Régénération forestière en Guyane française : recrû sur 25 ha de coupe papetière en forêt dense humide (Arbocel)

par Géma MAURY-LECHON
CNRS, Muséum-Phanérogame

Revue Bois et Forêts des Tropiques, n° 197, 3e trimestre 1982
RESUMEN

REGENERACIÓN FORESTAL EN LA GUYANA FRANCESA : REGENERACIÓN DE 25 HA DE CORTA PAPELERA EN BOSQUE DENSO HÚMEDO (ARBOCEL)

Se ha procedido al análisis de la evolución de la vegetación secundaria en una corta papelera experimental de 25 ha en la Guyana francesa durante el transcurso de los 4 primeros años. La heterogeneidad de la cubierta vegetativa se deriva del dinamismo de una formación lenosa básica, en la cual predomina la variedad Visnia (Guttiferae) que caracteriza la regeneración forestal de esta región de la pista de St.Elie. Los factores primordiales de este dinamismo son, por orden decreciente, el fuego, el drenaje, la ocupación del suelo por los troncos y coronas, el potencial seminal del suelo, la aportación animal que sucede a la tala y la proximidad del bosque.

SUMMARY

FOREST REGENERATION IN FRENCH GUIANA : SECONDARY VEGETATION ON A CLEAR CUT OF 25 HA FOR PULP PURPOSES

The evolution of the secondary vegetation has been analysed on an experimental clear-cut (pulp paper purpose) of 25 ha in French Guyana during the 4 first years. The heterogeneity of the vegetation results from the dynamism of a basal ligneous formation with dominance of Visnia (Guttiferae) which characterizes the forest regrowth of this region. The different formations have been defined and their biomasses evaluated during the fourth year after felling. The main factors of their evolution are in order of decreasing importance: fire, drainage, proportion of ground covered by fallen timbers and crowns, previous soil seminal potential, posterior animal dispersal and proximity of the undisturbed forest.

PRÉSENTATION DU PROGRAMME ECEREX


Ce projet s’inscrit dans le programme U.N.E.S.C.O. « l’Homme et la Biosphère » concernant les effets écosystèmes forestiers tropicaux et subtropicaux (M.A.B. 1).

« La localisation de cette action concertée a été fixée en fonction des projets de mise en valeur, orientés essentiellement lors de la mise en place de cette étude vers la création d’une industrie de la cellulose à des fins papetiers. Pour diverses raisons d’accessibilité routière, de caractères géologiques et pédologiques et pour profiter de la présence d’une parcelle expérimentale d’exploitation forestière (ARBOCEL) », le secteur étudié se situe dans la zone expérimentale dite ECEREX sur la piste de St Elie (5°30’ N ; 53° W.) à environ 16 km de Signeary (fig. 1-2) en forêt primaire.

« Il s’agit de la partie la plus septentrionale du massif forestier sur sol ancien modelé en demi-orange sur schistes du Bonidoro, susceptible d’être exploité à grande échelle par les papetiers. »

« Les études s’articulent autour d’une expérimentation en bassins versants comparatifs correspondant à des unités hydrologiques élémentaires, ainsi qu’en parcelles élémentaires. »
Les travaux récents de l'O.R.S.T.O.M. (BOULET et al., 1979, ROCHE, 1979) ont montré qu'il existe deux types principaux de dynamique de l'eau au sein des couvertures pédologiques du socle guyanais. Dans l'un le drainage vertical est libre, dans l'autre il est bloqué ou fortement ralenti à faible profondeur. A la suite de reconnaissances destinées à rechercher des sites correctement exploitables du point de vue hydrologique et pédologique, représentatifs de l'ensemble du domaine septentrional sur schistes Bonidoro, a été retenu un dispositif de 10 bassins versants qui se répartissent comme suit :

- 1 bassin à drainage vertical libre (bassin C) qui sert de référence pour la mise en valeur,
- 4 bassins à drainage bloqué (bassins A, G, H, F) qui doivent permettre l'étude des possibilités de mise en valeur de ces sols,
- 5 bassins mixtes (B, D, E, I, J).

Les modes d'aménagement et le choix des spéculations (agricoles, forestières, pastorales) sont dictés par le plan de mise en valeur de la Guyane et ont été arrêtés en liaison très étroite avec les responsables de la Délégation Départementale de l'Agriculture (D.D.A.) et de l'Office National des Forêts (O.N.F.).

L'aménagement pastoral a porté sur les bassins A et J, les plantations forestières sur les bassins G et H (Pins, Eucalyptus), les vergers sur le bassin C (Pomelos), les reculs après exploitation se localisent sur les bassins D et E, les cultures traditionnelles de la culture traditionnelle (bassin I, et le bassin B et F ont été conservés comme témoins : B pour A, C, D et E, et F pour G, H, I, J.

