LE PARASOLIER :
UNE BONNE ESSENCE PAPETIÈRE AFRICAINE

par Jacqueline Doät,
Ingénieur de Recherches
à la Division de Cellulose
du Centre Technique Forestier Tropical.

SUMMARY

THE UMBRELLA TREE : A GOOD AFRICAN SPECIES FOR PAPERMAKING

This article gives an account of papermaking studies on umbrella tree wood carried out by the Cellulose Division of the Centre Technique Forestier Tropical. The studies were conducted at the laboratory stage and at the semi-industrial and industrial stages.

The possibility of using this species for making pulps was studied: chemical pulps (sulphate, soda and sulphite); neutral sulphite semi-chemical pulps; high-yield pulps (cold soda, hot soda, sulphite, carbonate, ammonia and black liquor); and mechanical pulps made from logs and chips.

Following these numerous tests, it was concluded that umbrella tree wood constitutes a very interesting raw material for an eventual African paper industry. This wood, light in weight and light in colour, can be used to make bleached chemical pulp, but
RESUMEN

EL PARASOLERO, UNA BUENA ESPECIE AFRICANA PARA APLICACIONES PAPELERAS

En este artículo se da cuenta de los estudios papeleros efectuados acerca del parasolero, por la división de Celulosa del Centro Técnico Forestal Tropical de Francia, tanto en la eje de laboratorio como en escala semiespecial e industrial.

Se ha estudiado la posibilidad de utilización de esta especie para la fabricación de pastas químicas (kraft, soan y bisulfato), de pastas químicas al sulfato azúcre, de pastas de elevado rendimiento (la soana en frío y en caliente, al sulfato, al carbonato, al amonio y al licor negro) así como pastas mecánicas de rollos y de virutas.

Con motivo de estos numerosos ensayos, se ha podido llegar a la conclusión de que el parasolero constituye una materia prima sumamente interesante para una eventual industria papetera africana. Esta madera, ligera y de localidad clara, puede servir para la fabricación de pasta química blanqueada. Pero, sobre todo, el empleo del parasolero puede ser recomendado en el aspecto de las pastas de elevado rendimiento, ya que el mismo permite conseguir pastas para papel económico, cuyas características mecánicas son excepcionales. Esta posibilidad es muy importante para Africa, cuyas necesidades en cañas de cartón aumentan de año en año.

El parasolero puede también ser transformado en pasta mecánica de mejor calidad que aquella obtenida generalmente con el álamo y el chopom (chopoa).

Sería interesante precisar para esta calidad de madera, las posibilidades de regeneración artificial, así como las condiciones, de explotación y el precio de costo.

INTRODUCTION

Le Parasolier (Musanga cecropioides = Musanga smithii, familia de Moracées) est une essence des formations secondaires de la forêt dense humide africaine. On le trouve, à la fois, en Côte-d'Ivoire, au Cameroun, au Gabon, dans l'Ouganda, en Angola.... C'est un arbre décoratif, ainsi appelé à cause de la forme en parasol de sa cime légèrement composée de très grandes feuilles digitées étalées, assez distantes les unes des autres, donnant un couvert léger. Son tronc, d'un diamètre moyen très élevé, est généralement bien droit et s'apporte sur des racines aériennes adventives ramifiées qui émergent plus ou moins du sol. Le Parasolier est une espèce de pleine lumière qui s'installe spontanément, souvent en taches denses, dans les trous et les défrichements même s'il n'existe pas de ports-graines dans les proches environs. Sa croissance est extrêmement rapide, il peut atteindre en moins de dix ans une taille d'une vingtaine de mètres. En fait, le Parasolier se situe parmi les meilleures essences du point de vue de la rapidité de croissance et de l'aptitude à constituer naturellement des peuplements purs.

Mais à une régénération naturelle aisée ne correspond pas nécessairement une implantation artificielle sans problème et, de fait, les premiers essais de multiplication du Parasolier, réalisés en 1941-1942 en Côte-d'Ivoire, se sont tout d'abord soldés par un échec. Depuis lors, les tests de plantation ont été repris en tenant compte de l'expérience acquise et des résultats satisfaisants ont été enregistrés. On a pu ainsi obtenir en cinq à sept ans des perchés de Parasolier ayant un diamètre de 55 à 30 cm. Il est cependant nécessaire de confirmer ces rendements très encourageants sur de plus grandes surfaces et sur des sols différents.

Le bois de Parasolier, de couleur blanc grisâtre légèrement rosée, est tendre et de faible densité (0,15 à 0,25 généralement). C'est l'un des bois africains les plus légères ; il se rapproche, dans une certaine mesure, du Balsa.

Sur le plan papeleur, différents chercheurs se sont intéressés à cette essence, les premiers essais datant d'une quarantaine d'années, mais aucune étude systématique n'avait été effectuée jusqu'à présent sur ce bois.

CARACTÉRISTIQUES PHYSICO-CHIMIQUES DU BOIS DE PARASOLIER

Caractéristiques anatomiques

Les caractéristiques anatomiques ont été déterminées sur plusieurs échantillons de bois d'âge,
TABLEAU A

Caractéristiques anatomiques de différents échantillons de Parasolier

<table>
<thead>
<tr>
<th>Origine des bois</th>
<th>Congo</th>
<th>Gabon</th>
<th>Congo</th>
<th>Gabon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamètre (en cm)</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>20</td>
</tr>
<tr>
<td>Densité</td>
<td>0,22</td>
<td>0,19</td>
<td>0,20</td>
<td>0,20</td>
</tr>
<tr>
<td>Longueur des fibres (µm)</td>
<td>1,163 ± 0,221</td>
<td>1,095 ± 0,190</td>
<td>1,163 ± 0,191</td>
<td>1,490 ± 0,280</td>
</tr>
<tr>
<td>Largeur des cavités (µm)</td>
<td>54,05 ± 8,2</td>
<td>45,6 ± 10,4</td>
<td>52,6 ± 8,2</td>
<td>69,55 ± 10,659,75 ± 11,85</td>
</tr>
<tr>
<td>Largeur des cellules (µm)</td>
<td>17,44 ± 0,25</td>
<td>17,68 ± 0,45</td>
<td>17,8 ± 0,74</td>
<td>17,8 ± 0,125</td>
</tr>
<tr>
<td>Coeff. de souplesse (µm)</td>
<td>67,95 ± 3,1</td>
<td>68,2 ± 3,06</td>
<td>68,3 ± 3,7</td>
<td>60,2 ± 3,05</td>
</tr>
<tr>
<td>Poirait de la résine (µl)</td>
<td>0,13</td>
<td>0,14</td>
<td>0,11</td>
<td>0,10</td>
</tr>
<tr>
<td>Pouvoir feuillet (µm)</td>
<td>21</td>
<td>24</td>
<td>22,1</td>
<td>24</td>
</tr>
</tbody>
</table>

Dans l’ensemble, on peut dire que le Parasolier est un bois à fibres courtes (de 1,110 à 1,500 µm), assez larges, mais à parois très minces. Le coefficient de souplesse de ces fibres est exceptionnellement élevé (82 à 90) et leur pouvoir feuillet est à l’inverse assez bas. Les papiers préparés à partir de pâtes chimiques ou mé-5l-chimiques auront donc une très bonne résistance à la rupture et à l’écalement alors que l’indice de déchirement sera vraisemblablement un peu faible. Il est intéressant de noter que les deux échantillons de bois les plus denses sont ceux pour lesquels le coefficient de souplesse est le plus faible et l’indice de feuillage le plus élevé.

