INTRODUCTION À L'ÉTUDE
DES MANGROVES DU MEXIQUE

par B. Rollet
Conservateur des Forêts et Forêts d'Outre-Mer

(1) La première partie de cette étude a été publiée dans le numéro 156 (juillet-août 1974), p. 3.

Revue Bois et Forêts des Tropiques, n° 157, Septembre-Octobre 1974
LAGUNA DE AGUA BRAVA

Peuplement de mangroves et de Laguncularia (Mangue blanc) : les 3 arbres à droite ont 85 m de haut ; quelques Avicennia (fougerse blanche) ; berge de l'estuaire El Anacleto. Station 16 bis. Photo aérienne (1-58) (49), Photo n° 6, 1ère partie, p. 18.

LAGUNA DE AGUA BRAVA

LAGUNA DE AGUA BRAVA

Estero del Perico près de l'entrée du canal (entre Puerta del Rio et l'estuaire del Anacleto). Limité entre marisma et mangrove nautre : fougerse d'Avicennia à gauche et de Laguncularia (Mangue blanc) ; sur le sol Strueovico et Duca. Station 1 ; photo aérienne (1-48) (49).

Photo Rollat.

Feuille et fleur d'Avicennia. Laguna de la Joya, río opuesto a San Cayetano.

Photo Rollat.

Ces auteurs ne mentionnent pas la possibilité d'existence de plusieurs espèces américaines dans chacun des genres Rhizophora, Avicennia et Laguncularia. Néanmoins Chatrerasas J. (25) distingue 5 espèces de Rhizophora : Rhizophora samamensis et Rhizophora brevissima sur la côte Pacifique; Rhizophora racemosa, Rhizophora mangle et Rhizophora harrisonii sur la côte Atlantique, suivant en cela Salvoza (3) qui reconnaît 8 espèces dans le monde. Graham (4) reconnaît seulement 3 espèces de Rhizophora en Amérique (R. mangle, R. harrisonii, R. racemosa) et pense comme Hou (5) que la fleur de Rhizophora samamensis (Hochr.) Salvoza n'est pas suffisamment distincte de celle de Rhizophora mangle pour l'ériger en une espèce différente. En ce qui concerne Rhizophora brevissima, son port gigantesque justifie peut-être de le distinguer de Rhizophora harrisonii comme une sous-espèce ou une forme. Selon Hou, seul Rhizophora mangle existe sur la côte mexicaine du Pacifique; de même sur la côte Atlantique avec probablement en plus les 2 espèces harrisonii et racemosa, celles-ci ayant des inflorescences très ramifiées (celles de racemosa sont les plus compactes).

Hou signale Rhizophora harrisonii sur la côte Pacifique au Panama et à Costa Rica. Il serait intéressant de vérifier s'il existe dans l'État de Chiapas (Mexique). Tous nos échantillons ont été recueillis sur des arbres bas et ont deux fleurs par inflorescence, caractéristique de Rhizophora mangle. On ne peut donc pas affirmer que les rares grands Rhizophora rencontrés sur la côte Pacifique et non récoltés, soient de la même espèce.

Nous avons noté une différence marquée dans l'aspect général d'Avicennia sur les 2 côtes du Mexique; il y a beaucoup plus lisse dans l'espèce atlantique avec des feuilles plus charnues, vert clair à la face supérieure (et non gris argenté) et une tendance à être arrondie au sommet, espèce qui pourra bien correspondre à Avicennia Schauertiana. Sur la côte pacifique les feuilles sont plus lancéolées mais quelquefois aussi arrondies. Par conséquent il y a au moins 2 formes, sinon 2 espèces différentes.

Les Botanistes considèrent que le genre Laguncularia est monotypique, c'est-à-dire qu'il comporte une seule espèce L. racemosa, mais il est évident qu'il existe au moins deux formes différentes reconnues par les habitants : une de port élevé, au fût droit (35 m et plus) avec des petits contreforts et un bois assez tendre sans cœur, trouvé et utilisé sur toutes les côtes du Mexique et que l'on appelle mangrove blanche ; une autre râbitique (5 à 10 m) avec un cœur rouge dur, de remarquables rachis nariennes à la base, non utilisée et existant en forêts purs souvent très étendus ; cette dernière espèce a plusieurs noms vernaculaires : mangue chino (État de Nayarit); mangue (Bole?) Oaxaca; mangue belica (Chiapas); mangue chacahca (Campeche). Les feuilles, fleurs et fruits des 2 variétés sont les mêmes. Néanmoins, malgré des différences bien visibles dans les uns extrêmes, on hésite dans bien des cas sur le terrain (mangue blanche ou chino) car les fines racines aériennes ne paraissent pas un caractère suffisant quand l'arbre est jeune et souvent la seule certitude reste la dureté du bois et l'existence d'un cœur. On soupçonne que les conditions de croissance puissent exercer une influence, la forme même pouvant de préférence dans eau peu salée et sur tourbe. Ce n'est peut-être qu'un phénomène et il faudrait faire des expériences (sévarer des grains de mangue chino en sol argileux et salé) pour conclure à l'existence d'écotypes ou de phénomènes.

Dans le genre Conocarpus, on connaît seulement 2 espèces très voisines C. erectus et C. lancifolium, mais leur écologie est très différente ; C. lancifolium croît sur des collines arides et en plaine en Somalie, non en bord de mer ; C. erectus montre une grande variabilité de pilosité sur les feuilles (*) entre arbres voisins ou entre branches sur le même arbre, ou sur la même branche. Les arbres peuvent avoir un aspect argenté mais appartiennent à la même espèce.

(***) Compère P. (1931). The correct name of the Afro-American black mangrove, Teton, 12 (4), 150-152.

54
Rhizophora mangle L. ; n. v. candelón (Nayarit), mangle colorado (Chiapas, Oaxaca, Campeche). Les racines aériennes descendent des branches à 10 m du sol et plus, mais ne montent pas à plus de 3 m sur le tronc ; l'arbre peut dépasser 30 m, mais sur de petites surfaces par exemple à Agua Brava (estero del Azuelpide cerca de la Boca de Teneapán), La Joya (El Remolino près de Menguito), las Cunas (selon le Dr. H. Chap de la S. R. H. ; région non visitée), la Laguna Oriental (Extrême NW le long de l'estero Lagartero), extrémité Est de l'estero de Sabancuy, en petites taches. L'espèce vit sur sols sableux sans couche organique ou avec une couche de tourbe d'épaisseur variable (70 cm et plus) ou encore en petites taches ouvertes disséminées sur des marais qui s'assèchent complètement (ils sont en limite de leur aire, par exemple à Agua Brava au Nord de Santa Cruz). Sur la côte Pacifique, il est fréquent en rideaux bas étroits le long des esteros, ou en tourrés étendus près ou mêlés à Lagonauvilia ou Avicennia. Bien que les tourrés soient serrés, il y a cependant souvent des ouvertures (trous) qui permettent le passage. L'espèce ne rejette pas. Usages : bois peu durable en conditions humides, très durable au sec (maisons) ; très utilisé comme bois de feu (four à chaux, houillerie, côté atlantique) et comme charbon ; on extrayait du tanin de l'écorce.

Avicennia nilotica — n. v. puyeque (Nayarit) ; madre de sal (Oaxaca, Chiapas) ; mangle negro, estanche (Campeche). Les pneumatophores s'appellent « tejoteles » (côte atlantique).

Sur la côte pacifique le feuillage est gris argenté (rappelant l'olivier) avec des branches noires, une écorce brun jaunâtre fissurée et quelques des racines aériennes à 30-40 cm, plus ou moins courtes, à la base du tronc, ou plus courtes (5 à 10 cm) naisant sur le tronc jusqu'à 6 ou 7 m du sol. Les pneumatophores du type asperge sont très nombreux et tapissent littéralement le sol, même quand les arbres morts sont peu nombreux ; ils ont jusqu'à 80 cm de haut (Boca del Mar Muerto) mais sont quelquefois absents en zones peu ou pas inondées dans les zones les plus intérieures de la mangrove et en limite de marais.

