BOUTURAGE. VOIE D’AVENIR POUR LES REBOISEMENTS AU CONGO ?

par B. Martin

Ingénieur du Génie Rural des Eaux et des Forêts
Directeur du C. T. F. T., Congo.

SUMMARY

PROPAGATION BY CUTTINGS : THE FUTURE METHOD OF REAFFORESTATION IN THE CONGO?

The constitution of large-scale plantations by propagation of cuttings from superior phenotypes may lead to a considerable gain in production. The problem of propagation by cuttings has been studied in the Congo for two species in particular : Eucalyptus × Phalophylla F 1 and Terminalia superba (Limba).

The author distinguished 3 phases : the selection of superior phenotypes, rejuvenation by grafting and layering or by direct propagation by cuttings, and the multiplication of rejuvenated slips by propagation of cuttings. The purpose of this note is not to describe a method which is still under study, but to present photographs showing the results obtained.
RESUMEN

REPRODUCCIÓN POR ESQUEJES.
VÍA DE PORVENIR PARA LAS REPOBLACIONES EN EL CONGO?

La constitución de plantaciones importantes por esquejes, a partir de fenotipos superiores, permitirá considerables ganancias de producción. Por consiguiente, el problema de la reproducción por esquejes ha sido estudiado en el Congo, y en particular para dos especies: Eucalyptus 'Phylyphylla F1' y Terminalia superba (Limba).
De gauche à droite, et de haut en bas :

5. — Limba greffé de 13 mois. Photo Martin.
6. — Okoumé greffé de 13 mois. Photo Martin.
8. — Okoumé greffé de 13 mois. Photo Martin.

El autor establece la distinción entre tres fases: la selección de fenotipos superiores, el rejuvenecimiento por injerto y acodada, o por esquejes directos y, finalmente, la multiplicación por esquejes de plantas rejuvenecidas. Esta nota tiene por objeto no ya de exponer un método aún en estudio, sino, mejor aún, presentar diversas fotografías con los resultados obtenidos.
Dans l'article intitulé : « Amélioration génétique des espèces exotiques introduites en République Populaire du Congo. Les Eucalyptus », publié dans le n° 138 de juillet-août 1971, nous avions donné un aperçu des problèmes posés par la mise au point d'un procédé de bouturage des Eucalyptus et nous avions entrevu l'aspect que prendraient alors les pépinières.

Les travaux entrepris à Pointe-Noire se sont soldés au début de l'année 1972 par des réussites spectaculaires sur Eucalyptus, mais également sur une espèce locale de forêt dense particulièrement intéressante : le Limba (Terminalia superba).

La présente note n'est pas un rapport détaillé des essais ni un exposé des méthodes employées, car le sujet est seulement à l'étude et il est pré-mature de vulgariser des méthodes.

Nous publions simplement quelques photographies encourageantes montrant la valeur des recherches et l'intérêt qu'on doit leur porter.

De haut en bas :
Appareil racinaire des plants issus de bouture.
— Bouture de Limba 4 mois après la mise en place.
— Bouture d'Eucalyptus P F I 5 mois après la mise en place.
Photos Martin.

Les espèces étudiées ont été naturellement les plus productives.
Il s'agit d'Eucalyptus « platypylia F I » et du Limba. Le bouturage a lieu sous nébulisation. On a également essayé sans succès des boutures d'Okoumé.
L'étude du bouturage axé vers des problèmes pratiques de reboisement à cadence industrielle comporte 3 phases successives qui doivent être étudiées de front.

Phase I : Sélection.
Choisir des phénomypes supérieurs.

Phase II : Rajeunissement.
Obtenir au moins un plant bouturé à partir de chacun des phénomypes choisis.

Phase III : Multiplication.
Reproduire ce plant bouturé par bouture avec un facteur aussi grand que l'on veut et s'assurer que ces plants donneront des arbres d'avenir.

Phase I.
Elle est classique. C'est un problème de sélection massale dans une population sur de nombreux critères.