TABLEAU B

Caractéristiques chimiques de différents échantillons de Parasolier

<table>
<thead>
<tr>
<th>Provenance</th>
<th>Congo</th>
<th>Gabon</th>
<th>Côôte-</th>
<th>Cameroun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densité</td>
<td>0,25</td>
<td>0,25</td>
<td>0,14</td>
<td>0,22</td>
</tr>
<tr>
<td>Extrait alcool-benzéne %</td>
<td>3,3</td>
<td>3,35</td>
<td>2,4</td>
<td>5,6</td>
</tr>
<tr>
<td>Extrait eau bouillante %</td>
<td>1,8</td>
<td>1,06</td>
<td>2,46</td>
<td>1,2</td>
</tr>
<tr>
<td>Extrait de la soude à 1 %</td>
<td>16,7</td>
<td>17,1</td>
<td>17,6</td>
<td>15,3</td>
</tr>
<tr>
<td>Pentosanes %</td>
<td>18,1</td>
<td>14,5</td>
<td>17,5</td>
<td>12,2</td>
</tr>
<tr>
<td>Lignine %</td>
<td>22,7</td>
<td>24,4</td>
<td>25,7</td>
<td>20</td>
</tr>
<tr>
<td>Cellulose corrigée %</td>
<td>50,2</td>
<td>52,8</td>
<td>46,0</td>
<td>49,4</td>
</tr>
<tr>
<td>Gommes totales %</td>
<td>0,75</td>
<td>0,84</td>
<td>0,98</td>
<td>0,81</td>
</tr>
<tr>
<td>Silicates %</td>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
<td>0,004</td>
</tr>
<tr>
<td>Bilan total %</td>
<td>94,8</td>
<td>96,9</td>
<td>95,2</td>
<td>94,0</td>
</tr>
</tbody>
</table>

PATES CHIMIQUES DE PARASOLIER

On a traité le Parasolier à la division de Cellulose selon les techniques papetières classiques : cuisson kraft, cuissons à la soude et cuissons au bisulfité. La matière première utilisée pour ces essais correspondait au mélange de six échantillons de Parasolier du Congo dont la densité variait de 0,17 à 0,22. Parallèlement, un traitement individuel comparatif de différents échantillons a été effectué pour déterminer l’influence de la densité des bois sur les qualités papetières des pâtes.

On trouvera dans ce chapitre les résultats enregistrés au laboratoire au cours de ces études.
Pâtes Kraft

Deux séries de cuissons soude-soufre ont été réalisées à des températures de 170° et de 155° avec des quantités de soude et de soufre variant de 14 à 26 % et de 1,4 à 2,6 %. La dilution (liquide/bois sec) était élevée en raison de la faible densité du bois (6,6 au lieu de 3,3 utilisé habituellement avec les feuillets).

TABLEAU C

Cuissons soude-soufre de Parasolier

Résultats de cuisson et de blanchiment

<table>
<thead>
<tr>
<th>NaOH % S %</th>
<th>Paller</th>
<th>Rendement brut %</th>
<th>Rendement net %</th>
<th>Photo-volt</th>
<th>Indices</th>
<th>Chlorosodation</th>
<th>Hypochloritisation (2 phases)</th>
<th>CI total au bl %</th>
<th>L. P. C. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 1,4 3 h à 155°</td>
<td>67,9</td>
<td>33,3</td>
<td>20,5</td>
<td>35,6</td>
<td>1,800</td>
<td>13,2</td>
<td>4 2,6</td>
<td>80 80 15,8</td>
<td>1,200,0</td>
</tr>
<tr>
<td>18 1,8</td>
<td>55,3</td>
<td>53,3</td>
<td>29,5</td>
<td>20,1</td>
<td>1,540</td>
<td>5,6</td>
<td>2,1</td>
<td>81 51</td>
<td>900,0</td>
</tr>
<tr>
<td>22 2,2</td>
<td>55,5</td>
<td>53,2</td>
<td>33,5</td>
<td>14,4</td>
<td>1,360</td>
<td>4,1</td>
<td>1,5</td>
<td>81 61</td>
<td>900,0</td>
</tr>
<tr>
<td>26 2,6</td>
<td>54,3</td>
<td>52,1</td>
<td>33,5</td>
<td>14</td>
<td>1,160</td>
<td>5,6</td>
<td>1</td>
<td>81 61</td>
<td>750,0</td>
</tr>
</tbody>
</table>

14 1,4 1 h 30 à 170°	65,8	42,6	17,5	35,6	1,770	13,7	5 1,8	80 81,5 15,5	1,100,0
18 1,8	56,3	51,0	20,4	20,4	1,430	5,1	1,1	81 81	860,0
22 2,2	56,1	54,2	32,5	15,5	1,170	4,6	0,5	82 84,5	730,0
26 2,6	54,8	52,6	34,5	13,7	940	4,3	0,4	82 84,5	730,0

TABLEAU C’

Cuissons soude-soufre de Parasolier

Caractéristiques mécaniques (à 40 °SR) des pâtes raffinées au Bauer

<table>
<thead>
<tr>
<th>NaOH % S %</th>
<th>Paller</th>
<th>L. Rupture</th>
<th>Éclatement</th>
<th>Déchirure</th>
<th>D. Plis</th>
<th>Porosité</th>
<th>Allongement %</th>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pâtes écrites :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 1,4 3 h à 155°</td>
<td>9,700</td>
<td>65</td>
<td>68</td>
<td>1,400</td>
<td>0,1</td>
<td>0,1</td>
<td>1,9</td>
<td>1,45</td>
</tr>
<tr>
<td>18 1,8</td>
<td>10,700</td>
<td>69</td>
<td>75</td>
<td>1,500</td>
<td>0,1</td>
<td>0,1</td>
<td>2,2</td>
<td>1,35</td>
</tr>
<tr>
<td>22 2,2</td>
<td>10,100</td>
<td>59</td>
<td>63</td>
<td>1,500</td>
<td>0,1</td>
<td>0,1</td>
<td>2,2</td>
<td>1,35</td>
</tr>
<tr>
<td>26 2,6</td>
<td>9,900</td>
<td>55</td>
<td>60</td>
<td>1,200</td>
<td>0,1</td>
<td>0,1</td>
<td>2,2</td>
<td>1,35</td>
</tr>
</tbody>
</table>