Par ailleurs, dans le périmètre d'étude, mais hors bassin versant, la Société ARBOCEL a effectué une exploitation papetière expérimentale sur 10 ha en juillet-août 1976. Pour se placer dans les conditions d'une surface exploitée à grande échelle, le C.T.F.T. a été amené à élargir le dispositif et à le porter à 25 ha (août-septembre 1976). De plus les houppiers sont laissés sur place. La parcelle a depuis subi involontairement et par deux fois l'effet du feu (octobre 1976). (SARRAILH, 1980).
ÉTUDE DE LA PARCELLE ARBOCEL

INTRODUCTION

Fin 1976 on pouvait estimer qu’approximativement 10 % de la surface du sol (sur schistes Boniford) des 25 ha de la parcelle Arbocel avaient été compactés ou remaniés par les engins mécaniques et 15 % fortement brûlés (fig. 3 et 12-C), tandis que 40 % de la biomasse végétale coupée par les papetiers restaient sur la parcelle. L’encombrement du sol par les troncs a été évalué à 20 % sur un transect (460 × 2 m) en 1980 (fig. 12-B).

Trois ans et demi après la coupe, environ 96 % de cette parcelle portent une végétation hétérogène, tandis que le restant correspond à des chemins de halage encore dénudés (fig. 1 et 12 A-D).

L’hétérogénéité de cette couverture végétale résulte du dynamisme d’une formation ligneuse de base à deux strates, avec dominance de Visnia (Guttiferae) qui caractérise le recrut forestier de cette région de la piste de St Elie.

Le facteur feu scinde les paysages végétaux en deux groupes : des formations arborées sur sols peu brûlés et des formations herbacées à arbustives sur sols très brûlés à calcinés, l’ensemble constituant une mosaïque de surfaces imbriquées avec de nombreuses zones transitionnelles (fig. 1 et 12 A-D).

COLONISATION


Le processus de colonisation de ces plantes sur l’ensemble des vingt-cinq hectares se retrouve encore actuellement sur les pistes nouvellement ouvertes en forêt, sur les bords des chemins de halage dénudés d’ARBOCEL avec un retard de quatre années sur le reste de la parcelle, et sur les bassins expérimentaux après débardage et salage (pâturages et vergers actuels). Sur le bassin A, un mois seulement après le désherbage final, ce cortège était déjà représenté par des plantules de 15 à 30 cm. En forêt mexicaine Gomez-Pompa et al., 1976, notent également que la colonisation initiale s’effectue en quelques semaines. Uhl et al., 1981 et Uhl, 1982, observent aussi l’établissement des plantes sur une coupe de « mature terra firme forest » vénézuélienne près de San Carlos, après brûlis ; ils mentionnent leur petit nombre au cours des quatre premiers mois.


CORTÈGE FLORISTIQUE DE BASE

Les principales espèces qui composent le cortège de base correspondent à des formes herbacées, lianescentes, arbustives et arborées (fig. 4 à 11).

Herbacées : en milieu ouvert surtout, Erechites breviwiolifolia L. (Asteraceae), Lycopus commun L. (Lycopodiaceae), Pityrogramma colomelanos (L.) Link (Pteri-

* Microbiotope : biotophe de très petites dimensions. Biotope : milieu ou portion homogène d’espace naturel supportant une formation vivante particulière dépendante des caractéristiques de ce milieu. Sur ARBOCEL les microbiotopes sont créés, par exemple, par la présence de troncs (ombrage et humidité en dessous), par le passage plus ou moins intense du feu sur de petites surfaces, par l’ombre portée et les chutes de litière d’une couronne voisine sur le sol nu, etc...

4 — Goupia glabra Aubl. (Celastraceae); 5 — Laetia procera (P. et E.) Eichler (Poincariaceae); 6 — Cecropia obtusa Trec. (Moraceae); 7 — Cecropia scadophylla Mart. (Moraceae); 8 — Isertia spiciformis D.C. (Rubiacée); 9 — Isertia cocinea (Aubl.) Gmel. (Rubiacée); 10 — Visnia latifolia (Aubl.) Choisy (Guttiferae); 11 — Inga chibaudiana D.C. (Mimosoideae).
Les fig. 4 à 10 correspondent aux espèces caractéristiques des recrut de la région de St Elie sur coupes de grande surface. Nombreux débris organiques au sol.
Fig. 3. — Parcelle Arbocel en 1976 : transect NW-SE, zones brûlées, chemins de halage (pistes bulldozers), principales directions d’écoulement des eaux.