Sur la côte atlantique Avicennia (Schaueriana ?) présente des feuilles vertes non argentées, un peu charnues, des fûts lisses à écorce jaune quand il est jeune ; il peut se mélanger à Rhizophora : on observe des pneumatophores purs étendus en zone peu inondée (20 à 30 cm) sur sol sablonneux (Mux Muerto, Isla de Carmen) et en taches isolées dans les marais (Mux Muerto) ; il existe quelquefois aussi en amont ou en aval comme individus isolés donnant un aspect de suave arbustive inondable. Enfin il peut se mélanger à Rhizophora. Le sol est consolidé par les pneumatophores mais peut être très mou dans la marisma inondée voisine. De nombreux marais salés inondables sont en voie de colonisation et de colonisation par Avicennia. La régénération par graines est abondante même dans les peuplements fermés. Ce serait donc plutôt une espèce d'ombre.

Usages : l'aubier est peu durable, le cœur est très durable s'il est employé au sec ; on l'utilise comme bois de feu ; le bétail mange les fruits et mâche les feuilles sans les manger, pour le sol enrichi. La gomme qui sort des blessures du tronc guérit les maux de dents (anesthésie ou dissolution ? de la dent, information recueillie à Sabancuy). Les arbres jeunes rejettant. L'arbre atteint 60 cm de diamètre.

Lagonauvilia.

— Mangle blanco : grand arbre de 25 m et plus, croît en peuplements purs sur argile sans couche organique (ex. Agua Brava ; près de las Aréutias, en bordure de l'estero Azuelpide) ou mêlé avec Rhizophora sur tourbe (≥ 70 cm d'épais-

Mar muerto, à 8 km au sud de Pánuco ; peuplement pur d'Avicennia avec régénération.

Photo Rollet.
eur) ; exemple : estero de Sabancuy, extrémité Est où l’arbre atteint 70 cm de diamètre. Ses pneumatophores sont simples ou fourchus, souvent génés, les contreforts sont peu élevés (30 cm) et étalés ; l’écorce est fissurée anastomosée à tranche jaunâtre ; les blessures donnent une gomme. Dans les peuplements adultes on trouve toutes les catégories de diamètres. C’est une essence d’ombre ; il semble qu’elle puisse rejailler. Elle est colonisée par Avicennia qui lui succède. Usages : bois de feu, charbon, maisons, bois peu dur à tailler.

— Mangle chino (Nayarit) ; mangle (holo ?) Oaxaca ; mangle Bejico (Chiapas) ; mangle chicon (Campeche). Il est difficile de dire si c’est une forme naturelle phénotypique de mangle blanc ou un écotype ; les racines aériennes fines à la base du tronc ont 60 à 80 cm de haut, les pneumatophores ont 10 cm de long et sont souvent érigés au sommet ; la tranche de l’écorce est rose ; on trouve des peuplements purs très étendus de 5 à 7 m de haut sur la côte pacifique, sur argile ou tourbe, souvent interrompus par des marais permanentes de 10 à 100 m de diamètre.

Conocarpus erectus L. n. v. botocinello, botonchabì (Nayarit), mangle culce : l’espèce atteint 40 cm de diamètre, elle constitue des peuplements purs, serrés bas 5-7 m, difficiles à pénétrer, autour de lagunes fermées aux eaux noires à peine salées. Ces fourrés sont difficiles à pénétrer à cause des arbres couchés dans tous les sens. Souvent le sol est envahi de Salsalacées.

On trouve aussi Conocarpus en peuplements ouverts au sommet de dunes de sable ou en petites taches occupant les dépressions des fourrés semi-décidus, en fin comme vieux individus isolés, généralement creux dans des peuplements mélangés à Rhizophora, Avicennia, Laguncularia. C’est l’espèce la plus interne et c’est à peine si on peut la considérer comme appartenant à la mangrove. Enfin Conocarpus vit en arrière des Avicennia dans les zones les moins inondées où il forme des savanes arbustives avec éventuellement des Avicennia disséminés ou des éléments du fourré semi-décidu ; quand le sol s’affaisse un peu s’y mêlent des Cæstocarpus et des légumineuses épiphyllées. Conocarpus est fréquent autour des marismas.

Conocarpus a quelquefois des racines aériennes en fine chevelure ; l’écorce est fissurée anastomosée, le ft est irrégulièrement cannelé sur les vieux arbres.

Usages : le bois résiste bien aux conditions humides et à l’eau de mer ; on l’uti-

Autres espèces (*).

On n’a pas noté la présence de lianes dans les mangroves de la côte pacifique.
Par contre dans la mangrove de Sabancuy (côte Atlantique) la liane apocynacée (Rhuddadenia bifora) est commune (2 cm de diamètre) ainsi qu’une légumineuse qui atteint 10 cm de diamètre et étrangle les arbres. Dans les ouvertures on a observé Capparis sp., Inula sp., une cypéracée envahissante et la fougère Acerostichum auratum (n. v. rola de Lagario) non vue sur la côte pacifique. Il y a aussi quelques épiphytes (Tillandsia caput medusae, T. recurvata, plusieurs espèces de grandes orchidées). Les lichens sont rares ; on n’a pas noté de mouches.

Seulement en deux occasions, on a trouvé des champignons (Trametes ?) sur des arbres adultes vivants (un Laguncularia à Aguas Bravas et un Avicennia à La Joya).

(*) Nous remercions MM. A. lot-Halounnas et C. Vázquez-Yañez, chercheurs à l’Institut de Biologie de l’Université de Mexico (UNAM) pour leurs déterminations botaniques.
LAGUNA DE LA JOYA - MAR MUERTO

Peuplements sur de Laguncularia \textit{(Mangrove blanc)}, laguna las Cachonas, à l'est de la laguna Buenavista : Rhizophora dissimulé.

Peuplements en limite de mangrove. Marismas.

Entre la mangrove et la forêt semi-décidue il y a des mélanges constants de végétation dans les marais salés. Si un marais salé (marisma) est typiquement une étendue sablonneuse sans végétation à couche superficielle sableuse pulvérulente, on trouve en fait tous les intermédiaires entre le sol salé nu et la couche sableuse dans la Laguna de Agua Brava.

LAGUNA OCCIDENTAL

Intérieur d'un fourré de Conocarpus ; bord de la 1ère lagune inversée par le canal « La Quinta », à partie de la lagune occidentale.

Forêt semi-décidue : steppes à Solanaceae : \textit{(Suaeda diffusa}, \textit{Solanum bigelovii}, \textit{Batis maritima} côté pacifique, \textit{Batis} sp., \textit{Parthenium frutescens} côté atlantique), suivie arbusculière à \textit{Conocarpus}, bois de fourrés semi-déciduous à \	extit{Cactaceae}, \textit{Phyllanthus elatae}, petits buissons de \textit{Rhizophora} et de mangle chino \textit{(Laguncularia)}, \textit{Atrina glabra} de 2 à 8 m de haut en sujet isolé ou, tout très conique, taches d'\textit{Avicennia}.

INTERPRÉTATION ÉCOLOGIQUE
DES TYPES DE MANGROVE

Le but de l'étude est de déterminer les causes de la présence des différentes espèces botaniques de la mangrove en peuplements purs ou en mélanges.

Dans les 4 zones visitées on a recueilli 56 échantillons d'eau et 57 échantillons de sols. Seuls les premiers ont pu être analysés (*) pour la salinité et les tannins.

On a rencontré en surface des couches de tourbe d'épaisseur variable, soit sous des peuplements bas, soit au contraire sous des peuplements élevés. Le déterminisme de la présence d'\textit{Avicennia} en peuplement pur semble assez clair : inondation faible, sols argileux en surface, sablonneux en profondeur.