Pâtes blanches :								
14 1,4 3 h à 155°	10,000	68	61	1,300	0,1	0,1	2,4	1,20
18 1,8	9,400	66	66	1,300	0,1	0,1	2,2	1,20
22 2,2	8,800	57	67	900	0,1	0,1	1,9	1,15
26 2,6	8,400	51	67	250	0,1	0,1	1,5	1,15

14 1,4 1 h 30 à 170°	8,900	56	73	800	0,1	0,1	2	1,15
18 1,8	8,200	50	57	400	0,1	0,1	2,1	1,15
22 2,2	7,100	45	58	150	0,1	0,1	1,7	1,15
26 2,6	6,800	40	47	50	0,1	0,1	1,5	1,20
a) Consommation en réactif :
pâte blanche en 5 stades :
\[\text{Cl} = 8.2 \%, \text{NaOH} = 3.1 \%, \]
\[\text{ClO}^- = 1.6 \%, \text{H}_2\text{O}^- = 1 \% \]
pâte blanche en 4 stades :
\[\text{Cl} = 8.5 \%, \text{NaOH} = 2.4 \%, \text{ClONa} = 1.45 \% \]

b) caractéristiques physico-chimiques des pâtes :
pâte écrite :
\[D. P. = 1.660 \]
pâte blanche en 5 stades :
\[D. P. = 1.430, I. Cu = 0.25, \text{Blancheur} : 90.5 \]
pâte blanche en 4 stades :
\[D. P. = 1.190, I. Cu = 0.3, \text{Blancheur} : 82 \]

c) Caractéristiques mécaniques à 40 °SR

<table>
<thead>
<tr>
<th></th>
<th>L. Rupture</th>
<th>Éclatement</th>
<th>Démoliure</th>
<th>Pilis</th>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pâte écrite</td>
<td>13.000</td>
<td>80</td>
<td>65</td>
<td>2.000</td>
<td>1.22</td>
</tr>
<tr>
<td>Pâte blanche en 5 stades</td>
<td>12.500</td>
<td>90</td>
<td>65</td>
<td>2.000</td>
<td>1.16</td>
</tr>
<tr>
<td>Pâte blanche en 4 stades</td>
<td>11.000</td>
<td>80</td>
<td>60</td>
<td>1.800</td>
<td>1.16</td>
</tr>
</tbody>
</table>

L’échantillonnage de Parasolier se traite facilement par le procédé soude-soufre et on obtient avec 18 % d’alcali des pâtes bien délimées. Il faut cependant signaler que la faible densité du bois représente un inconvénient au point de vue pratique car il correspond à une faible densité de chargement des lessiveurs et à la nécessité d’utiliser des rapports liquide/bois sensiblement élevés.

Les rendements en pâte écrite classée dépassent 50 % et sont donc très favorables. On observe assez peu de différences entre les cuissons de 1 h 30 à 170° et de 3 h à 155°.

Le blanchiment des pâtes s’effectue sans difficultés particulières. Les quantités de chlore consommées varient normalement avec l’indice de permangamate des pâtes écrites. Pour un traitement simple en quatre phases (chloré, soude, deux hypochlorites), les blanchisseurs obtenus dépassent 80, ce qui est favorable pour ce type de blanchiment. La stabilité des pâtes blanchies est moyenne. Il est possible d’obtenir des pâtes de blancheurs élevées (90 à 91)

analogues à celles des pâtes commercialisées sur le marché international en faisant appel à des réactifs tels que bixoyde de chlore et peroxyde.

Les caractéristiques mécaniques des pâtes écrites sont très favorables pour l’éclatement, la longueur de rupture et le pliage, mais la résistance à la déchirure est plutôt faible. L’écart entre les caractéristiques des pâtes cuites à 170° et 155° est peu marqué. On note cependant une résistance à la déchirure un peu moins favorable pour les cuissons à 170°. Les caractéristiques mécaniques des pâtes blanches en quatre stades sont légèrement inférieures à celles des pâtes écrites ; celles des pâtes traitées en cinq stades, dont deux au bixoyde de chlore, sont équivalentes à celles enregistrées en écrite.

Dans l’ensemble, les papiers obtenus sont peu poreux, ont peu de main (à l’exception peut-être des pâtes écrites les plus dures) et présentent un épaissi fondu.

REMARQUE AU SUJET DE LA MOELLE ET DE L’ÉCORCE :

Les échantillons de bois de Parasolier qui ont été étudiés contenaient une certaine proportion de moelle (quelques % en poids). Cette moelle ne disparaît pas totalement au cours de la cuisson et se retrouve dans les pâtes écrites sous forme de points noirs. Des cuissons de moelle seule effectuées avec 50 % de soude ont confirmé que la moelle subsistait tout en composant une certaine quantité d’alcali. Au cours du blanchiment, la moelle est en partie détruite par le chlore et ce qu’il reste blanchit assez bien. Elle ne gêne donc pas la fabrication de pâtes de Parasolier blanches mais elle rend plus difficile la fabrication de pâtes écrites très propres.

L’écorce de Parasolier est partiellement fibreuse. Les essais précédents ont été effectués avec du bois écorcé. Mais des cuissons d’écorce seule réalisées avec 25 % de soude ont donné avec un rendement de 22 % une pâte grossière, foncée, contenant une forte proportion de fibres longues de plusieurs centimètres, assez solides. Ces fibres s’éliminaient vraisemblablement au cisaillement dans le cas d’une pâte de Parasolier bien cuite, mais elles se mêlaient avec la pâte dans le cas d’une pâte de Parasolier à haut rendement pour laquelle une désintégration mécanique finale serait nécessaire.

Pâtes à la soude.

Parallèlement aux essais de cuissons soude-soufre, deux cuissons à la soude seule avec 18 % et 22 % d’alcali, un palier de 3 h à 155° et un rapport lessive/bois de 6,6 ont été effectuées. Les pâtes ont été blanchies dans les mêmes conditions que les pâtes kraft. Les résultats obtenus sont consignés dans les tableaux D et D’.