*Arbres* (certains de petite taille) : parmi les 110 espèces déterminées au bout de trois ans et demi les plus caractéristiques du recrut depuis 1977, et actuellement
FACTEURS DÉTERMINANTS DU PAYSAGE VÉGÉTAL

L’aspect actuel de la végétation sur Arbocel s’explique par l’existence, fin 1976, d’une mosaïque de microhabitats qui résulte, d’une part des facteurs préexistant à l’exploitation, et d’autre part des conséquences directes des méthodes d’exploitation.

1. Les facteurs préexistants modélant le paysage végétal sont :

Il y avait aussi en bordure des lisières de très nombreux plantules d’Eperua falcata (Cesalpininaceae de forêt dense) qui atteignaient 30 cm mais dépérisaient rapidement au soleil.

- Les souches capables de rejet. En juin 1977, 8 mois après la coupe et le passage du feu, sur 20 espèces d’arbres 10 ont émis des rejets de souches (MAURY 1979). En 1980 de FORESTA les évalue à 159/ha. UHL, 1982, compare leur importance en fonction de la présence ou de l’absence des feux. Quatre mois après la coupe le nombre de rejets est de 6,4/m² sur coupe non brûlée et 0,6/m² sur coupe brûlée ; après 22 mois il n’en subsiste plus que 10 %. Leur nombre serait peut-être relié à la dimension de l’ouverture du chablis (ALEXANDRE 1980). Il varie en outre avec l’âge de ce dernier : 75 % après trois mois sur coupe non brûlée de 0,5 ha (UHL 1982) et plus de 90 % après trois ans. Sur Arbocel leur nombre passe de 1,5 % (3 ans) à 1,8 % (4 ans) et 2,9 % (5 ans) d’après PREVOST (1982).

2. Les conséquences de l’exploitation constituent les facteurs prédominants de l’aspect en mosaïque de la végétation par les modifications irréversibles qu’elles ont imposées au sol :
   - Les engins mécaniques ont compacté et surtout remanié les 40 à 50 cm de sol superficiel qu’ils ont éle- vés ou déplacés détruisant ainsi les graminées dormantes de ces zones les plus perturbées (construction des pistes, déplacement des billes et houppiers par les bulldozers...). Certains remaniements ont bloqué l’écou- lement naturel des eaux de ruissellement accentuant les parties inondables.
   - Les souches des arbres exploités et les troncs des espèces non coupées ayant la possibilité d’émettre des rejets ont été en quelque sorte privilégiés. Sous couvert des formations secondaires arborées, en bas-fond humide, elles développent des tiges vigoureuses dont la croissance est plus rapide que celle des espèces pionnières (ex : une souche de Dicorynia guianensis, portrait au bout de trois ans et demi en mars 1980 : 11 rejets de 3,5 à 6 cm de diamètre et 7 m de haut).
   - Les troncs et houppiers restant après les feux constituent les seuls débris organiques et surtout le seul ombrage qui retienne l’humidité et favorise les premières germinations (MAURY 1979).
   - La plus ou moins grande proximité des lisières de la forêt voisine détermine les possibilités d’apport de graine forestières sur la parcelle (soit par les animaux dissémi- nateurs, soit par le vent, plus rarement par éclatement des gousses sur l’arbre-mère comme chez Eperua falcata), de pénétration de la parcelle par les tiges rampantes, et des possibilités d’action microclimatiques (masse humide et fraîche en opposition à la surface sèche et chaude des 24 ha).
   - Les deux feux qui ont traversé la parcelle ont imposé les plus grandes perturbations et déterminé en grande partie l’aspect actuel de la végétation. Le passage du feu réduit fortement le nombre des rejets et plus encore celui des plantules et des graminées forestières viables préexistantes à l’exploitation. Il favorise au con- traire la croissance des espèces secondaires qui caractérisent le recrut d’ARBOCEL. Néanmoins un feu trop

FORMATIONS VÉGÉTALES

(Figure 12 et tableau I)

En mars 1980 se différencient 10 formations dans la végétation de trois ans et demi :

— **des formations herbacées**

  1 — touffes rares en bordure des zones compactées sur les pistes, h < 1 m (fig. 14);
  2 — formation herbacée basse à *Pityrogramma* (sol brûlé et drainé), h = 1 m;
  3 — formation herbacée haute à *Acrostichum, Typha et Pityrogramma* (sol brûlé et inondé), h = 2 m;

