CHRONIQUE
PISCICOLE
par J. LEMASSON

LA SCIENCE APPLIQUÉE AUX PÊCHES INTÉRIEURES

Sous ce titre, la F. A. O. a publié récemment une importante étude de E. D. LE CREUZ (1), à laquelle je voudrais consacrer cette chronique.
En effet, dans le domaine des pêches intérieures, en pays tropical tout spécialement, on trouve souvent encore tout naturel de s'inspirer beaucoup plus de l'opinion, de l'expé- rience et des traditions des générations précédentes que de l'application de connaissances scientifiques. Il est bien évident, cependant, que l'organisation et les méthodes de l'industrie des pêches mettent en jeu de nombreux domaines de l'activité scientifique puisqu'elles posent des problèmes biologiques, économiques et politiques. Mais, parmi ces problèmes, ceux d'ordre biologique sont incontesstablesment à mettre au premier plan puisque le but de l'industrie des pêches n'est autre que l'obtention d'un produit résultant de l'activité biologique dont les eaux sont le siège. Toute pêche, pour être rationnelle, doit être fondée sur les processus biologiques mis en jeu.
C'est précisément à l'étude de ces processus que E. D. LE CREUZ se livre dans son exposé. Il les examine un à un ainsi que l'opération finale de la capture. Il indique pour chacun l'état d'avancement des recherches, la mesure dans laquelle leurs résultats ont été appliqués dans la pratique et les voies dans lesquelles elles devraient s'engager dans le futur. Je vais essayer de donner ici un aperçu aussi complet que possible de cet exposé.

Les processus de production et de récolte du poisson dans un milieu aquatique peuvent être classés en cinq stades principaux :

1° Production végétale primaire,
2° Conversion de cette production en nourriture pour les poissons, généralement par l'intermédiaire d'une chaîne alimentaire d'ancêtres,
3° Alimentation du poisson et conversion de sa nourriture en chair,

4° Récolte de la production de poisson,
5° Reconstitution du stock de poisson par reproduction.

Comme ces cinq stades sont essentiels dans une exploitation de pêche, toute étude rationnelle doit les considérer tous et la recherche scientifique doit s'efforcer d'identifier les processus importants que comportent chaque stade ainsi que les facteurs qui les régissent. De son côté, l'exploitation rationnelle des pêches doit veiller, par une intervention à tous les stades possibles, à contrôler ces facteurs de façon à assurer une capture continue aussi forte que possible.

Toute la production organique dépend de la synthèse, par les plantes vertes, de constituants simples en matière vivante complexe. Le tissu et le volume de la production végétale aquatique, constituée surtout par des algues, sont d'une importance primordiale pour la production de poisson. Il est nécessaire, par conséquent, de connaître les facteurs qui les contrôlent. Ce sont : la lumière, la tempéra- ture et certaines substances chimiques.

La lumière est rapidement absorbée par l'eau. Au-delà d'une certaine profondeur par conséquent, plus de pho- tosynthèse et plus de production végétale. En pays tempé- rée, le tissu de photosynthèse est limité par la manque de lumière en hiver. La nécessité d'un éclairage suffisant rend nécessaire, lorsque c'est possible, le contrôle des végé- taux flottants.

Le développement des végétaux est accéléré par la

température. Dans les pays tempérés, la productivité est donc limitée non seulement par la brièveté des jours en hiver, mais aussi par l'insuffisance de la température. Il s'ensuit que la production du poissons en eaux douces n'est pas toujours une activité très rentable dans les régions tropicales où sont en général placées, en ce qui concerne ces deux facteurs température et lumière, dans des conditions particulièrement favorables.

Les principales substances chimiques nécessaires à la croissance des végétaux sont l'eau, l'oxygène, le carbone, ainsi que de sols minéraux contenant de l'azote, du phosphore, du potassium, du calcium, du soufre, du magnésium, du fer, etc... et du silicium (indispensable aux photosynthèses).

L'eau existe évidemment en abondance et l'oxygène ne constitue pas, en général, un facteur limitant. Mais le carbone absorbé sous forme d'acide carbonique est parfois insuffisant et c'est peut être une des raisons de l'effet bienfaisant des engrais à la chaux. Toutefois, les rapports entre l'activité photosynthétique de végétaux dans l'eau, l'acide carbonique, les bicarbonates, les carbonates et le pH, sont complexes et mal connus.

Les autres éléments nutritifs d'origine minérale sont apportés par l'eau de pluie et surtout par l'eau du ruissellement. Il se produit également une circulation de ces éléments dans la masse d'eau et les dépôts de vase sur le fond jouent le rôle de réservoir. L'azote, le phosphore, le potassium, le fer et le silicium, sont considérés traditionnellement comme particulièrement importants mais, d'autres peuvent jouer un rôle limitatif. Ce que semble être le cas du soufre dans certaines eaux tropicales.