Laguna-Agua Brava.

Influence de la salinité totale ;

- Gradient de salinité totale de l'eau superficielle dans la Laguna de Agua Brava (voir carte, no 156, p. 15), en g/l :

<table>
<thead>
<tr>
<th>No</th>
<th>Station</th>
<th>Sol total g/l</th>
<th>Rapport SO4/Cl %</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Entrée canal Puerta</td>
<td>42</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>En face de Las Arenitas</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>En face Puerta del Río</td>
<td>32</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>En face de l'Ancho</td>
<td>33</td>
<td>20</td>
</tr>
<tr>
<td>28</td>
<td>Laguna del Arco</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>33</td>
<td>Punta del Burro</td>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>98</td>
<td>Entrée de la Chapala</td>
<td>21</td>
<td>18</td>
</tr>
</tbody>
</table>

De l'entrée de l'estero Agua Brava jusqu'à l'extréme sud du système lagunaire, la salinité totale diminue progressivement de 30 g à moins de 20 g/l (mesures faites en saison sèche, fin juin 1972, c'est-à-dire en période de salinité maximale).
— Salinité des solutions dans les sols.

Si on classe les salinités totales des solutions trouvées dans les sols sous les différentes espèces on a les résultats suivants en g/l :

En bordure d'Albufera nue à 20 cm de profondeur : 84/
Marisma nue (en à 60 cm de profondeur) 23/
Laguncularia (mangif chino) 28/26/48/45/31/17/
32/22/50/47/.
Laguncularia (mangif blanco) 55/56/55/.
Avicennia 54/72/70/72/.
Limiter marisma-Avicennia 55/.
Rhizophora 60/.
Mélange Rhizophora-mangif chino 32/33/22/.

Chaque espèce semble pouvoir vivre dans des solutions de sol à salinités très variées, par exemple pour le mangif chino. On observe cependant une tendance à une salinité plus forte sous Avicennia. Les marismas ne semblent pas très salées en profondeur, ni les « Albuferas » (toujours) en surface. Un plan d'échantillonnage plus étudié en fonction des espèces et un nombre plus grand de mesures faites immédiatement sur le terrain seraient nécessaires pour apprécier l'éventail des tolérances de chaque espèce. Il faudrait également étudier la variation saisonnière des salinités.

Laguna Occidental et Laguna Oriental.

--- Salinité des eaux superficielles Juin 72.

<table>
<thead>
<tr>
<th>No</th>
<th>Station</th>
<th>Sols totaux g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>En face de San Francisco del Mar et viejo</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>(L. Occidental)</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>En face de 82 dans la lagoon oriental</td>
<td>7</td>
</tr>
<tr>
<td>67</td>
<td>Punta Carral</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Punta W. Mar Muerto</td>
<td>12</td>
</tr>
<tr>
<td>71</td>
<td>Première lagoon traversée par canal</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>La Quinta, Laguna Occidental</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Eau du canal la Quinta, avant-dernière</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>lagoon</td>
<td></td>
</tr>
</tbody>
</table>

--- Salinité des solutions de sol sous différents peuplements.

<table>
<thead>
<tr>
<th>No</th>
<th>Station</th>
<th>Sols totaux g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>Sol, fourré par de mangif chino</td>
<td>4</td>
</tr>
<tr>
<td>63</td>
<td>Punta Carral, Eau superficielle sur sol</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>à Avicennia</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Bo Carré blanc, Eau superficielle sur</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>sol à Conacarpus</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Id. dans le sol sous Avicennia</td>
<td>11</td>
</tr>
<tr>
<td>66</td>
<td>Id. dans la lagoon inférieure de Pils</td>
<td>35</td>
</tr>
<tr>
<td>67</td>
<td>Estrecho entre Laguna Oriental et Mar</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Muerto. Eau superficielle sous Avicennia</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Id. eau dans le sol à Avicennia</td>
<td>12</td>
</tr>
<tr>
<td>70</td>
<td>Eau dans le sol à Conacarpus avant</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>de la 1ère lagoon traversée par canal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>La Quinta, Laguna Occidental</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Eau dans la sol à Conacarpus avant</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>dernière lagoon traversée par canal La</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quinta, Laguna Oriental</td>
<td></td>
</tr>
</tbody>
</table>
Les salinités des eaux superficielles des lagoons décroissent assez régulièrement de l’estero qui fait communiquer Laguna Oriental et Laguna Inférieur vers le fond du Canal (24, 19, 13) mais assez irrégulièrement vers l’est à la rencontre du Mar Muerto apparemment peu salé (12, et 7 à la Punta Carrizal) tandis que dans les esteros de connexion avec le Mar Muerto on trouve 12 (station 68).

Il semble que les sols qui portent *Antennaria* soient très salés (55 et 89 %) alors que les eaux superficielles ont une salinité faible (10 et 11). Par contre il y a des inconstances pour les sols porteurs de *Conecarpus* (13 et 30).

Laguna La Joya.

Salinité des eaux superficielles (du fond du système lacunaire vers l’embouchure), Laguna Cabeza de Toro (extrême W du système : 3).

Entre Cabeza de Toro et La Joya	24
En face du chemin de fer	19
San Cayetano	16
Près de Mangufia (El Remolcho)	15
Mi-chemin entre El Remolcho et Boca del Cielo	33

On note des irrégularités de salinité entre le fond du système lacunaire et l’embouchure avec dans l’ensemble des salinités beaucoup moins fortes qu’à Agua Brava.

Les solutions de sol ont des salinités plutôt moins fortes que l’eau de l’estero correspondant et en tous cas beaucoup plus faibles qu’à Agua Brava.

Lagunaria (mangle blanc) (entre Cabeza de Toro et La Joya) 10
Antennaria (entre Cabeza de Toro et La Joya) 11
Rhizophora (entre Cabeza de Toro et La Joya) 14

Conclusions.

En résumé on note une décroissance progressive assez forte dans les systèmes lacunaire analysés qui s’éloigne de l’embouchure. On trouve respectivement à Agua Brava 42 près de l’embouchure, 18 à 20 au fond ; pour la Laguna Occidental 24 à San Francisco, 13 au fond du canal et 10 à 11 à l’entrée de Mar Muerto ; pour la Joya 33 à l’embouchure, 8 au fond du système (Cabeza de Toro).

Les salinités des systèmes lacunaire en saison sèche sont donc très variables, ceci est en accord avec l’idée que chaque système doit être étudié en lui-même et que les conclusions quant à la flore et à la faune qui les accompagnent pourront être très différentes.

Les marlins ne semblent pas aussi salées en profondeur qu’en pourrait le penser a priori.

Les sols qui portent des peuplements d’*Antennaria* sont les plus salés parmi tous ceux qui ont été étudiés. Les autres espèces par contre semblent accepter des conditions très variées de salinité. En particu-
d'Oaxaca, près de Ixhuaten, rive Ouest de la Laguna Oriental, on a visité des taches de Laguncularia (mangle chino) morts sur pied, et des taches de Conocarpus moribonds partiellement secs dans les houppiers ; enfin le long des esteros, on note assez fréquemment dans toutes les régions les extrémités des branches latérales sans feuilles, apparentemment sans relation avec des attaques d'insectes ou de champignons. Dans les lagunes fermées aux eaux noires, on trouve également des peuplements de Laguncularia (mangle chino) mort. Dans tous les cas il faudrait étudier les alinéations accidentals et les changements de salinité.

Notes sur la faune.

L'avifaune qui est très abondante à Agua Brava l'est beaucoup moins ailleurs. L'oiseau le plus commun est un Anhinga (nom vernaculaire pato buso) qui vit en troupeaux nombreuses et qui est considéré par les pêcheurs comme le prédateur de poissons et de crevettes le plus actif. Abondent également les cigrettes, pélicans, spatules, « gallinetas », « tijeretas », et plus rarement les algues pêcheurs.