— **des formations ligneuses**

  • formation arbustive à 1 strate
  4 — strate arbustive basse à *Solanum submerne* (sol brûlé et drainé, sec), h = 2 m;
  • formations arboréees (fig. 16)
  5 — formation ouverte (sol très remanié) ; ce n’est pas une vraie formation ; mais la juxtaposition de sol nu et de plaques de végétation (fig. 18);
  — formations fermées
    • à 1 strate de hauteur moyenne (4-7 m);
    6 — formation à *Vismia confertifolia* dominant (sol inondé), h = 5-7 m;
    7 — formation à *Vismia guianensis* et *V. latisiliqua et Laetia procer* (sol peu remanié), h = 4-7 m (fig. 20);
    8 — formation à *Palicourea guianensis* (près de zones ouvertes : route et larges pistes) h = 4-7 m;
    • à 2 strates (strate supérieure à *Cecropia*, h = 9-10 m);
    9 — formation à *Vismia* (3 sp.) avec strate inférieure moyenne (4-7 m), et strate supérieure pourvue en *Cecropia sclado phyta*.
<table>
<thead>
<tr>
<th>Diamètre cm</th>
<th>Espèces ligneuses représentatives. Ordre décroissant nombre tiges/ha</th>
<th>Plantules et jeunes 0</th>
<th>1 cm d’espèces ligneuses</th>
<th>Système de mesure</th>
<th>Nombre tiges</th>
<th>Nombre espèces</th>
<th>Plantes dominantes</th>
<th>Espèces dominantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-11</td>
<td>Cecropia obtusa, Goupi a glabra, Cecropia sciadophylla, Vismia confertifolia, Laetia procrea, Xylia nitida, Palicourea guianensis, Miconia sp., Vismia guianensis, Solanum rugosum, S. salvifolium, S. lenticarpum. (65 sp. sur 50 m²).</td>
<td>30 m² 30 19 8</td>
<td>Goupi a glabra, Fagara pentandra, Xylia nitida, 1 Apocynacée, 8 plantules de lianes (5 espèces : Passifloras et Dilieniacées). Hors des 50 m² : rares plantules forestières (1 Dysoxyria guianensis).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-6</td>
<td>Goupi a glabra (1 600 tiges/ha), Laetia procrea (1 600 tiges/ha), Cecropia obtusa, C. sciadophylla, Vismia guianensis, V. latifolia, V. confertifolia, Isertia specifloris et Loreya mepiloides peu représentées (plus de 45 sp. sur 25 m²).</td>
<td>25 m² 16 6 6 16</td>
<td>14/16 plantules pour 3 espèces : Goupi a glabra, Vismia confertifolia, V. guianensis.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-5</td>
<td>Palicourea guianensis (42 % des tiges) et Isertia specifloris (d’épinus 15 200 tiges/ha), Laetia procrea (5 200 tiges/ha), Goupi a glabra (800 tiges/ha), Loreya mepiloides, Miconia sp., Bellinia gron (et une autre Mélanomacée indéterminée (rubiénes 6 400 tiges/ha). (Présence des autres sp. de la formation n°7) (sur 25 m²).</td>
<td>25 m² 57 17 16</td>
<td>20/51 plantules pour 4 espèces : Loreya mepiloides, Laetia procrea, Isertia specifloris, Miconia sp. 2 plantules de Dietropanax novosoloni.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-7</td>
<td>Vismia confertiflora (77 % de la biomasse), V. guianensis, V. latifolia, Cecropia obtusa, C. sciadophylla, Goupi a glabra, Laetia procrea, Isertia specifloris, Loreya mepiloides, Xylia nitida, Solanum subinerme, S. rugosum.</td>
<td>25 m² 47 10 10</td>
<td>Vismia confertiflora (50 %), Solanum salvifolium, Loreya mepiloides, Xylia nitida, Vismia guianensis, Jacaranda copia.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-7</td>
<td>Laetia procrea, Bellicia groenlandica, B. sp., Cecropia obtusa, Vismia guianensis, Xylia nitida, Ficus trigonata, Cordia tetrandra (sur 25 m²).</td>
<td>25 m² 2 2 2</td>
<td>Vismia latifolia, Isertia specifloris.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-3(5)</td>
<td>Solanum subinerme (37 % sur 39 tiges ligneuses), Vismia confertiflora, Cecropia obtusa, Loreya mepiloides, Bellicia grano-slaroeïdes, Miconia ischnoeïdes, Miconia sp., Isertia specifloris, Solanum rugosum.</td>
<td>25 m² 5 2 2</td>
<td>Solanum subinerme, S. rugosum (hors de cette parcelle rares plantules de Vismia : les 3 espèces).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-6</td>
<td>Vismia confertiflora, Cecropia sciadophylla, C. obtus.</td>
<td>25 m² 6 3 3</td>
<td>Laetia procrea, Goupi a glabra, l indéterminé.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-3</td>
<td>Solanum subinerme, Vismia confertiflora. Herbacée dominante : Physogromma calomelanos (sur 25 m²).</td>
<td>25 m² 3 1 1</td>
<td>Vismia confertiflora.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Légende tableau n° 1 : s. sup. = strate supérieure, s. inf. = strate inférieure, S % = surface occupée par la formation, P.F. = biomasse exprimée en poids frais, P.S. = biomasse exprimée en poids sec, % b.l. /ha = biomasse des ligneux exprimée en pourcentage de la biomasse totale par hectare. li./ha = ligneux à l’hectare.

