Thakur N. S., 2014. Evaluation of variation in physical properties of wood among some tropical tree species of South India. Indian Forester, 140 (1): 70-75.

Hillis W. E., 1999. The formation of heartwood and its extractives. In: John T. Romeo (ed.), Phytochemicals in Human Health Protection, Nutrition, and Plant Defense. Springer US, 215-253.

Kennedy S. G., Yanchuk A. D., Stackpole D. J., Jefferson P. A., 2014. Incorporating non-key traits in selecting the Pinus radiata production population. New Zealand Journal of Forestry Science, 44 (1): 1-10.

Knapic S., Oliveira V., Makkonen M., Pinto-Seppä I., Pereira H., 2014. Circumferential variation of heartwood and stem quality in maritime pine stems. European Journal of Forest Research, 133 (6): 1007-1014.

Kokutse A. D., Bailleres H., Stokes A., Kokou K., 2004. Proportion and quality of heartwood in Togolese teak (Tectona grandis Lf). Forest Ecology and Management, 189 (1): 37-48.

Koskela J., Vinceti B., Dvorak W., Bush D., Dawson I. K., Loo J., et al., 2014. Utilization and transfer of forest genetic resources: A global review. Forest Ecology and Management, 333: 22-34.

Kumar A., Dhillon G. P. S., 2015. Variation of sapwood and heartwood content in half-sib progenies of Eucalyptus tereticornis Sm. Indian Journal of Natural Products and Resources, 5 (4): 338-344.

Lourenço A., Neiva D. M., Gominho J., Marques A. V., Pereira H., 2015. Characterization of lignin in heartwood, sapwood and bark from Tectona grandis using Py–GC–MS/FID. Wood Science and Technology, 49 (1): 159-175.

Minn Y., Prinz K., Finkeldey R., 2014. Genetic variation of teak (Tectona grandis Linn. f.) in Myanmar revealed by microsatellites. Tree Genetics and Genomes, 10 (5): 1435-1449.

Miranda I., Sousa V., Pereira H., 2011. Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. Journal of Wood Science, 57 (3): 171-178.

Miranda I., Gominho J., Pereira H., 2015. Heartwood, sapwood and bark variation in coppiced Eucalyptus globulus trees in 2nd rotation and comparison with the single-stem 1st rotation. Silva Fennica, 49 (1): id 1141.

Moya R., Berrocal A., 2010. Wood colour variation in sapwood and heartwood of young trees of Tectona grandis and its relationship with plantation characteristics, site, and decay resistance. Annals Forest Science, 67: 109-129.

Moya R., Bond B., Quesada H., 2014. A review of heartwood properties of Tectona grandis trees from fast-growth plantations. Wood Science and Technology, 48 (2): 411-433.

Moya R., Marin J. D., Murillo O., Leandro L. 2013. Wood physical properties, color, decay resistance and stiffness in Tectona grandis clones with evidence of genetic control. Silvae Genetica, 62 (3): 142-152

Moya R., Marín J. D., 2011. Grouping of Tectona grandis (Lf) clones using wood color and stiffness. New Forests, 42 (3): 329-345.

Nocetti M., Della Rocca G., Berti S., Brunetti M., Di Lonardo V., Danti R., 2015. Genetic growth parameters and morphological traits of canker-resistant cypress clones selected for timber production. Tree Genetics and Genomes, 11 (4): 1-11.

Okuyama T., Yamamoto H., Wahyud I., Yusuf Sudo Had Y., Bhat K. M., 2005. Some wood quality issues in planted teak. In: Bhat K. M. (ed.), Quality timber products of teak from sustainable forest management. Proceedings of the international conference on quality timber products of teak from sustainable forest management, 2–5 December. Peechi, India.

Pâques L. E., Charpentier J. P., 2015. Perspectives for genetic improvement in heartwood size and extractive content in relation to natural durability and aesthetics in interspecific hybrid larch (Larix× eurolepis). European Journal of Forest Research, 134 (5): 857-868.

Pérez L. D., Kanninen M., 2003. Heartwood, sapwood and bark content, and wood dry density of young and mature teak (Tectona grandis) trees grown in Costa Rica. Silva Fennica, 37 (1): 45-54.

Pinto I., Pereira H., Usenius A., 2004. Heartwood and sapwood development within maritime pine (Pinus pinaster Ait.) stems. Trees, 18 (3): 284-294.

Serrano R., Moya R., Berrocal A., González G., Córdoba R., 2015. General, physical and mechanical properties, termites resistance and drying defects of lumber of Tectona grandis from plantations of different climatic and sites fertility condition. Journal of the Indian Academy of Wood Science, 12 (1): 63-73.

Solórzano S., Moya R., Chauhan S., 2012a. Early genetic evaluation of morphology and some wood properties of Tectona grandis L. clones. Silvae Genetica, 61: 58-65.

Solórzano S., Moya R., Murillo O., 2012b. Early prediction of basic density, shrinking, presence of growth stress, and dynamic elastic modulus based on the morphological tree parameters of Tectona grandis. Journal of Wood Science, 58 (4): 290-299.

Sousa V. B., Cardoso S., Quilhó T., Pereira H., 2012. Growth rate and ring width variability of teak, Tectona grandis (Verbenaceae) in an unmanaged forest in East Timor. Revista de Biología Tropical, 60 (1): 483-494.

Taylor A. M., Gartner B. L., Morrell J. J., 2002. Heartwood Formation and Natural Durability – A Review. Wood and Fiber Science, 34 (4): 587-611.

Thulasidas P. K., Bhat K. M., 2009. Log characteristics and sawn timber recovery of home-garden teak from wet and dry localities of Kerala, India. Small-Scale Forestry, 8 (1): 15-24.

Víquez E., Pérez D., 2005. Effect of pruning on tree growth, yield, and wood properties of Tectona grandis plantations in Costa Rica. Silva Fennica, 39 (3): 381.

Wilkes J., 1991. Heartwood development and its relationship to growth in Pinus radiata. Wood Science and Technology, 25 (2): 85-90.

Yang K. C., Chen Y. S., Chiu C., Hazenberg G., 1994. Formation and vertical distribution of sapwood and heartwood in Cryptomeria japonica D. Don. Trees, 9 (1): 35-40.

Zhang X. L., Jiang L. C., 2015. Inside bark diameter prediction models for dahurian Larch. Forest Research, 1: 0-13.




DOI: https://doi.org/10.19182/bft2018.335.a31499



Renvois

  • Il n'y a présentement aucun renvoi.




Droit d'auteur (c) 2018, BOIS & FORETS DES TROPIQUES

Licence Creative Commons
Ce(tte) œuvre est mise à disposition selon les termes de la Licence Creative Commons Attribution - Pas de Modification 4.0 International.

Bois et forêts des tropiques - Revue scientifique du Cirad

Cirad - Campus international de Baillarguet, 34398 Montpellier Cedex 5, France - Contact - ISSN: L-0006-579X