Le maximum de la pêche est en octobre et novembre à Agua Brava ; cette lagune est moins riche que le Mar Muerto Oriental ; les crabes sont
CONCLUSION GÉNÉRALE

Les mangroves se rencontrent sur presque toutes les côtes du Mexique. Elles ne semblent pas dépasser 20° de latitude Nord sur la côte Ouest de Basse Californie. Sur la côte atlantique, elles atteignent la frontière américaine, mais seulement sous la forme d'Avicennia arbustif.

Les rivages non rocheux du Mexique se caractérisent par des systèmes dunes importants, pour la plupart construits pendant la régression holocène. Ces systèmes comprennent essentiellement des dunes d'anciens rivages plus ou moins parallèles séparées par des talwegs, ce qui donne un relief micro-ondule dont l'altitude moyenne est proche du niveau moyen de la mer. Les dunes importants se fractionnent en un passage à la mer à travers ce barrage mais la majorité des dunes n'y parviennent pas, constituating ainsi des lagunes arrière des dunes.

Ces lagunes ont une surface de plus de 1,5 million d'hectares soit presque 1 % de la surface totale du Mexique. Elles sont de toutes tailles, allongées ou circulaires, ouvertes ou fermées. Lorsqu'elles sont fermées, avec des eaux à peine ou non salées, leur potentiel est habituellement colonisé par un peuplement pur à Conocarpus. Lorsqu'elles sont ouvertes, leur communication avec la mer est le plus souvent faible et s'effectue au moyen de rivières (esteros) étirées parallèlement à la côte et dilatées par endroits. C'est à leur périphérie que s'établissent les mangroves sur les terres plus hautes. A proximité, selon le relief et la disposition des dunes, on a un mélange de fourrés denses plus ou moins décidus parfois épineux et de marais salés (marismas), ces derniers soumis à des alternances saisonnières d'évaporation et d'inondation. Ce type d'écosystème est très développé dans d'autres pays (Brésil, Côte-d'Ivoire, Nigéria, Gabon, Cambodge).

Les substrats sont variés, sable, tourbe, limon. Les mangroves sur sable ou sur tourbe recouvrent des surfaces importantes au Mexique ; elles sont généralement basses avec des marées faibles ou nulles et une salinité qui peut être très faible et qui subit comme l'inondation une forte variation saisonnière.

Les palustres mangroves à Rhizophora d'Amérique et d'Afrique occidentale, ainsi que celles plus complexes d'Afrique orientale et d'Extrême-Orient, se développent sur des alluvions récentes ou d'âge moyen. Leur hydrographie est très différente des mangroves mexicaines : elle se présente comme un réseau interconnecté de chenaux aux courants très importants avec vives biconvexes entre les courbes ; leurs courants entraînent de la terre et se terminent en petits canaux de régulation des capacités respiratoires. Ces systèmes sont largement et et en fonction de la salinité de la mer présentant la plus grande variété de zones zone des espèces botaniques. Ce type de mangrove semble peu développé au Mexique. De même, on rencontre rarement un type à Avicennia et qui apparaît abondamment représenté dans les Guyanes sur alluvions argileuses récentes directement en contact avec la mer. On observe cependant sur les alluvions récentes les moins éloignées de la mer, des peuplements de Rhizophora et de Laguncularia de grande taille (25 à 30 m). Dans les zones en arrière des esteros, on observe un développement important de tourbe, portant des fourrés de Laguncularia mûrs et sarrés (mangle chino).

Bien que l'écologie des 4 espèces dominantes soit à préciser, au point de vue inondation et plasticité ainsi que pour l'existence d'écotypes, la zonation et la succession des espèces semblent assez claires ; on reconnaît assez bien les peuplements purs sur photographie aérienne panchromatique ; la télédétection dans les différentes zones du spectre.
Laguna oriental. Station 59. Photo aérienne 19 F 8. Foudroyé par de Conocarpus presque mort ; 1er plan à droite et au fond Avicennia ; tapis sere de Bath (n. o. Vidrio) de 50 cm de haut.

Marisma entourée de Avicennia. Station 59. Photo aérienne 19 F 8. Avicennia en taches d'alignées de moins de 50 cm de haut ; sol argileux en surface, sabliers 0—60 cm.
visible, ainsi qu'en infrarouge et en fausse couleur améliore la reconnaissance des mélanges et semble pouvoir faciliter celle des espèces.

Une première contribution importante à la connaissance des mangroves du Mexique serait d'entreprendre leur cartographie par système lagunaire, en adoptant au moins le 1/200.000 et en notant les types.

ANNEXE

BIBLIOGRAPHIE AVEC ABSTRACTS
sur les mangroves mexicaines (105 références)

On peut regrouper les différents mots-clés de la table des matières donnée ci-dessous autour d'un certain nombre de thèmes :

Milieu : cartographie, photographie aérienne, géomorphologie, sédimentologie, marées ; pour l'étude des eaux, voir Lagunes.

Paléohistoire : régression de la mer, subsidence (transgression de la mer), holocène, palynologie.

Flore et systématique : champignons, algues, fanègres ; les 4 principaux genres : *Avicennia*, *Conocarpus*, *Laguncularia*, *Rhizophora* ; histérique, iconographie.

Écologie : distribution géographique et par états, limites en latitude, zonation, espèces marginales, lisses, épihytes.

Faune : généralités, foraminifères, vers, mollusques, crustacés, poissons, reptiles, oiseaux.

Mise en valeur : inventaires, cultures, aménagement des lagunes.

Usage.

BIBLIOGRAPHIE AVEC ABSTRACTS

TABLE DES MATIÈRES ET NUMÉROS DE RÉFÉRENCES

Aigles, 17, 41, 63, 93, 63 bis.	Historique (Syntématique), 28.
Avicennia, 15, 43.	Huitres, 72, 84 ; ennemi des huitres, 84, 89.
Bibliographie, 44, 67.	Inventaires forestiers, 37, 38, 43.
Bois, 36, 38, 70. Usage, 36.	Lagunes : étude du milieu, 6, 6 bis, 6 ter, 12, 63, 87 ; faune, 10, 58, 71 ; voir Aménagement des lagunes.
Caries, 6, 6 bis, 6 ter, 11, 12, 20, 24, 25, 30, 43, 69, 94, 95, 97, 100.	Lepidoco, 43.
Champignons, 38, 45.	Lignes, 58, 81.
Charbon, 38.	Limites des espèces en latitude, 25, 28, 38, 80, 81, 86.
Conocarpus, 3, 15, 57, 38, 70.	Marées, 19, 24, 60, 94, 100.
Crabe, 39, 55, 84, 99.	Médicinaux (usages), 1, 7, 8, 21, 22, 52, 53, 54, 55, 90.
Crevettes, 4, 16, 19, 32, 62, 84.	Miel, 90.
Cultures, voir Mise en culture.	Mise en culture de la mangrove, 79.
Destructions (par tempête), 100.	Mollusques, 60, 65, 99 ; voir Huitres.
Ecologie, 50, 70, 96 ; côtes vichennes, 58.	Catéchisme, voir Huitres.
Epiphytes, 97.	Palynologie, 46.
Espèces marginales, 33, 58, 69, 78, 85, 100.	Poissons, 15, 26, 27.
Faune, 28, 84 ; voir Lagunes, crustacés, foraminifères, mollusques, oiseaux, poissons, reptiles, vers.	Photographie aérienne, 28, 27, 76.
Forages (puits de pétrole), 34.	Poissons, 9.
Foraminifères, 10.	Poissons, 30, 84 ; voir Poissons.
Fougères, 77.	Poules, voir Palynologie.
Généralités, 25, 30, 82.	Régression (de la mer), 28.
Géomorphologie, 5, 6 bis, 6 ter, 26, 27, 60, 84.	Rejets, 48, 81.
Reptiles, 66, 92.
Rhizophora brevifolia, 23.
Rhizophora mangle, 3, 7, 8, 9, 23, 36, 64, 65.
Rhizophora saman, 25, 67.
Romans, 9, 13, 91.
Saliénité (variations), 30.
Sédimentologie, voir Laguna (étude du milieu).
Subsidence, voir Transgression.
Syndicat, voir Rejets.
Systématiques, 26, 32, 40, 51, 67, 89, 90 ; voir Espèces marginales, limites en latitudes.