10 — formation à Goupi a glabra avec strate inférieure haute (5-9 m) et strate supérieure riche en Cecropia sciadophylla (fig. 22).

Les caractéristiques des formations sont exposées sur le tableau n° 1.

**DYNAMIQUE DE LA VÉGÉTATION**

(tableau II)

Le dynamisme du recruté résulte de l’action combinée de facteurs qui par ordre d’importance sont : le feu, le drainage (combinaison du relief naturel, des perturbations causées par les engins mécaniques, et de l’érosion), l’encombrement du sol par les frits et couronnes abattus, le potentiel séminal du sol après coupe et passage du feu et l’apport animal succédant à la coupe, la proximités de la forêt (= effet de lisière).

1) Dynamique sur sols fortement brûlés : formations herbacées à arbustives

Dès la première année ces zones ont été sélectivement couvertes d’une formation herbacée basse où domine Physogromma (l = 1 m).

En fonction du biotope elle s’est diversifiée :

<table>
<thead>
<tr>
<th>Topographie-drainage</th>
<th>Etat du sol</th>
<th>Peu brûlé</th>
<th>Feu</th>
<th>Très brûlé</th>
</tr>
</thead>
<tbody>
<tr>
<td>marécage permanent = bas-fonds</td>
<td></td>
<td>Formation herbacée haute : n° 3 à <strong>Acrastichum, Typha, Pityrogramma</strong> ; s = 3,5 %, B.s. = 5,019 kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>marécage temporaire</td>
<td></td>
<td>Formation herbacée haute : transition : n° 3 → 6 à <strong>Acrastichum, Vismia confertiflora, Pityrogramma</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bas de pentes mal drainées</td>
<td></td>
<td>Formation ligneuse fermée à 1 strate : n° 6 à <strong>Vismia confertiflora</strong> ; S = 11 %, B.s. = 34,000 kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pentes drainées replats secs lessivés et tassés ou bien recouverts</td>
<td></td>
<td>Formation herbacée basse : n° 2 B.s. = 4,832 kg/ha à <strong>Pythiumoma calomelanos</strong> ; S = 10 %,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sec</td>
<td></td>
<td>Formation arbustive à 1 strate : n° 4 à <strong>Solanum subinerme</strong> ; S = 12 %, B.s. = 5,900 kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pistes compactées (sec à inondé</td>
<td></td>
<td>Formation à sol nu : n° 1 S = 6 % rares touffes : <strong>Lycopodium, Scleria, Pityrogramma</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>très remanié remanié</td>
<td></td>
<td>Formation ligneuse ouverte : n° 5 transitions de 4 et 6 vers 7 puis 8 ; S = 17 %, B.s. = 17,920 kg/ha juxtaposition de sol nu et de parties de formations 4, 5, 7 et 8.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bon drainage</td>
<td></td>
<td>Formation ligneuse fermée à 1 strate : n° 7 à <strong>Vismia latifolia, V. guianensis</strong> ; S = 3,8 %, B.s. = 23,700 kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bords route et larges pistes non remanié</td>
<td></td>
<td>Formation ligneuse fermée à 1 strate : n° 8 à <strong>Pulicaria guianensis</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pentes et crêtes drainées</td>
<td></td>
<td>Formation ligneuse fermée à 2 strates : n° 9 strate inférieure haute moyenne ; S = 25 %, B.s. = 32,708 kg/ha à <strong>Visna</strong> (3 sp.), <strong>Ceccropia sciadophylla, Laelia procura.</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lisières humides de forêt, drainage bon à moyen</td>
<td></td>
<td>Formation ligneuse fermée à 2 strates : n° 10 strate inférieure haute ; S = 10,5 %, B.s. = 39,660 kg/ha à <strong>Goupia glabra, Ceccropia sciadophylla, Vismia</strong> (3 sp.).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

transitions imposées par les facteurs du milieu dynamique expansive résultant du surcimge qui permet la progression vers des milieux ouverts.
— Dans les zones marécageuses permanentes, en une formation hygrophile herbacée haute (h = 2 m) à *Typha cf. domingensis*, *Acrostichum aureum* et *Pityrogramma calomelanos* (formation n° 3).

— Sur les bordures inondables des marécages permanents, en un mélange d’*Acrostichum aureum*, *Pityrogramma calomelanos* et *Visnia confertiflora*, qui correspond à une zone transitionnelle entre la formation herbacée hygrophile et haute qui précède, et la formation arborée formée à une strate à *Visnia confertiflora* (formation n° 6, h = 5-7 m).