Les cuissons à la soude donnent, à pourcentage d’alcali égal, des pâtes plus dures que les pâtes soude-soufre avec des rendements et des degrés
TABLEAU D
Cuissons à la soude de Parasolier
Résultats de cuisson et de blanchiment

<table>
<thead>
<tr>
<th>NaOH %</th>
<th>S %</th>
<th>Pailer</th>
<th>Rendement brut %</th>
<th>Rendement net %</th>
<th>Photo-volt écrû</th>
<th>Indice MnO4K</th>
<th>D. P.</th>
<th>Chlorosolution</th>
<th>Hypochlorititions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cl cons. %</td>
<td>NaOH cons. %</td>
</tr>
<tr>
<td>18</td>
<td>2,2</td>
<td>3 h à 155°</td>
<td>58,7</td>
<td>51,3</td>
<td>31,5</td>
<td>27,3</td>
<td>1,440</td>
<td>6,2</td>
<td>2,8</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>55,7</td>
<td>57,0</td>
<td>33,5</td>
<td>22,3</td>
<td>1,230</td>
<td></td>
<td>1,75</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>900</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,4</td>
<td></td>
</tr>
</tbody>
</table>

TABLEAU D’
Cuissons à la soude de Parasolier
Caractéristiques mécaniques (k40 *SR) des pâtes raffinées au Buer

<table>
<thead>
<tr>
<th>NaOH %</th>
<th>S %</th>
<th>Pailer</th>
<th>T. Rupture</th>
<th>Éclatement</th>
<th>Déchirure</th>
<th>D. Phis</th>
<th>Porosité</th>
<th>Allongement %</th>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pâtes écrues :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2,2</td>
<td>3 h à 155°</td>
<td>10,700</td>
<td>67</td>
<td>65</td>
<td>1,900</td>
<td>0,1</td>
<td>2</td>
<td>1,30</td>
</tr>
<tr>
<td>22</td>
<td>2,2</td>
<td></td>
<td>10,300</td>
<td>67</td>
<td>69</td>
<td>1,300</td>
<td>0,1</td>
<td>1,6</td>
<td>1,25</td>
</tr>
<tr>
<td>Pâtes blanches :</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2,2</td>
<td>3 h à 155°</td>
<td>8,200</td>
<td>54</td>
<td>53</td>
<td>1,099</td>
<td>0,1</td>
<td>1,7</td>
<td>1,20</td>
</tr>
<tr>
<td>22</td>
<td>2,2</td>
<td></td>
<td>8,200</td>
<td>51</td>
<td>56</td>
<td>0,998</td>
<td>0,65</td>
<td>1,7</td>
<td>1,15</td>
</tr>
</tbody>
</table>

De polymérisation un peu plus faibles. Les teintes des pâtes sont équivalentes. Les consommations en chlore au cours du blanchiment sont à peu près semblables à celles que nécessiteraient des pâtes soude-soufre de même dureté.

Les caractéristiques mécaniques des pâtes écrues sont d’un même ordre de grandeur que celles des pâtes soude-soufre de même indice de permanganate.

Les cuissons à la soude ne présentent pas d’avantages particuliers par rapport aux cuissons soude-soufre qui devraient leur être préférées.

Pâte au bisulfite

Une seule cuisson au bisulfite de calcium a été réalisée sur le même échantillonnage de Parasolier dans les conditions de traitement suivantes :
- concentration de la lessive en SO²⁻ : 3,1 %,
- rapport SO²⁻ libre : 3
- rapport lessive/bois = 14,
- imprégnation 16 h à froid,
- montée en température de 20° à 105° en 2 h,
- pailles de 2 h à 105°, de 2 h à 115° et de 4 h à 140°.

La pâte écrue a été blanchie en 4 phases (chlore, soude et deux hypochlorites).

On trouvera aux tableaux E et E’ les résultats obtenus au cours de cet essai.

La cuisson au bisulfite du Parasolier est possible mais en raison de la faible densité du bois, on a été obligé d’utiliser un rapport lessivo/bois de 14 ce qui est considérable. Bien que la teneur en SO²⁻ de la lessive soit relativement faible (3,1 %) la quantité totale de réactif utilisé par rapport au bois reste élevée de ce fait. Dans des conditions industrielles, cette dilution pourrait sans doute-être un peu moins
TABLEAU E
Cuisson de Parasolier au bisulfite de calcium
Résultats de cuisson et de blanchiment

<table>
<thead>
<tr>
<th>Cuisson</th>
<th>Blanchiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂ % restant de la lessive</td>
<td>Chlorosolation</td>
</tr>
<tr>
<td>1 %</td>
<td>55,8</td>
</tr>
</tbody>
</table>

TABLEAU F
Cuisson de Parasolier au bisulfite de calcium
Caractéristiques mécaniques (à 40 °SH) des pâtes raffinées au Bauer

<table>
<thead>
<tr>
<th>Longueur de rupture</th>
<th>Eclatement</th>
<th>Déchirure</th>
<th>D. Pils</th>
<th>Allongement %</th>
<th>Porosité</th>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pâte écrue : 8.500</td>
<td>40</td>
<td>58</td>
<td>250</td>
<td>1,4</td>
<td>0,1</td>
<td>1,20</td>
</tr>
<tr>
<td>Pâte blanche : 8.300</td>
<td>26</td>
<td>44</td>
<td>10</td>
<td>1,6</td>
<td>0,1</td>
<td>1,25</td>
</tr>
</tbody>
</table>

Important. Il n'en reste pas moins vrai que la faible densité du Parasolier est, dans ce cas, la cause d'une difficulté sérieuse.

Le rendement en pâte classée est satisfaisant malgré un pourcentage d'incuits non négligeable pour une pâte d'indice de permanganate 19. La pâte obtenue est sensiblement plus claire que les pâtes soude-soufre. Le blanchiment n'offre pas de difficultés et la blancheur atteinte est satisfaisante,

compte tenu du mode opératoire retenu. La stabilité est moyenne.

Les caractéristiques mécaniques de la pâte écrue, bien qu'inférieures à celles des pâtes soude-soufre, sont cependant suffisantes. Les caractéristiques mécaniques de la pâte blanche à l'hypochlorite sont moins bonnes et offrent moins d'intérêt. D'une façon générale, l'emploi de bioxyde de chlore doit être préconisé en remplacement de l'hypochlorite.

Traitement comparatif soude-soufre de différents échantillons de Parasolier de densité variable

Sept échantillons de Parasolier dont la densité variait de 0,17 à 0,37 on été traités séparément à 155° par le procédé kraft avec 20 % d'abai, 2 % de soufre (ce qui correspond à 15 % de NaOH et 3,25 % de SNa). Les pâtes écrues ont été blanchies en quatre phases comme précédemment.