TABLE DES MATIÈRES PAR ÉTATS (MEXIQUE)

Baja California, 35, 32, 33 bis, 65, 85, 91, 99.
Sonora, 5, 12, 69, 64, 86.
Sinaloa, 12, 19, 62, 65, 66, 86, 87, 91.
Nayarit, 1, 26, 27, 31, 60, 62.
Jalisco, 76.
Colima, 59, 78.
Michoacán, 55, 95.
Guerrero, 51, 71, 73.

Oaxaca, 41, 33.
Chiapas, 46, 58, 57.
Tamaulipas, 36, 39, 81.
Veracruz, 3, 17, 20, 24, 33, 47, 75, 79, 81, 98, 97.
Tabasco, 3, 77, 94, 100.
Campeche, 3, 8 bis, 9 ter, 10, 23, 28, 30, 58, 81, 98, 101.
Yucatán, 3, 14, 15, 23, 81, 92.
Quintana Roo, 58, 81, 92.

Abréviations :

Rhiz. mangle. n. v., généralités ; usages médicinaux, héritage, lémurage, lépro, myxomatosis, tuberculose.

Prolécticos a la Naturaleza, 2 (5), 11-12.
Recommandations plantations à des fins industrielles et forestières. Programme de l'état de Veracruz, Laguna de Buen Paso ; n. v. Avic. mangle negro, mangle prie, mangle relado, mangle locuto ; Laguna. mangle manzillo, mangle chino, mangle prime, mangle tilo, mangle salado, mangle zaparo ; Conocarpus : mangle botón, mangle baxo, mangle dientes, mangle hermoso, mangle pítino.

U. S. Foreign Economic Administration.

Secretaría de Industria y comercio. Comisión Nacional Consultiva de Pesca, 5 p. illustr.
Brochure pour faire connaître un projet de développement de la crevette blanche (Penaeus VANNAMEI) et bluce (P. stylirostris) ; plan d'ouvrages hydrauliques pour aménager la lagune Tascalapán, Nayarit.

7 rapports ; différents auteurs. Dans le rapport sur la géologie marine (p. 123-150) 3 cartes de physiographie montrent les limites de la mangrove au 1/60 000 pour la lagune Huizache-Galvanero, au 1/75 000 pour la région de Yararás, au 1/100 000 pour la région de Agatampan.

Secretaría de Recursos Hidráulicos-México, 15 p. illustr.
Surfaces des lagunes par États, total 1 475 000 ha. Vue aérienne d'une lagune avec mangrove, carénos (estero) ; Plans des travaux hydrauliques à Yararás et Escuinapa, côté Pacifique.
Détail des surfaces des lagunes par États en ha : Baja California, 210 000 ; Sonora, 60 000 ; Sinaloa, 210 000 ; Nayarit, 50 000 ; Jalisco, 30 000 ; Colima, 8 000 ; Michoacán, 500 ; Guerrero, 20 000 ; Oaxaca, 120 000 ; Chiapas, 67 000 ; Total côtés pacifique, 528 500 ; Tamaulipas, 250 000 ; Veracruz, 150 000 ; Tabasco, 60 000 ; Campeche, 192 000 ; Yucatán, 30 000 ; Quintana Roo, 20 000 ; Total côtés Atlantique, 647 000.

Bathymétrie, gravimétrie ; prof. des eaux superficielles, du fond et des eaux interstitielles. Carte physiographique au 1/60 000 ; limite des marines, des mangroves, ligne de fonds rivages (bahias).
Mismos tipos de trabajo que el 6. Ver las superficies de mangroves sembradas con mangles en los arrecifes.

Claas artículo anterior a la lectura de la ecorrencia de la laguna en la ecorregión estuarina. Clasificación de los ecosistemas (mangle blanco, gomera de Rhizophora mangle).

P. 34-57, empieza a la lectura de la ecorrencia de la laguna en la ecorregión estuarina. Determinaciones científicas de mangal (mangle blanco, gomera de Rhizophora mangle).

Estudios ecológicos sobre la corriente.
Apertura y la extensión de los polosvicios en el cambio de un gran porcentaje de los manglares en los lagos. Decretos de raíces aeróbicas trempadas en el agua empiezan los polos de manglares en 14 horas.

Inst. Geol. Est., 87 (3), 138, 60 figs., 11 pl.
P. 28, carta de los mangroves en 1,000,000; p. 29, existe un punto en el centro de la laguna con pocos eventos de la isla del Cauca.

P. 2, carta geográfica de la laguna, circunstancias p. 41, las 3 especies analíticas son señaladas; bathymetría; salinity, usees variable 5,5 a 30 de.

En Instituto de Biología (ed.): 1970. Informe final de los trabajos contrapuestos entre los planos piloto Esculapa-Yavacar, 400 p. Ilustr. planos.

Mangrove paraínas, en las fallas de río y arroyo p. 119, mangrove de Tangail Tangail, col. pacífico mexicano a 260 millas W. de Diamante.

Mangrove en la ecorregión.

A 70 mils no norte de Progreso (Yucatán); visitado por MILLSPAUGH (1899); p. 42-48, Conocephalus isla Pérez, n. 3, un ejemplo raro (1991); Asterella utilis se introdujo naturalmente en la isla Pixácoro (arqueológicamente de la isla Pérez). Carta de los es; fig. 17, foto localizado a Asterella isla Pixácoro en el espectro.

Rasen del nivel de la mar pendiente la glaciación Wisconsin. Il y a 10,000 ans; construcción de terrenos de dunes sédimentes; una transgresión que comenzó il y a 5 a 6,000 ans; oscilaciones 11,50 m de sédiments, huesos carbonatés (arginite) avec tamé y flore lagonaire (malacées, foraminifères, Pforries, algues vertes) y forêt de mangrove; la mer élevant jusqu'au niveau actuel refoule la mangrove à l'intérieur des terres; lagunes isolées il y a 1,000-1,500 ans; précipitation d'évaporites à partir d'eau hypersalines.

Anales del Instituto Nac. de Investigaciones biológicas, 39, 12-46, 28 mapas.

Boletín de la Sociedad Mexicana de Geografía y Estadística, *72* (1-3), 49-89, 4 pl., 1 dessin, 1 graph.
P. 72, Biologie des Penaeus; capture des croyelles près des mangroves a Rhizophora, Asterella et Lagunculina.

P. 8, mangroves de 50 m de largo y más, de cada parte de la ensenada; su flora incluye Rhizophora y Avicennia. Ambos también Rhizophora y Avicennia en la región norte.

Tesis Profesionales, Instituto Politécnico Nacional, México, 100 p.

Tesis Profesionales, Instituto Politécnico Nacional, México, 100 p.

P. 55, pl. 12, fig. 5, Coccyzus nilaü (mangrove euskot), Fritz. 4,700; pl. 31, fig. 12, Iridia sinuata (mangrove swallow), 1963, 385; pl. 57, fig. 4, Viura ocellata (mangrove vireo), mangrove de la Bahía de Tamaulipas, 399, 99-985, 102-103.

P. 55, pl. 12, fig. 5, Coccyzus nilaü (mangrove euskot), Fritz. 4,700; pl. 31, fig. 12, Iridia sinuata (mangrove swallow), 1963, 385; pl. 57, fig. 4, Viura ocellata (mangrove vireo), mangrove de la Bahía de Tamaulipas, 399, 99-985, 102-103.