L’ensemble des formations herbacées à *Pityrogramma* couvre 13,5 % de la surface d’Arbocel en mars 1980 et sa hauteur moyenne est de 1 m (fig. 16). Lorsqu’elles sont surcimées par la végétation voisine elles regrettent rapidement, donnant une formation arbuive ou arbo- ree lorsque le milieu le permet ; toutes les transitions existent entre la strate de *Pityrogramma* de sous-bois récemment surcimée, et bien verte, puis les pieds de four- gères déperissantes et noires, et enfin leur absence. Ces stades peuvent s’observer tant sous la formation arbus- tive à *Solanium subinerme* que sous les formations arbo- rees ; ils prouvent la dynamique expansive des formations ligneuses surcimantes au détriment des formations herbacées (lorsque le substrat le permet). Cette quatrième année du recrut correspond au déclin d’une étape successjonnelle herbacée. Prédominante en nombre pen- dant la première année les *Pytirogromma* (et les *Eri- phites* disparues dès la deuxième année) n’ont cessé de régresser depuis la deuxième année.

— Dans les parties arides (zones érodées du plateau NW : fig. 16, ou zones recoupées après repousse pour les appareils de l’INRA), en une formation arbusitive à *Solanium subinerme* (h = 2 m, formation n° 4) qui couvre 12 % de la surface d’Arbocel. (ABREVILLE, 1949, signalait déjà que des perturbations anthropiques répétées pouvaient entraîner des savannisations ; BUDOWSKI, 1966, le confirment).

Près des lisières et lorsqu’elle est surcimée par les arbres des formations arborées voisines, cette formation à *Solanium subinerme* peut évoluer très lentement vers la formation ligneuse à une strate de hauteur moyenne (h = 4-7 m) à *Visnia guianensis* et *V. latifolia* (formation n° 7).

2) Dynamique sur sols peu ou pas brûlés : formations arborées

La formation arborée de base à 2 strates avec strate inférieure moyenne (h = 4-7 m, formation n° 7) et 3 espèces de *Visnia*, occupe 46 % de la parcelle à partir de 60-90 m des lisières vers le centre. On la retrouve dans le carré le plus central situé à 250 m de toutes lisié- res (fig. 20). Elle caractérise donc le recrut des coupes papetières sur de grandes surfaces de la région de St Elie, d’où l’importance de son étude en cas d’exploita- tion intensive. Dense dans les parties peu perturbées par les bulldozers (S = 25 %), elle devient, lorsque le sol a été remanié, claire (S = 15 %) avec des trouées (S = 0,7 %), constituant ainsi une transition vers la formation ouverte (n° 5, fig. 18), ou bien elle présente des Solanées (S = 4 %) en cas de passages vers la for- mation arbusitive (n° 4).

En fonction du biotope cette formation de base passe à des aspects différents qui correspondent aux divers types de formations ligneuses décrites. Elle devient ainsi :

— une formation à 2 strates, avec strate inférieure haute à *Goupia glabra* (formation n° 10, fig. 22) sous l’effet des lisières forestières bien drainées et humides (h = 5-9 m ; S = 10,5 %). Après trois ans et demi cette formation existe jusqu’à 50-80 m des lisières N-NW. Ce recrut serait caractéristique des coupes de l’ordre de 1 ha (abattis) ou des très grands chablis peu brûlés.

— Une formation à *Visnia confertiflora* (formation n° 5, h = 5-7 m, S = 11 %) en bas des pentes mal drainées et en bordure des marécages, qui passe elle-même insensiblement à la formation herbacée haute de bas- fond inondé (formation n° 3).

— Une formation à *Palcourea guianensis* (formation n° 7) en bordure des routes et des larges chemins de halage (zones très ouvertes et plutôt asséchées) : h = 4-6 m, S = 1,3 %.

En bordure des zones très brûlées la formation de base peut présenter des termes de passage vers la formation arbusitive à *Solanium subinerme* (formation n° 4) ou la formation herbacée basse à *Pytirogromma* (formation n° 2) selon le milieu et l’action du feu (replats compactés, secs et érodés : formation n° 4 ; pentes sèches lessivées : formation n° 2).

— Restent environ 1 % de la surface d’Arbocel qui en 1980 est simplement recouverte de quelques herbacées, pouvant constituer un tapis de 0,30 à 1,20 m de haut avec prédominance de *Lycopodium cernuum* (Lycopodiaceae) et de *Scleria secund* (Cyperaceae) sur les terrains fortement remaniés et compactés contre les che- mins de halage (formation n° 1, fig. 14). Ces parties présentent un retard de colonisation d’au moins trois ans et demi par rapport au reste de la parcelle Arbocel.