La culture des algues en laboratoire et les observations faites dans diverses eaux montrent que les éléments nutritifs minéraux usuels ne sont probablement pas les seuls indispensables et que le développement d'un grand nombre d'algues exige également la présence de certaines composés organiques mais on ne connaît pas encore la nature de la plupart des substances actives. L'emploi d'engrais organiques en place de culture est traditionnel et généralisé en Extrême Orient, mais les données scientifiques sur leur action sont très limitées et l'on ne sait pas par quelle manière ils stimulent la croissance des algues. Il est certain, cependant, que la placeculture constitue l'un des procédés les plus efficaces pour l'utilisation des déchets organiques.

La fourniture de substances nutritives minérales et même organiques joue donc un rôle important dans la croissance des algues et autres plantes aquatiques. Encore que cette fourniture soit assurée en général pour une large part par les eaux de ruissellement, la phase des phases et des étangs a une très grande influence sur la productivité. Les substances organiques s'y accumulent et s'y décomposent et leur minéralisation est assurée par les bactéries et les champignons. La diffusion dans l'eau d'éléments nutritifs solubles issus de la vase est très importante pour les algues planctoniques. Malheureusement, les connaissances relatives à la culture de la vase et de l'eau des étangs sont très limitées.

Tout ce qui précède concerne la production quantitative des végétaux et les facteurs qui l'agissent. Dans la production qualitative est également importante. Certaines, algues sont trop grosses pour être ingérées par les crustacés planctoniques, d'autres ne sont pas dirigées par les poissons.

La croissance et la productivité des algues dans les eaux intérieures ont fait l'objet d'études assez approfondies. Malheureusement un grand nombre de ces algues, parmi les mieux connues, ne sont probablement pas celles qui ont le plus d'importance pour la production du pois- son. Il faudrait s'intéresser davantage au phytoplancton et aux algues de fond pour résoudre la question plus facilement, puisque dans certaines eaux libres des poissons qui constituent un milieu relativement constant. Il faudrait s'attaquer évidemment aux autres méthodes afin que les algues, ainsi qu'aux populations plus complexes d'algues qu'elles renferment.

La conversion de la production végétale en cultures assimilables par les poissons se fait par un ensemble de processus appelé chaîne ou cycle alimentaire.

La plupart des espèces de poissons d'eau douce se nourrissent d'organismes variés mais beaucoup ont un régime alimentaire bien défini et quelques autres vivent exclusivement de certains aliments. Les espèces d'eau douce sont riches en poissons et ont une importance primordiale (Tilapia). Le régime alimentaire de la plupart des poissons évolue avec l'âge et peut également changer selon l'abondance relative des différents types d'aliments. Peu de poissons d'eau douce sont spécialisés afin de pouvoir s'adapter, suivant les circonstances, à des régimes alimentaires différents.

Le phytoplancton n'est consommé directement par les poissons que dans un petit nombre de cas. Il ne peut donc être utilisé qu'après avoir été converti au moins en zooplancton ou en détritus. Les algues de fond et les détritus qui constituent l'une des principales sources d'aliments pour les animaux aquatiques ne sont eux aussi consommés directement par les poissons que dans certains cas mais

Pêche au Lac Toho (Dahomey) avec de grandes épuisettes.

Photo Lemasson.
le plus souvent ils sont d'abord absorbés par les invertébrés du benthos. L'alimentation des poissons se fait donc, en général, par une chaîne alimentaire plus ou moins compliquée où figure la faune aquatique invertébrée. 

Etablir la complexité d'un grand nombre de relations alimentaires existant au sein de cette faune le rendement de la transformation des algues en aliments assimilables par les poissons doit être souvent très bas, car non seulement il se produit des pertes au cours des stades physiologiques de la transformation alimentaire, mais encore une grande partie des aliments produits à un stade précédent de ne jamais passer au stade suivant et de retourner sous forme de détritus au début du cycle. Il en résulte obligatoirement que ce sont les poissons herbivores qui fournissent les rendements les plus élevés ; il faut donc les utiliser le plus possible. Mais il n'est pas probable que la production d'algues puisse être complètement absorbée par les seuls poissons ou que l'on puisse diminuer la faune invertébrée même dans un étang. Il faut donc chercher à utiliser cette faune au mieux, grâce à la présence de plusieurs espèces de poissons à régime alimentaire varié. C'est en ce que sont les pisciculture bleus. Le poisson d'élevage peut être nourri artificiellement. C'est l'aboutissement logique de la culture intensive et cela correspond à l'élevage des animaux de ferme. Mais le poisson a l'avantage sur les animaux à sang chaud de ne pas demander de nourriture supplémentaire pendant les mauvaises saisons. Par ailleurs, il est vraisemblablement, en général, un meilleur convertisseur de produits agricoles végétaux que les animaux terrestres.

La nourriture que le poisson absorbe lui sert d'une part à construire sa substance et à entretenir son métabolisme, d'autre part à assurer sa croissance. La quantité de chair ou la production d'un poisson peut être estimée d'après la quantité de nourriture disponible après la satisfaction des besoins d'entretien et du rendement de la conversion de ces excédents d'aliments.