P. 55, pl. 12, fig. 5, Coccyzus nilaü (mangrove euskot), Fritz. 4,700; pl. 31, fig. 12, Iridia sinuata (mangrove swallow), 1963, 385; pl. 57, fig. 4, Viura ocellata (mangrove vireo), mangrove de la Bahía de Tamaulipas, 399, 99-985, 102-103.

Living Bird, 8, 95-111.

Bataillón víbora. Côte du Pacifique (zone de forêt sèche), 300 couples. Mangroves constituées de 3 espèces.

P. 357, Rhiz. mangle abundant en Buenos Aires, Capo District, huit Magdalena, La Paz, Des Magdalen, Margarita, Espíritu Santo (Surse-Californie); de Santa Rosa au N. à San Bruno; Côte W. près de Manzanita (route moyenne Buenos Aires-Californie Lat. 27°); Concorpus mangle 5-7 m souvent pouppement par 25° 30 El Pasandero; Lagos et Avic. non signalés.

P. 65, mentionne mangrove entre Nautila et Vega de Altarrán, Veracruz; vers l'intérieur Antcasina et Concorpus. En zones marines, Acrostichum, Rhizophora, Pachira aquatica; ligne Rhizophora blanda.

Tesis U. T. A. México.

Tesis Profesional. Facultad de Ciencias UNAM México mentionna la présence de mangrove à la périphérie de la Laguna Madre (Tamaulipas).

Bol. Soc. Cultura Regional Mexicana México, 1 (44), 14-19.

Descripción, distribución, nom vernaculares.

Foreign Economic Administration, Fibres and Hides Division, 29 p.

Inventaire des peuplements de Concorpus erectus (a. v. Bolinellus) pendant 8 mois dans les mangroves mexicaines de la côte atlantique (Veracruz, Tabasco, Campeche, Yucatan). Rapport à la bibliothèque de l'U. S. Department of Agriculture, et du Department of Commerce. Les peuplements seraient suffisants pour produire 5,000 t d'extrait par an pendant 150 ans; même construit à Alvarado, mise au point d'un procédé d'extraction sur décope et bois; l'extrait appelé « Yucatan » pourrait remplacer le québracho pour la teinture des pâtes de papier.

J. Forestry, 43 (1), 55-68.

Concorpus est dans une bande de 10 à 20 milles de large du long des côtes des États de Veracruz, Tabasco, Campeche, Yucatan, en lacs disséminés de quelques hectares à quelques kilomètres d'océans d'eau Rhizophora, brune court terne, souvent protégé, replié abondamment (20 cm à plus de 20 cm), bois à cœur brun très dur dans le sol; bon charbon sans fumée; espèce souvent associée à Acis (Avic.) et blanche (Laguna) mangrove. Association à la méthode d'investigation (vaste étendue). Le plus beau peuplement de Rhiz. : bords Rio Tonna et San Pedro (Tabasco, Campeche); au Yucatan, touché affecté par cancére.

Ciencia, 17 (7-9), 151-173.

Pêche, liste d'esp. et statistiques; carte p. 154, mangrove p. 155, près de Punta Pedras avec devant une barre de moins de 2 km de large. Bouquets disséminés de Aloe cutleri (mangle noir) le plus souvent moins de 30 cm de haut sur sable. Ainsi Concorpus erectus (Bolinellus) et le long de la péninsule rocheuse au S. de Punta Pedras; p. 159, « Canajelo del mangle »; Concorpus erectus non vrai mais abondant à Barra del Tordo à environ 100 milles au S. de Punta Pedras, existe dans peuplement à Acis riv. N. Rio Bravo (= Rio Grande, frontière Amérique-USA). Noter sur les croûtes camarès (blanc, café, rosé) = Pemlac (selfluss, actose, aceratum) sans référence à la mangrove. Variations de la salinité 0 à 117/0.

Bol. Soc. Bot. México, 31, 110-137, 2 tablas, 1 mapa

Mangroves, pastín; algas sur raices aéreias; p. 128, Santa María del Mar, Laguna Intecí; Enteromorpha, Hypnea, Lessonia, Cenocidaris affinis, var. peninsularis, Laguna Oriental; Enteromorpha; p. 214, Cachimbo, Mar Mierlo, Enteromorpha Lagunata, Acetabularia calyp-
cula, Grevilleaopsis; p. 132, Mar muerto Enteromorpha.

Informe FACETAP nº 264, 93 p., 1 mapa, 31 ref.

Manglares, p. 21-32.

Approche en examiner des recursos forestales, t. 2, p. 137-206, p. 156-157: 120,000 ha entre Tampico et Ciudad del Car-
men; surtout 3 zones: en face l’Île du Carmen 100,000 ha; près d’Alvarado 10,000 ha; entre Muelle et Tampico (Tuxpan, Tecomate) 10,000 ha. Inventarios importantes en 1963 sur Corallinales (mangues en tasseurs): *Rhizis* banc de 10 m de large et bordure de lagune, la seule esp. qui ne rejette pas (mangle roja), comme trouvee. Derriere, *Avic. (mangle gris)**, quelques esp. avec *Avic.*: escore trop mince; charbon; dans les bois, lapacho sort à la synthese de la vitamine B 12; dominant dans l’île du Carmen Laguna, *mangle blanc*; escore 15% tannin. *Corallinales* (petroleo) sur sol sec et en mélange avec esp. de terre ferme; escore 24% tannin. Production possible d’ecore et de bois. La mangrove d’Alvarado a 75% de *mangle blanc*, 15% *mangle gris*, 10% *mangle roja*; petroleo presque net; 150 m³/ha tous les 2 ans; p. 197, carte pét olie mangrove côté atlantique.

44. —**KAPLAN LANGMAN I.** (1964). A selected guide to the literature on the flowering plants of Mexico.

Philadelphia Univ. of Pennsylvania Press, 1,015 p.

Source bibliographique interessante sur mangrove, *Rhizis, Avic., Laguna, Conocarpus*.

45. —**KOHLMEYER J.** (1968). Marine fungi from the tropics.

Mycologia, 60 (2), 262-270, 31 fig.

46. —**LANGEMICK J. H.; HAACKNER B. L.; BARTLETT A.** (1967). Mangrove pollen at the depositional site of Oligo-miocene amber from Chiapas, México.

Donnees geobotaniques de roches. Le pollen le plus abundant est *Rhiz. (probablement plusieurs esp.)*, aussi Pichleron; l’ambrane a pu etre produit par *Hymenaea courbarili* qui peut etre a proximite de la mangrove sur cotes salables; p. 50, flote de pollen fossile et moderne de *Rhiz.;* p. 51, forêt avec *Hymenaea courbarilil* L. à 200 m de la mangrove, Puerto Marquez (Guerrero, México).

47. —**LEON CAZARES J. L.** (1961). Piono de vegeta-
tacion del Sureste del Estado de Veracruz.

Folia Profesional Fis. Ciencias. UNAM-México, 40 p.

Présence de la mangrove sur les berges des Rios Tonalá et Contracostales (Veracruz).

Ecology, 31 607-618.

Carte 18 x 18 cm; mangroves mentionnees incidemment (non sur la carte); tout le golfe du Mexique jusqu’au Sud de Tumantins et sur les cotes du Pacifique jusqu’a l’ile Tlaxiaco, Senora et Santa Rosalia (Baja California).

49. —**LEOPOLD S. A.** (1952). Zones de vegetation de Mexico.

Bol. Soc. Mex. de Geogr. y Estadistica, Mexico, 73 (1-3), 49-93.

Traduction de l’article precedent; p. 75-89, Correspondance avec les sciences et noms vulgaires.

Gastéropode vert *Oxyuros panamensis* existe en mangrove, côtes de Baja California, Mexico; se nourrit de la algue verte siphonée *Caulerpa serratoribollides*; si irrité, sourait mucus laiteux, lait sur pour poison; irritation prolongé peut provoquer l’autotomie de la queue.