Les résultats enregistrés sont groupés aux tableaux F et F'.

On observe de légères différences entre les différents échantillons étudiés et, dans bien des cas, ce sont d'une part l'échantillonnage qui correspond au coefficient de souplesse le plus élevé et d'autre part les échantillons qui correspondent aux bois les plus denses et aux coefficients de souplesse les plus bas, qui ont donné les résultats les plus différenciés par rapport à la moyenne. Au premier, en effet, correspond le rendement en pâte le plus élevé, la pâte la mieux dégénérée, la consommation en soude la plus faible, le degré de polymérisation le plus bas et les meilleures longueurs de rupture, éclatement et plis.
TABLEAU F

Caissons kraft comparatifs de sept échantillons de Parasolier
Résultats de cuisson et de blanchiment

<table>
<thead>
<tr>
<th>Densité des bois</th>
<th>Cuisson</th>
<th>Blanchiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rendement brut %</td>
<td>Rendement net %</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>0,19</td>
<td>2,3</td>
<td>56,9</td>
</tr>
<tr>
<td>0,22</td>
<td>3</td>
<td>53,9</td>
</tr>
<tr>
<td>0,20</td>
<td>2,6</td>
<td>56,7</td>
</tr>
<tr>
<td>0,17</td>
<td>2,2</td>
<td>53,7</td>
</tr>
<tr>
<td>0,37</td>
<td>2,8</td>
<td>52,8</td>
</tr>
<tr>
<td>0,37</td>
<td>3,6</td>
<td>53,4</td>
</tr>
<tr>
<td>Moy.</td>
<td>3,1</td>
<td>55,7</td>
</tr>
</tbody>
</table>

TABLEAU F'

Caissons kraft comparatifs de sept échantillons de Parasolier
Caractéristiques mécaniques (à 40 °SR) des pâtes raffinées au Bauer

<table>
<thead>
<tr>
<th>Densités</th>
<th>L. Rupture</th>
<th>Éclatement</th>
<th>Déchirure</th>
<th>D. Pix</th>
<th>Porosité</th>
<th>Allongement %</th>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pâtes écrues :</td>
<td>10.000</td>
<td>61</td>
<td>63</td>
<td>2.500</td>
<td>0,1</td>
<td>2,2</td>
<td>1,30</td>
</tr>
<tr>
<td>0,19</td>
<td>9.100</td>
<td>53</td>
<td>60</td>
<td>800</td>
<td>0,1</td>
<td>2</td>
<td>1,25</td>
</tr>
<tr>
<td>0,22</td>
<td>10.560</td>
<td>56</td>
<td>66</td>
<td>2.100</td>
<td>0,1</td>
<td>1,0</td>
<td>1,25</td>
</tr>
<tr>
<td>0,20</td>
<td>10.900</td>
<td>56</td>
<td>57</td>
<td>2.700</td>
<td>0,05</td>
<td>2,4</td>
<td>1,15</td>
</tr>
<tr>
<td>0,17</td>
<td>10.200</td>
<td>61</td>
<td>61</td>
<td>900</td>
<td>0,1</td>
<td>1,7</td>
<td>1,25</td>
</tr>
<tr>
<td>0,37</td>
<td>8.800</td>
<td>50</td>
<td>96</td>
<td>860</td>
<td>0,5</td>
<td>2,2</td>
<td>1,35</td>
</tr>
<tr>
<td>Moyenne 9.600</td>
<td>58</td>
<td>71</td>
<td>1.500</td>
<td>0,2</td>
<td>2,1</td>
<td>1,30</td>
<td></td>
</tr>
<tr>
<td>Pâtes blanchies :</td>
<td>7.800</td>
<td>47</td>
<td>57</td>
<td>400</td>
<td>0,1</td>
<td>1,9</td>
<td>1,25</td>
</tr>
<tr>
<td>0,19</td>
<td>8.300</td>
<td>51</td>
<td>55</td>
<td>350</td>
<td>0,1</td>
<td>2,4</td>
<td>1,15</td>
</tr>
<tr>
<td>0,22</td>
<td>8.400</td>
<td>55</td>
<td>66</td>
<td>700</td>
<td>0,1</td>
<td>2,4</td>
<td>1,35</td>
</tr>
<tr>
<td>0,20</td>
<td>8.800</td>
<td>58</td>
<td>59</td>
<td>1.100</td>
<td>0,05</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0,17</td>
<td>8.500</td>
<td>51</td>
<td>55</td>
<td>600</td>
<td>0,1</td>
<td>2,4</td>
<td>1,15</td>
</tr>
<tr>
<td>0,37</td>
<td>8.500</td>
<td>55</td>
<td>70</td>
<td>---</td>
<td>0,3</td>
<td>2,3</td>
<td>1,15</td>
</tr>
<tr>
<td>Moyenne 8.500</td>
<td>53</td>
<td>60</td>
<td>700</td>
<td>0,15</td>
<td>2,4</td>
<td>1,15</td>
<td></td>
</tr>
</tbody>
</table>

et les plus faibles déchirures, porosité et main. Alors qu'inversement, les derniers échantillons, beaucoup plus denses, se distinguent par un plus faible rendement, une meilleure blancheur, une longueur de rupture, un éclatement et un nombre de pils plus faibles et une déchirure, une porosité et une main plus élevées.

On peut admettre cependant, à la suite de cette série d'essais, que les différences qui pourraient être rencontrées entre divers échantillonnages de Parasolier susceptibles d'approvisionner une usine fabriquant de la pâte chimique blanche sont relativement faibles et ne devraient pas conduire à une trop grande dispersion en ce qui concerne la qualité des produits fabriqués. La densité des bois pourrait éventuellement être retenue comme critère pour différencier les lots de bois utilisés.
PATES DE PARASOLIER AU SULFITE NEUTRE

Essais de laboratoire

Deux séries de traitements au sulfite neutre ont été effectuées au stade du laboratoire sur le Parasolier : une étude de fabrication de pâte mi-chimique et une étude de fabrication de pâte à haut rendement.

Pâtes mi-chimiques à SO₃Na³.

Deux cuissons ont été réalisées sur un échantillonnage de Parasolier analogue à celui utilisé au cours de l’étude des pâtes chimiques, dans les conditions suivantes :

— Réactifs introduits : SO₃Na³ % : 18 ou 24, CO₂Na³ % : 6 ou 8.

— Imprégnation préalable des copeaux dans la liqueur de cuisson : 16 h.

— Montée de 20° à 110° : 55 mn, Palier à 110° : 1 h.

— Montée de 110° à 185° : 1 h 05, Palier à 185° : 3 h.