**CROISSANCE ACCÉLÉRÉE DES DEUX PREMIÈRES ANNÉES**

Malgré les traitements énumérés et l’aspect de la par- celle surnommée « Verdun », dès juin 1977 (8 mois après les feux et 11 mois après la coupe) une végétation clairsemée existait sur Arbocel (fig. 23). Sa hauteur, en moyenne de 40 cm, atteignait 1,2 m dans les actuelles formations n° 8 à *Palcourea guianensis*, et n° 7 à *Visnia guianensis*, *V. latifolia* et *Laetia procera*, et exceptionnellement : 2 mètres (*Cecropia obtusa*) dans une
Fig. 13 à 16. — Evolution de la végétation d’Arbocel. Comparaison des mêmes parcelles de 1 m² en juin 1977 (8 mois après les feux) et en juin 1979 (2 ans et 8 mois après les feux). La ficelle concrétise le carré de 1 m de côté, elle est située à 1 m du sol. 13-14 : formation n° 1 des zones les plus compactées ; 13 : juin 1977, 14 : juin 1979, remarquer l’apparition d’herbacées (Graminées et Fougères Pityrogramma) et la progression d’une liane germée dans la partie supérieure gauche de la photo sur sol moins perturbé et venant, recouvrir sur 3-4 mètres linéaires des zones de sol remuées et compactées ; 15-16 : formation n° 4 arbustive à Solanum subinerm. En 1977 (fig. 15) le sol ne portait que quelques tiges sèches d’Erechites (Graminée) en cours de disparition et 1 plantule de Dilleniacée (liane à eau). En 1979 (fig. 16) cette même surface porte la formation arbustive à Solanées avec Pityrogramma en hordure.
Fig. 17 à 20. — Evolution de la végétation d'Arbocel. Comparaison des mêmes parcelles de 1 m² en juin 1977 (8 mois après les feux) et en juin 1979 (2 ans et 8 mois après les feux).
17-18 : formation n° 3 arborée « ouverte » avec sol nu et plaques de végétation. La plantule de Cecropia obtusa qui en 1977 (fig. 17) mesure 30 cm, atteint 4 m en 1979 (fig. 18).
19-20 : formation n° 1 arborée formée à 1 strate à Vismia guianensis, V. latifolia et Laetia procera. En 1977 (fig. 19) cette formation porte déjà de gauche à droite : une plantule de Dolichocarpus guianensis (liane Dilleniaceae) qui est la plus haute de cette parcelle, une plantule de Vismia latifolia et un jeune Vismia guianensis situé derrière un pied de Pittosporum calomelanos. En 1979 (fig. 20) on retrouve les Vismia, Vismia latifolia à droite, V. guianensis à gauche, il est apparu en outre une Rubiaceae Bel-lucia grossularioides, un Heliconia et un Cecropia obtusa.
zone de l'actuelle formation n° 10 à *Goupia glabra* et *Cecropia sciadophylla* placée en bas de pente bien drainée à 10 m de la lisière SW ; elle atteignait 1,80 m (Lecythidacée) et 1,60 m (1 Solanée et 1 Burséracée) respectivement à 60, 90 et 110 m des lisières SW aussi. Par contre sur le plateau NW des portions de l'actuelle formation n° 10 représentées sur le transect, n'atteignaient en juin 1977 que 50 cm (fig. 21) contre 7 m et 10 m, respectivement pour les 2 strates inférieure et supérieure, en mars 1980 (fig. 22 en 1979). En 1977 la végétation haute la plus dense (1,60-1,80 m) se trouvait en bas-fond inondé dans l'actuelle formation herbacée haute à *Acrostichum aureum* (n° 3).

En juin 1979 la végétation des parcelles mesurées en 1977, atteignait 5 m (*Goupia glabra* et *Visnia confertiflora, V. latifolia, V. guianensis*) et 8-10 m (*Cecropia obtusa* et *C. sciadophylla*) dans les formations n° 10 où elles mesurent respectivement 7 et 11 m en 1980 ; 3 et 5 m dans les formations n° 8-9 où elles mesurent 7 m en 1980 (9-10 m pour la strate supérieure de la formation n° 9) : fig. 23.

Tandis qu'en 1977 de grandes surfaces nues persistaient et que presque partout le sol restait visible (fig. 13, 15, 21, 23), en 1980 ne sont plus dénudés qu'environ 4 % de la surface ; l'ensemble des zones remaniées mais peu compactées porte seulement la formation ouverte (n° 5), mais les autres parties sont recouvertes de formations denses herbacées ou ligneuses. Seule la formation arbustive à *Solanum subinerme* garde un sol découvert.