Phase II.
Elle peut se faire par 2 voies différentes :
— une voie longue : greffage et marcottage,
— une voie courte : bouturage direct.

La voie longue est la plus facile. Elle consiste à reproduire par greffage les arbres plus et à attendre un développement suffisant des plants greffés pour y pratiquer des marcottes aériennes. Cette méthode ne présente pas beaucoup de difficultés à partir du moment où l'on sait greffer l'espèce considérée. Le greffage des Eucalyptus, du Limba et même de l'Okoumé est considéré comme acquis. Les marcottes aériennes sont faciles à réaliser et prennent généralement bien. Elles sont longues à obtenir.

L'obtention de pousses adventives sur le tronc n'est pas possible avec des Limba adultes qui
possèdent de très grands contreforts et qui ne rejetent pas. On peut en obtenir sur les Eucalyptus PF 1 plus qui sont jeunes (pénéplantes à très courte révolution). La production de pousses adventives n’est pas plus rapide que le greffage. Elle peut par contre s’avérer intéressante dans le bouturage direct.

On pourrait également penser à un marcottage nérien directement sur les arbres plus, mais ceux-ci sont parfois très élevés (40 à 50 m pour les Limba) et la nécessité de marcoter des rameaux relativement petits interdit l’opération par le danger qu’elle présente pour le manipulateur. Le greffage préalable s’avère donc indispensable pour cette voie. Cela montre l’intérêt d’établir dès le départ de tout programme d’amélioration génétique, des parcs à clones.

La voie courte c’est la plus intéressante mais elle est difficile.

But : Etre sûr d’obtenir, au moins, un plant bouturé à partir du houppier d’un arbre plus qu’on vient d’abattre. Les études sont en cours, l’utilisation des hormones est indispensable.

Dans cette voie, la production de pousses adventives est à envisager pour les Eucalyptus.

Phase III.

Il s’agit d’abord de bouturer des jeunes plants ou des jeunes rejets issus de souches également jeunes.

Elle s’est révélée facile, voire très facile avec les espèces étudiées.

L’obtention de boutures à système racinaire important avec chevelu abondant est réalisée en 3 semaines sans hormone, sur Limba avec 90 à 100 % de réussite et au bout de 1 mois à 1 mois et demi sur Eucalyptus avec un pourcentage de réussite de l’ordre de 75 %.

Le sevrage et le repiquage sont des pratiques à étudier en détail avec le souci d’abaisser le coût de l’opération au maximum.

Le sevrage et le repiquage maîtrisés, il faut étudier le comportement des racines afin de constater si les arbres obtenus sont viables et peuvent avoir une production normale de bois.

Actuellement, on peut dire que le système racinaire n’est pas identique à celui de plants issus de graines et il faut poursuivre les études avant de donner des conclusions.

S’il est probable que les Limba bouturés donneront des arbres viables, il n’en est pas de même des Eucalyptus bouturés qui jusqu’ici présentent un système racinaire plutôt traçant que pivotant.

Le tableau suivant fait le point sur les recherches du CFTC-Congo en matière de bouturage au 1er juillet 1972.

<table>
<thead>
<tr>
<th></th>
<th>Eucalyptus PF 1</th>
<th>Limba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td>réalisée</td>
<td>échouée</td>
</tr>
<tr>
<td>Phase II</td>
<td>à l’étude</td>
<td>à l’étude</td>
</tr>
<tr>
<td></td>
<td>quelques résultats positifs</td>
<td>obtenue par marcottage par bouturage direct</td>
</tr>
<tr>
<td>Phase III</td>
<td>résultats très positifs mais valeur d’avenir des plants incertaine</td>
<td>presque terminée valeur d’avenir des plants probables</td>
</tr>
</tbody>
</table>

Les photographies présentées illustrent ces résultats.

La réalisation de plantations clonales va peut-être devenir un atout majeur dans les plantations industrielles au Congo. Le gain de production serait considérable, mais cette possibilité fait encore partie du domaine de la Recherche.