Botanica Mexicana, Mexico, 621 p.

Dans la 2ª édition (1930) Rhiz. mangle (p. 178-81 n. v. mangle, candelen; tabaché en maya, yut bros de la côte. Composition chimique de l'écorce; usages pharmaceutiques; Étude (d'après Alcocer, Moreno, Cricco), ethnographique. La base de mangle mû dans l'eau, s'appose le sol dans 24 heures; p. 410, Lagunc. n. v. mangle blanc, mangle chico; écorce attrayante et toxique; Avic. mangle prieto, pouche (Sinatoy), mangle blanco (Vencesio) désaction écorce contre héronnées, diurétique, hémorroïdes; p. 834, 837, Conocarpus n. v. botonillo, mangle negro, estechaco (Guancas); tabaché, banche, kah-chicishe (Yucatán); botonillo (Sinatoy); mangle (Guererro).

53. — MARTINEZ DEL CAMPO J. (1964). Mangle rojo (Rhizophora mangle (silv.).

Anales del Instituto Nacional; México, 8, 55-212.

P. 56, observations du Dr. Cerezo sur un lépreux infecté depuis 5 ans; tendance à l'attraction par application d'une pomme à base d'extrait de Rhiz. alors que le Chaulmoogra est sans action; p. 272, amélioration en prenant 3 g d'extrait de Rhiz. par jour.

L'extrait sec de rac. de Rhiz. 1.5 g par jour pendant 3 semaines apporte quelques améliorations à un lépreux.

Anales del Instituto Médico Nacional. México, 4, 323-351.

Rapporté opinião sur traitement de l'épée. L'auteur n'a pas vu l'esp.; il la décrit d'après documents. Généralités. Description botanique.

P. 125-128, vol. 1, 2 photos mangrove Rhiz. mangle n. v. mangle, près de Puerto San Benito avec Ptilium sericeum. Sur sol ferme: Avic. nilota n. v. madras de sol; Lagunc. mangle blanco; Conocarpus (botonillo, mangle prieto); vol. 2, 119-120 Rhiz. mangle 20-30 % taun, d = 1,08, construction, bauleose, poteaux, traverses.

Proc. 8th Pacific Science Congress (1957) Quezon City Philippines.

La carte n'indique pas la mangrove; p. 446, la mangrove s'étend sur toute la partie du littoral, lagunes, estuaires; Rhiz sericeus (Hochr.) Salv. domine; est souvent la seule esp.; compagnes Avic. nilota, Conocarpus, Lagunc. racemosa.

P. 218-251, mangrove de Campeche, Yucatán y Quintana Roa; Rhiz. mangle a plus de 200 km de la mer (bord du rio San Padro); Avic. et Conocarpus lagune de Chiapas isolé à 120 km de la mar. Esp. intermédiaires en mangrove; Graminetes, Cyperacées, Acahát, Brachyrt, Tithonia purpurea, très attaqué par Pterosis lancea, quelquesfois Achea Zappo. An. S. de Campeche sur côtes rocheuses, Lagunc. et Avic. mélangé à Conocarpus unifera.

P. 42, court paragraphe sur la mangrove; Avic. nilota dans la zone interne, p. 38; Conocarpus sur sol sableux et en eau proche d'eau; Brachyrt unifera se mêle avec partis à la mangrove sur la côte pacifique (Etats de Colima et de Guererro).

Fig. donne bathymétrie en face de la côte entre Maza- llan et San Blas ainsi que les anciens lits de rivage (derniers). Structure du plateau continental étudiée par l'aveugle et instrument acoustiques. L'ancien delta du Rio Grande de Santiago constitue la base, jusqu'à 20 miles en mer; devant daté par coquillages avec carbone 14, correspondant au bord de mer N y à 10.000 ans (Late Wisconsin — Warm 11).

Teste experimental I. P. N., Méx., 33 p. mecanogr.

Nombre vernaculaires, analyses de l'écorce; p. 28-39, tanin; mise en évidence, méthodes quantitatives, propriétés.

64. — OSORIO B. F. (1933). Extractos curativos del mangle.
Instituto de Biología, UNAM, México, 24 p.

65. — PARKER R. H. (1934). Zoogeography and
sociology of macroinvertebrates of Gulf of Cali-
ifornia and continental slope of western Mexi-

A new subspecies of mangrove warbler {Dendroica petechia} from México,

Manual para la identificación de campo de los
principales árboles tropicales de México.
Instituto Nacional de Investigaciones Forestales, México,
415 p., 129 fig., 8 photos, 150 pl.

68. — PETERS I. A. (1954). The amphibians and
reptiles of the coastal and coastal Sierras of Micho-
acán, México.

Sinaloa, México, 101-136, 32 fig.

Carte physiographique à environ 1/300,000 au Sud de Los Mochis (Sinbad), montre les mangroves; marées
maximaux 1,7 à — 0.2 m; moyenne des marées 1,20 m et des marées basses 0,43 m.

70. — POOGIE J. J. (1952). Coastal pioneer plants
and habitat in the Tampico Region, México.
Coastal Studies Institute no 6, Louisiana St-Univ., 82 p., 50 fig., 1 tabl.

Pas de mangrove dans la région étudiée (Cabo rojo);
espèces dominantes : Concorpus erectus 2-4 m haut sur danse, immédiatement à l'E. Tampico à 169 m de la limite des plages basses marines
(28 transects étudiés, présence notée une seule fois sur
un seul transect).

71. — RAMÍREZ G. R. (1953). Estudio ecológico
preliminar de las lagunas costeras coroanadas a
Acapulco, Gro.

Lagunas Tres Peles et Coyuca respectivement à 25 et
20 km de Acapulco (16 x 6 km et 6 x 4 km); 4 esp. :
Rhizocorpus, Laguncula, Aelu., surtout études ecolo-
gique des lagunes. Liste des Esp.

Las costas de México. Datos biológicos y
planiación de su cultivo.
Publicaciones de segunda época, n° 7, 100 p., 2 maps.

73. — REKO B. P. (1922). Nutz- und Edelholzer
Méxicos.
Der Tropenplanzer, 15, 16-22; 52-66.

74. — RIOJA E. (1945). Un nuevo género de Serpúlido
del Agua salobre de México. Estudios aneolódol-

Désert Serpulido Miereiroloopsis proriol a sac. aériennes de Ríos.

75. — RIOJA E. (1948). Noroïdes de Agua salobre
de los esteros del litoral del Golfo de México.
Estudios aneolidológicos, 16.

Description de 8 esp. du vasi de nardies de mangroves :
Neptia sumatrensis, conconplata, costarica, laguna, estero de Lucio, Tecohilica (Yucatan) entre ruc de Ríos, cuit-
verde de Baluano et dans les gabbies de taree ; N. gl-
gehatina tril.; Lyxicostipsis icolellent.

Photo-Interprétation, 5 (4), 1-7; 15-21.

2 tirages 1/32.000 et 1/41.000, n° 1 et n° 3 (mangroves de la côte pacifique du Mexique).

Manglar p. 77-78, photo pp. 79-80, Rhiz prés de barri de Noviciado, Jalisco; largeau insulicilier à 2 km; le plus souvent en formé à 5 m. de haut; Rhiz est l'esp. la plus importante; en d'autres stations c'est l'Aiste; quelques esp. servent vivre en mangrove, plutôt à la périphérie: Aeneca aquagrigia, Aestuarius grallaria, Braunea interrima, Caseo thuriformis, Cerobera barbarensis, Entada papuana, Hibiscus nilotica, Hymenoxys maritima, Miaria nigra, Piptadenia stahli, Phyllanthus ilicifolius. Flaccheda oleracea, Prosopis juliflora, Rauvolfia bersuana, Solen studied, Struthanthus venustus; Une courte colonie 12.000.000 mètre côte au S. de San Blas, Estado Colima, sur environ 400 km de long jusqu'à 102° long. et 18° 10 lat.; Manglar non désigné mais correspond probablement à Matorral costero; sont important S. de San Blas, aussi E. et W. de Mazamitla (Edo Colima).