Sur un transect de 460 m × 2 m = 920 m², 1.114 individus ont été recensés et mesurés indépendamment des formations. Le nombre de tiges de diamètre supérieur ou égal à 1 cm des principales espèces est :

<table>
<thead>
<tr>
<th>espèces</th>
<th>nombre</th>
<th>diamètre en centimètres</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Goupia glabra</em></td>
<td>94</td>
<td>1 &lt; Ø &lt; 6 cm (55 % entre 2 et 3 cm, 90 % entre 1 et 4 cm.)</td>
</tr>
<tr>
<td><em>Laetia procera</em></td>
<td>53</td>
<td>1 &lt; Ø &lt; 6 cm (60 % entre 2 et 3 cm, 92 % entre 1 et 4 cm.)</td>
</tr>
<tr>
<td><em>Visnia latifolia</em></td>
<td>45</td>
<td>2 &lt; Ø &lt; 7 cm</td>
</tr>
<tr>
<td><em>Visnia guianensis</em></td>
<td>97</td>
<td>1 &lt; Ø &lt; 18 cm</td>
</tr>
<tr>
<td><em>Cecropia obtusa</em></td>
<td>197</td>
<td>2 &lt; Ø &lt; 8 cm</td>
</tr>
<tr>
<td><em>Cecropia sciadophylla</em></td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

**Fig. 21-22. — Evolution de la végétation d’Arbocel. Comparaison des mêmes parcelles de 1 m² en juin 1977 (8 mois après les feux) et en juin 1979 (2 ans et 8 mois après les feux).**

Formation n° 10 arbordes fermée à 2 strates. En 1977 (fig. 21) le plateau NW est jonché de troncs et de houppiers plus ou moins brûlés. Quelques plantules poussent au milieu de cet enchevêtrement et selon l'intensité du feu. Au centre de la photo une zone brûlée avec des Erechtites inoffensives et une plante de palmier, sur les côtés quelques plantules rares de Cecropia obtusa et de *Visnia latifolia* se reconnaissent (à droite).
CONCLUSION

La végétation a donc repoussé à grande vitesse (fig. 23-24) mais l'analyse des différentes formations montre à quel point les engins mécaniques et le feu peuvent perturber les processus naturels. Partant d'un cortège floristique initial commun (qui correspond aux principales espèces de la formation ligneuse de base à *Visnia* à 2 strates avec strate inférieure de hauteur moyenne) les différentes formations correspondent aux diverses expressions de ce cortège en fonction des microbiotopes qui résultent de l'exploitation. La formation ligneuse la plus évolutive (n° 10) n'existe pas dans les 10 ha centraux manipulés par l'exploitation expérimentale, c'est-à-dire traités selon les méthodes généralement utilisées dans les forêts tropicales.

À titre d'exemple la comparaison du nombre d'individus de 2 espèces coonisatrices d'intérêt économique : *Goupia glabra* et *Laetia procera* dans les diverses formations, traduit les répercussions des actions nociaves conjuguées des engins mécaniques, du feu et des grandes dimensions des parcelles exploitées :

<table>
<thead>
<tr>
<th>formation</th>
<th>Goupia glabra</th>
<th>Laetia procera</th>
</tr>
</thead>
<tbody>
<tr>
<td>n° 10</td>
<td>6 600 tiges/ha</td>
<td>1 200 tiges/ha</td>
</tr>
<tr>
<td>n° 9</td>
<td>1 600 tiges/ha</td>
<td>1 600 tiges/ha</td>
</tr>
<tr>
<td>n° 8</td>
<td>800 tiges/ha</td>
<td>5 200 tiges/ha</td>
</tr>
<tr>
<td>n° 7</td>
<td>400 tiges/ha</td>
<td>800 tiges/ha</td>
</tr>
<tr>
<td>n° 2, 3 et 4</td>
<td>133 tiges/ha maximum</td>
<td>133 tiges/ha maximum</td>
</tr>
</tbody>
</table>

Entrepris dans le cadre d'un programme MAB, ce type d'étude expérimentale apporte des données écologi-

ques et économiques qui, en permettant de prévoir l'impact des grandes exploitations futures, devraient faciliter la gestion des forêts denses humides de Guyane française.

BIBLIOGRAPHIE

**ALEXANDRE (D. Y.), 1980.** — Aspects de la régénération naturelle en forêt dense de la Côte-d'Ivoire. Multigraphie O.R.S.T.O.M.


BRINKMANN (W. L. F.) et al., 1971. — The effect of burning on germination of seeds at different soil depths of various tropical tree species. Turrialba, 21 (1) : 77-82.


Fig. 24. — En 1979 les formations du bas-fond (arbustives à herbacées) ont été grandement dépassées par les formations arborées à 1 et 2 strates des plateaux.


Uhl (C.), et al., 1982. — Ecosystem recovery in Amazon caatinga forest after cutting, cutting and burning, and bulldozer clearing treatments. OIKOS, 38 : 313-320, Copenhagen.