Les pâtes ont ensuite été blanchies en quatre phases (chloro, soude, deux hypochloritès).

Les résultats obtenus sont donnés aux tableaux G et G'.

La cuisson au sulfite neutre de l’échantillonnage de Parasolier donne, avec un rendement acceptable pour ce type de cuisson, des pâtes écrites un peu plus claires que les pâtes alcalines. Contrairement à ce que l’on observe pour de nombreuses essences tropicales, les pâtes obtenues sont relativement faciles à blanchir puisque les consommations en chlore sont respectivement de 18 et 15,5 %. (À titre de comparaison, le Bouleau ouit avec 24 % de sulfite neutre a donné 67 % de pâle blanchissable avec 15 % de chlore alors qu’avec certains feuillus tropicaux, des consommations de chlore de 25 à 30 % sont courantes pour des pâtes traitées de façon similaire).

Il faut cependant noter que la blancheur des pâtes n’est pas très élevée et il faudrait revoir, au point de vue pratique, les conditions opératoires. La stabilité des pâtes blanchies est moyenne.

Si l’on tient compte des rendements à la cuisson et au blanchiment, on arrive à un rendement final en

<table>
<thead>
<tr>
<th>TABLEAU G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuissons mi-chimiques de Parasolier à SO₃Na³</td>
</tr>
<tr>
<td>résultats de cuisson et de blanchiment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SO₃Na³ %</th>
<th>CO₂Na³ %</th>
<th>Rendement brut</th>
<th>Rendement net</th>
<th>Indice MeOK</th>
<th>Photo-volts</th>
<th>D. P. céré</th>
<th>Chlorosodation</th>
<th>Hypochloritères</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>6</td>
<td>87,3</td>
<td>66,7</td>
<td>52,5</td>
<td>36,5</td>
<td>1,850</td>
<td>15,8</td>
<td>77</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>86,7</td>
<td>65,3</td>
<td>51,5</td>
<td>41</td>
<td>1,640</td>
<td>15,1</td>
<td>77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLEAU G'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuissons mi-chimiques de Parasolier à SO₃Na³</td>
</tr>
<tr>
<td>Caractéristiques mécaniques (à 40 °SR) des pâtes blanchies au Bauer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SO₃Na³ %</th>
<th>CO₂Na³ %</th>
<th>L. Rupture</th>
<th>Éclatement</th>
<th>Déchirure</th>
<th>D. PIs</th>
<th>Poresité</th>
<th>Allongement %</th>
<th>Main</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pâtes écrites :</td>
<td>18</td>
<td>6</td>
<td>9,300</td>
<td>60</td>
<td>56</td>
<td>1,200</td>
<td>0,05</td>
<td>2</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>9,500</td>
<td>60</td>
<td>55</td>
<td>1,200</td>
<td>0,05</td>
<td>2,4</td>
<td>1,35</td>
</tr>
<tr>
<td>Pâtes blanchies :</td>
<td>18</td>
<td>8</td>
<td>8,700</td>
<td>56</td>
<td>56</td>
<td>1,100</td>
<td>0,05</td>
<td>2,7</td>
</tr>
<tr>
<td>24</td>
<td>8</td>
<td>8,800</td>
<td>57</td>
<td>55</td>
<td>1,000</td>
<td>0,05</td>
<td>---</td>
<td>1,15</td>
</tr>
</tbody>
</table>

47
pâte blanche par rapport au bois de 58,1 % et 57,5 %, ce qui est satisfaisant. Si on se contentait d'éclaircir la pâte, le rendement devrait être encore plus favorable et se rapprocher du rendement en pâte écrue.

Les caractéristiques mécaniques des deux pâtes écrues sont excellentes pour une pâte au sulfite neutre, puisque la longueur de rupture est proche de 10,000, l'éclatement de 60 et les pils de 1,200.

L'utilisation du Parasolin pour la fabrication de pâtes mi-chimiques au sulfite neutre écrues ou blanches pourrait donc être envisagée favorablement.

Pâtes au SO₃Na à haut rendement : une deuxième étude a été effectuée avec de plus faibles pourcentages de réactifs.

On a cherché à déterminer en particulier l'influence des quantités de SO₃Na₂ et de CO₃Na₂ introduites sur les résultats obtenus à partir d'un échantillonnage de Parasolin de densité égale à 0,23.

Les conditions de cuisson étaient les suivantes :
- SO₃ Na₂ int. : 5, 10, 15 et 20%.
- CO₃ Na₂ int. : 0, 1/6 et 1/3 du poids de sulfite,
- Température de cuisson : 165° pendant 3 h.
- Montée en température de 20° à 165° en 3 h avec paille intermédiaire à 120°.
- Rapport lessive/bois : 9/1.

Après cuisson, le débibrage des copeaux a été effectué par un passage dans un pulpeur Allibe puis un passage au Sprout-Waltrin.

Les résultats obtenus au cours de cette étude sont donnés au tableau II.

Les pâtes ci-dessus n'ont pas été blanchies par un procédé multistade, on a procédé simplement à des tests d'éclaircissement en une phase à l'hypochlorite et à l'eau oxygénée avec des quantités croissantes de réactifs. On se reportera au tableau III pour avoir le détail des résultats enregistrés. Les chiffres DOM sont correspondant à la moyenne de ceux trouvés pour les trois quantités de CO₃Na₂.

La cuisson du Parasolin avec des quantités de sulfite peu importantes est possible. Pour des pourcentages de réactifs inférieurs à 10 % le sulfite est presque entièrement consommé. Le pH des lessives croît un peu en fonction de la teneur en CO₃Na₂ et davantage en fonction de la teneur en SO₃Na₂. Le rendement croit très légèrement en fonction de la quantité de carbonate et décroît en fonction de la quantité de sulfite neutre ajoutée. La résistance à la rupture et à l'éclatement augmentent avec le pourcentage de sulfite introduit jusqu'à 15 %. Par contre la déchirure et les pils tendent à diminuer. La teinte des pâtes s'éclaircit quand la quantité de SO₃Na₂ augmente mais il est difficile d'obtenir en écrue des pâtes très claires, un traitement éclaircissant est nécessaire pour les rendre utilisables pour l'impression-édition. Il faudrait par exemple 3 à 5 % d'eau oxygénée ou 5 à 9 % d'hypochlorite pour avoir 50 de photoval sur les pâtes culées avec 10 à 15 % de SO₃Na₂ et 9 à 15 % d'hypochlorite pour avoir une blancheur de 60 sur ces mêmes pâtes.