P. 3-4, de l'extérieur vers l'intérieur des terres, la séquence Rhiz, (mangrove), Aiste, (mangal piloto), Lagunaria, (mangrove blanc), Conocarpus, (mangrove halm-o-sillo); au N. de Tamiahua, Aiste est le plus abondant, puis Lagunaria, zona Nicolás y Agua dulce jusqu'à Punta de la Majagua; surtout Aiste; Isole de Idolo: 3 esp., pn de Conocarpus; lies au N. Isla Pajares; surtout Rhiz; plantation de cocotiers sur mangrove (Barran de Corazones, en face de Tamiahua).

Liste des stations étudiées p. 45-48: p. 5, des 4 esp. américaines Aiste, la plus grande aire; p. 32, Tamiahxa, bande étroite. Aiste + Conocarpus, côte le plus interne de la lagune Maya; ici, la plus dunes d'Asie. rejets sur cœurs morts; laguna Tamiahua, voir Cazza O. 1968; p. 16, Veracruz central; embouchures Tecolutla et Nautla, photo 8, pp. ouvert Lagune, jusqu'à 20 m et 80 cm d'élargissement, avec Aerostichum dense et al. petits Rhiz, p. 23, laguna de Términos, mangrove bases coté interne de Isla del Carmen; belles mangroves dans l'estoc de Sabinacuy; p. 21, Campeche central, petite bande de Conocarpus; N. Yucatán, à 8 km W. Progreso, petites mangroves; belles mangroves près de Sisal; photo 18, embouchures Rio San Pedro et Rio San Pablo; exploitation Quintana-Roo près de Puerto-Jeréz; photo 32, Asie. en avant dans la mer, côté est de Yucatán, lacers RíaBartolomé.

P. 125, Rhiz. mangue (mangal): faveur astrignente, commercialisée aux Philippines, Martinique, Guyane; en Espagne en Europe pour la ménage. Azules en couleur est en bleu et violet, noiel à indigo; d'autres couleurs obtenues en ajoutant des composés de fer et de cuivre.

Introduction 11 p. en espagnol; descriptions en latin.

85. — SHREVE F. (1937). The vegetation of the Cape Region of Baja California.
Madrillo, 4 (4), 105-119.
Mangrove de la región El Calio, Baja California.

P. 37. Limite N. Riff : Tlhomón Island ; Avia et Riffs. Jusqu' à Guaymas ; Riff. mangla. p. 1041, pl. 445, bas Sonora de San Jorge à Magdalena Bay ; de Miñegó à Guaymas vers le S. (côte W.) ; de Tumalojades vers le S. (côte E.) ; un peu Smith Island. Habita de Los Angeles (Baja California) ; Conocarpus, p. 1049, pl. 174, 175, faite de California, côte E. ; Sud Bajea California et S. Bolinas ; Legum. p. 1043, de Magdalena Bay et début de la Conception vers le S. ; côte Sonora : vers le N. Jusqu'à San Carlos Bay ; Avia. germanica. 1280-1294, de Miñegó, Magdalena Bay et Guaymas vers le S. 38.

Mexicanas, 80 p., 42 fig. 38. Côte pacifique, près de Mazatlán ; parle incrémente de mangrove en abant Chapa S. H. (1964) ; trame de 100 m de large de chaque côté des esteros ; 2 esp. : Riffs. n. v. candolón ; Legum. n. v. manglar dulle ; Avia. n. v. puyques ; accession esp. parpendicularly à la berge, et aussi le long des esteros.

Inédit, romanisé.
Mentionne présence mangrove à los Tuxtlas (Veracruz).

P. 1047-1048. Riffs. mangla L. de Tumalipas vers le S. (côte atlantique), et de S. de la Basse Californie vers le S. ; d. v. manglar dulle (Baja California), manglar colorado (Tabasco, Veracruz, Tabasco, Chiapas, Panamá, Guatamala, Venezuela) ; manglar (Costa Rica, Puerto Rico, Est-domingue), manglar salado (Panamá). Le mot manglar est probablement d'origine Cariba. Conocarpus erecta L. n. v. buttwood, manglar negro, même distribution que Riffs. ; Lagunisteria rosacea L. ; Guatun. (= Conocarpus mexicanus L.) n. v. white buttwood, white mangrove (Tumalipas, Yucatán, S. Floride, W. Indes, Panamá). Avia. nitida. Les 4 esp. poussent ensemble.

Field Munic. of Natural History Chicago, Publ., 270, Bot. Ser. 3 (3).
P. 89. Avia. nitida, manglar (blanco, prieto, negro), black mangrove, inférieur à 20 m, flèurs visitées par les abeilles ; décoration de l'écorce ; usage externe et interne contre hémorroïdes, diarrhée, œufs ; p. 371. Riffs. manglar red mangrove, manglar, manglar colorado, uscée pour tannage, contre lepro, diarrhée ; Conocarpus erecta n. v. manglar, manglar prie, butunill, buttwood, autour du Chichanchahui, inférieur 20 cm ; Lagun. rosacea manglar (blanco, etc.). white mangrove, inférieur 20 m.

Célébrée dans le Golfe de Californie et côté W. Basse Californie ; réédition en forme de roman ; présence de la mangrove dans différentes stations : p. 171, praque tenant auteur de la bate de Puerto Escandon en 1724 lat. N. côte E. Basse Californie ; p. 261, mangue de Agafugamu communiqué avec la mer par un étroit goulet, côté W. Mexique ; 270 lat. N., forêts de mangrove avec chemins : p. 266-267 San Gabriel Bay 24° lat. N., Côte E. Basse Californie.

Aquat Research Bulletin, no 27, 151 p., 49 fig.
P. 135-136, note sur Atoll Cahalcoro Bank (Mexique) : le lagon est une mangrove avec un peu d'eau floue, plate de hérons et de crocodiles.

Univ. S. California Press, Los Angeles.
P. 10. Mexique, Oaxaca (86 km Ouest), lagune bordée de mangrove avec Enteromorpha linophila TG sur rac. aériennes de Riffs.

In GALDHOFF P. S. (éd.), Gulf of Mexico, its origin water and marine life.

J. Eclog., 55 (2), 301-343.
Le côte des rivieres Grijalva et Usumacinta des états de Tabasco et Campeche n'est pas soumis aux marées. Les hautes submers dans les lagunes de Mars à Août, permettant le développement de grandes mangroves (30 m). La microtopographie explique la distribution des esp. de mangrove : Avia. sur zones plates et levées de terre basse ; Riffs. vient en bordure des lagunes et dans les cha-

In BRAND D. D. et al. : Colombian and Motives del Oro, en éx-traitio de Mesoamerican Mexico, 272-286.
Inst. Lat. Amer. Studies Univ. of Texas, Nihon, La Haye.
DE NOUVEAUX CAHIERS SCIENTIFIQUES

Les Cahiers Scientifiques déjà publiés concernent les sujets suivants :

No 1. — « Bioclimatologie et dynamique de l'eau dans une plantation d'Eucalyptus », par MM. Y. BIROT et J. GALABERT.

No 2. — « Analyse en composantes principales des propriétés technologiques des bois malgaches », par MM. F. CAILLIEZ et P. GUENEAU.

No 3. — « Contraintes de croissance », par M. P. GUENEAU.

On peut se procurer en en faisant la demande à :

BOIS ET FORÊTS DES TROPICUES
45 bis, avenue de la Belle-Gabrielle,
94130 NOGENT-SUR-MARNE — France.

Le prix de chaque numéro est de 15 F.