TABLEAU II

<table>
<thead>
<tr>
<th>Résultats de cuisson</th>
<th>Caractéristiques à 60 °SR des pâtes écrues</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₃Na₂ % int.</td>
<td>SO₃Na₂ restant g/l</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>5</td>
<td>0.3</td>
</tr>
<tr>
<td>1/6</td>
<td>0.3</td>
</tr>
<tr>
<td>1/3</td>
<td>0.5</td>
</tr>
<tr>
<td>10</td>
<td>0.3</td>
</tr>
<tr>
<td>1/6</td>
<td>1.3</td>
</tr>
<tr>
<td>1/3</td>
<td>1.3</td>
</tr>
<tr>
<td>15</td>
<td>0.4</td>
</tr>
<tr>
<td>1/6</td>
<td>4.4</td>
</tr>
<tr>
<td>1/3</td>
<td>5.7</td>
</tr>
<tr>
<td>20</td>
<td>0.6</td>
</tr>
<tr>
<td>1/6</td>
<td>11.3</td>
</tr>
<tr>
<td>1/3</td>
<td>11.3</td>
</tr>
</tbody>
</table>

REMARQUES : a) On n'a pas étudié de façon systématique l'évolution de l'énergie de débibrage nécessaire pour ce type de pâte. On a cependant noté qu'en moyenne le Parasolin consommait comparati-
TABLEAU II

Pâtes au SO₃Na³ à haut rendement de Parasolier
Résultats d'éclairecissements à GIONa et HPO²

<table>
<thead>
<tr>
<th>SO₃Na³ int. %</th>
<th>Éclairecissements à GIONa</th>
<th>Éclairecissements à HPO²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cl int. %</td>
<td>NaOH int. %</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3,5</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3,5</td>
</tr>
<tr>
<td>15</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3,5</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>3,5</td>
</tr>
</tbody>
</table>

vivement un peu moins d'énergie que les bois tropicaux plus denses. Ces quantités d'énergie ont varié de 1 kWh/kg à 0,4 kWh/kg.

b) De même, on a pu noter que, pour des papiers de Parasolier de 150 g/m², la valeur du Concoura, qui correspond à la résistance à l'écrasement, était de l'ordre de 35 à 55.

D'un point de vue général, il ressort de cette étude que le Parasolier est susceptible de donner de très bonnes pâtes au sulfite à haut rendement.

Essais industriels.

Une fabrication de pâte au sulfite neutre de Parasolier a été effectuée sur 3 tonnes de bois du Cameroun aux Cartonneries de La Rochette, afin de confirmer les résultats très encourageants obtenus au laboratoire.

La mise en copeaux a été faite sur une coupeuse Morvan à 16 couteaux de 250 CV. Les copeaux ont été classés sur deux tamis vibrants à mailles de 40 et 35 mm. Les refus étaient recyclés après passage dans un broyeur à marteau. Le lessivage a été effectué dans un lessiveur rotatif de 33,5 m³ chauffé à la vapeur directe dans les conditions suivantes :

- Réactifs ajoutés : 15 % de SO₃Na³ et 3 % de CO₃Na² (sur bois sec).
- Rapport liquide/bois sec : 4/1 en eau + 2/1 en vapeur soit au total 6/1.
- Durée de montée en pression : 40 mn avec deux dégazages partiels à 5 kg et 7 kg.
- Pâller de 1 h 30 à 7 kg de pression (185° environ).

En fin de cuisson, le pH était de 8,7. Le rendement en pâte se situait autour de 80 à 85 %.

Le défibrage a été effectué dans un Bauer de 700 CV à une concentration de 6 à 8 %. Le circuit complet de classement correspondait au schéma suivant : Bauer, Cowan, Centricleaner.

La pâte a été tirée sur un presse-pâte humide Kamy.

100 kg de pâte écrue ont été ensuite éclaircis à l'hypochlorite en une phase à la station semi-industrielle du Centre Technique de la Papeterie à Gières dans une tour verticale de 5 m² avec agitation, dans les conditions suivantes :

- Hypochlorite introduit (% de CI actif sur la pâte sèche) = 12.
- Concentration en pâte % = 2.
- Température = 45°.
- Durée = 2 h à pH 8,4.
- CI actif consommé (% de la pâte sèche) = 11,9.
La blancheur de la pâte est passée de 47 à 62 à la suite de ce traitement.

Les caractéristiques de la pâte écrue et de la pâte éclaircie ont été déterminées après rafinage au Jokro, au Bauer et à la Pyle Valley. Les moyennes sont rapportées au tableau I.

Aucun incident important n’a été observé au cours de cet essai industriel. On a pu faire cependant les remarques suivantes :

— Mise en copeaux : Les copeaux de Parasolier avaient des formes et des dimensions normales mais étaient légèrement craquels et les bouts de rondsins avaient parfois tendance à éclater sous la pression des couteaux. Le débit de la chaîne était un peu plus faible que lors du passage des résineux.

— Cuisson : la cuisson a été réalisée sans difficulté.

— Classeage : le classement de la pâte a eu lieu normalement ; la pâte finale contenait cependant des bâchettes et des points noirs imputables en partie, d’ailleurs, à des éléments étrangers au Parasolier amassés dans les ouviers et les circuits de transport.

— Presse-pâte : le réglage de l’appareil Kamyru a été assez long du fait de la mauvaise tenue de la feuille humide. L’adjonction d’une petite quantité de fibres longues aurait vraisemblablement pallié cet inconvenient.

— Caractéristiques des pâtes : des résultats très favorables ont été obtenus. Certaines caractéristiques de résistance correspondent à celles que l’on observe avec des pâtes chimiques de feuillus de bonne qualité plutôt qu’avec des pâtes à haut rendement.

Tirage de papiers au stade semi-industriel

Des papiers expérimentaux ont été fabriqués sur la machine NEYRUP SIGMA du Centre Technique de la Papeterie (type table plate, vitesse : 5 à 100 m/min, largeur utile : 0,5 m, une presse coucheuse et une montante, 16 sécheurs).

A partir de la pâte écrue, et sans aucun adjuvant, trois grammages différents (84, 112 et 152 g/m²) ont été tirés à 35 m/min.

A partir de la pâte mi-blanchie, cinq papiers correspondant à un mélangé de 80 % de pâte de Parasolier et 20 % de kraft de résineux blancs, ont été tirés à 30 m/min avec les forces suivantes : 61, 86, 124, 155 et 170 g/m². Pour ces sortes, on a incorporé à la pâte comme adjuvants, dans le cuvier en tête de machine, du taie, de la colle renforcée et du sulfate d’alumine.

Aucune difficulté particulière n’a été rencontrée au cours de ces tirages à l’exception d’un léger peluchage à la presse coucheuse.

Les différents papiers ont tous donné des résultats intéressants au point de vue caractéristiques mécaniques.

Dans le cas des sortes écrites de 112 et 134 g/m², on a une bonne résistance à l’écrasement des formes ondulées (indice Concor) et une bonne résistance à l’écrasement annulaire (ring crush). Pratiquement, des cartons de 112 g/m² peuvent convenir pour la caisse carton, et même éventuellement des cartons de poids inférieurs. Voici, à ce sujet, le commentaire d’un industriel français qui a testé un échantillon de cannelure 112 g/m² de Parasolier :

« Ce papier est d’un niveau de qualité très supérieur à celui des cannelures de poids au m² équivalent, disponibles sur le marché de la caisse carton ondé. »

« Les meilleurs papiers scandinaves tirés en 112 g/m² en provenance de Billerud et Kratinefors, sont en effet de rigidité inférieure (CMT compris entre 21 et 23 kgf, ring crush ST de l’ordre de 10 à 12 kgf) et présentent par ailleurs des caractéristiques mécaniques classiques (longueur de rupture, indice Mellin, déchirement, double-plis) nettement plus faibles. »

« Une seule particularité, concernant ce papier à base de Parasolier, est toutefois à noter : la très faible valeur de l’indice de perméabilité à l’air, qui peut conduire à des difficultés lors du contre-collage industriel sur machine à onduler. »

Ce dernier défaut est toutefois mineur et une solution pourrait être trouvée, par exemple en limitant le temps de rafinage.

Dans le cas des papiers et cartons éclaircis, il faut

<table>
<thead>
<tr>
<th>Caractéristiques</th>
<th>Pâte écrue</th>
<th>Pâte éclaircie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sur papier de 60 g/m² :</td>
<td>Sur papier de 60 g/m² :</td>
<td>Sur papier de 60 g/m² :</td>
</tr>
<tr>
<td>Longueur de rupture</td>
<td>10,000 à 10,500</td>
<td>9,500 à 10,500</td>
</tr>
<tr>
<td>Éclatement</td>
<td>50 à 60</td>
<td>50 à 57</td>
</tr>
<tr>
<td>Déchireur</td>
<td>70 à 80</td>
<td>70 à 70</td>
</tr>
<tr>
<td>Double-plis</td>
<td>200 à 300</td>
<td>400 à 500</td>
</tr>
<tr>
<td>Main</td>
<td>1,30 à 1,45</td>
<td>1,30 à 1,50</td>
</tr>
<tr>
<td>Porosité</td>
<td>0,1 à 0,2</td>
<td>0,2 à 0,4</td>
</tr>
<tr>
<td>Allongement %</td>
<td>2,8 à 3,4</td>
<td>2,8 à 3,2</td>
</tr>
</tbody>
</table>

| Sur sarto : |
| Concor (150 g/m²) | 30 (Jokro) |
| Concor (115 g/m²) | 20 (Jokro) |
signaler que l’aspect laisse à désirer en raison des points noirs et des bouchées qui ont résisté à l’action des agents Blanchissants et qui restent apparents. On n’a pas été en mesure de faire la proue, à ce sujet, des possibilités d’élimination de ces impuretés par centrifugage et le doute n’est pas levé. D’autre part, malgré l’introduction, dans la composition, de pâte kräft blanchie et de charges minérales, la teinte des fabrications reste jaune ce qui limite les possibilités d’utilisation. En fait, parmi les papiers tirés, ceux qui pourraient le plus facilement trouver un emploi, en plus des ondulés, correspondraient plutôt au 34 g/m² en tant que papier mousseline, soit au 166 g/m² en tant que dossier. (La rigidité intrinsèque, calculée à partir de la rigidité Taber, est relativement bonne.)

(A Suivre).

Divers

JOURNÉES FORESTIÈRES DE BEAUMONT-LE-ROGER

Les 26 et 27 mars se sont déroulées en forêt de Beaumont-le-Roger (Eure) deux journées de démonstration de matériel forestier.

Cette manifestation était organisée par le Centre Technique du Bois et patronnée par le Ministre de l’Agriculture, le Préfet de l’Eure ainsi que par les Fédérations de propriétaires et d’exploitants forestiers.

De nombreux visiteurs sont venus de diverses régions de France voir évoluer des matériels modernes capables de résoudre les problèmes de débroussaillage, abattage, débardage, transport et manutention.

Il semble que cette année les professionnels se soient plus particulièrement intéressés aux matériels de débardage et de chargement des véhicules.

Les exploitants forestiers ont pu comparer les divers modèles des principales marques de matériel de débardage actuellement commercialisés en France.

En ce qui concerne la manutention, c’est-à-dire le chargement des véhicules, le problème semble actuellement être résolu par la grue hydraulique, et en ce qui concerne le chargement des bois en grandes longueurs, on note une tendance à remplacer le monte-grumes classique par une grue hydraulique de forte puissance de levage.

Parmi les engins de manutention et de chargement, nous avons remarqué :

1. Un chariot élévateur Manitou 4 t, 4 roues motrices, type «4 RM 46», 32 cv équipé à l’arrière d’une grue hydraulique SESAM de 3,5 t/h.

Cette grue très robuste a la particularité d’être à rotation totale par moteur hydraulique.

Le cât de cette grue est équipé d’un cabestan qui permet de tracter 7 t, le cât s’enroule par la rotation de la grue.

Le Manitou 4 RM 46 était équipé à l’avant, sur la rampe, d’un grappin hydraulique de 1 m³ placé sur potence.

Cet accessoire nouveau permet de charger 1 m³ à la fois au coupe de 2 m par le côté d’un semi-remorque jusqu’à 4 m de hauteur. Ce procédé est très avantageux pour le rechargement en bordure de route.

Sur le MANITOU MB 250, 2,5 t, nous avons remarqué un montage de grue hydraulique à l’avant à la place de la rampe.

Cet ensemble ressemble à une petite grue automobile et le conducteur est très bien placé sur l’avant tout en restant à son volant pour manœuvrer la grue hydraulique dont les commandes sont à sa portée.

La reconversion en chariot élévateur est possible en démontant la grue qui est fixée sur les points d’articulation de la rampe.

Cet engin nous a démontré sa maniabilité et ses possibilités de chargement avec un grappin hydraulique de 0,400 m³, muni d’un rotator.

Cela correspond parfaitement, par son faible encombrement, au travail de chargement des bois de 1 m ou 2 m, soit sur des remorques, soit dans des containers disposés sur la coupe. Il existe en 2 ou 4 roues motrices.

Les exploitants forestiers ou industriels de bois peuvent utiliser cet appareil pour les chargements ou déchargements de wagons-tombereaux, soit en bois vrac, soit en paquet.