La ration d'entretien est sensiblement proportionnelle au poids du poisson mais la température et l'âge influent sur le rapport ration/poids. On possède très peu de données sur les besoins réels d'entretien du poisson.

Le rendement de la conversion des aliments excédant la ration d'entretien est affecté non seulement par un certain nombre de facteurs, et varie en raison de la quantité d'aliments consommés. Quand au rendement total de la conversion, qui en définitive importe seul dans la pratique, il dépend principalement de la quantité totale d'aliments consommés et du taux de croissance. Bien que l'on possède peu de données dans ce domaine, il semble bien que, jusqu'à une certaine limite, les poissons absorbant autant de nourriture qu'ils peuvent en trouver et que la quantité disponible d'aliments appropriés constitue le facteur primordial.

Les taux de croissance et la forme de la courbe de croissance d'un grand nombre de poissons sont connus. La forme générale de cette courbe (forme sigmoidale) est analogue à celle des courbes de croissance de la plupart des animaux mais les poissons se distinguent par la très grande diversité de leurs taux de croissance et des tailles qu'ils atteignent. Des peuplements florisants de la même espèce peuvent contenir des tailles moyennes et des tailles
extrêmes très différentes. C'est que le taux de croissance et la taille des poissons sont influence par des facteurs qui ont une grande importance dans la production des pêches et dont les principaux sont : les facteurs du milieu physique et chimique, les facteurs physiologiques du milieu interne, les facteurs sociaux, les facteurs génétiques, les facteurs alimentaires.

L'un des plus importants facteurs physiques est la température qui accélère la croissance. Néanmoins, comme les poissons ont tendance à vieillir plus vite à mourir plus tôt dans les eaux chaudes, les plus gros individus d'une espèce proviennent fréquemment des zones les plus froides de son habitat. L'espèce a aussi une influence car il est impossible d'obtenir le développement maximum de certains poissons dans des eaux confinées. La composition chimique de l'eau peut aussi agir directement ; malheureusement, il est difficile de dissocier les influences chimiques directes et celles qui agissent en affectant la productivité générale du milieu.

Les facteurs physiologiques du milieu interne des poissons sont très variés. Il est certain que les cycles physiologiques ont une grande influence sur la croissance. Elle se réfère presque toujours à la maturité ; la détermination des facteurs qui provoquent cette dernière présente donc un grand intérêt pratique.

Le but de l'exploitant est de convertir la production de poisson en récolte. Dans un étang bien aménagé, la capture n'est pas l'opération la plus importante. En milieu naturel, au contraire, la kg exacte de la traîne du travail est concentrée sur les opérations de pêche qui constituent parfois le seul mode possible de l'intervention humaine. La grosse difficulté dans les eaux naturelles est précisément de déterminer la production et, par conséquent, la récolte. Les estimations demandent une connaissance assez approfondie du peuplement et de la taille moyenne des individus à différents âges et au cours d'une période donnée.

Toute génération débute avec un nombre relativement élevé de poissons de faible taille et se termine avec quelques gros poissons. La forme de la courbe de croissance et de décroissance de la masse totale de la population varie suivant le taux de survie et de croissance du groupe, mais il existe toujours un âge auquel le poids total du groupe atteint une valeur maximum. C'est l'âge optimum de capture.

Malheureusement, dans la pratique, cette conclusion est rarement applicable, au moins dans les étangs, et une partie des poissons doit être capturée avant d'avoir atteint l'âge optimum, d'autres ne sont récupérés qu'après avoir dépasse cet âge. Par ailleurs, la taille optimum théorique des poissons bons à pêcher peut ne pas correspondre à la taille recherchée commercialement ou être inférieure à celle leur permettant de se reproduire.

Même si tous les poissons étaient capturés à l'âge optimum, la masse biologique qu'ils représentent ne constitue qu'une petite fraction de la production totale réalisée par le groupe jusqu'à cet âge. La plus grande partie est perdue du fait de la mortalité naturelle intervenue auparavant. Cette perte constitue certainement l'un des facteurs qui affectent le plus la capacité de rendement des pêches. Les causes de mortalité naturelle ont été très peu étudiées mais il est probable que le part des prédateurs est essentiel. Les observations approfondies des besoins alimentaires des peuplements connus de poissons, sœurs et mammifères piscivores indiquent souvent que ces prédateurs observent consommer une quantité de poissons très supérieure à celle que les pêcheurs parviennent à obtenir.

Il faut envisager un contrôle de la mortalité naturelle et particulièrement de la préation, se traduirait normalement par des captures plus élevées. Il est nécessaire de parier fortement les études sur la dynamique et la production des populations de poissons d'eau douce.

Dans toute entreprise de pêche, il faut obtenir une recons titution adquate du peuplement en entretenant un certain nombre de géniteurs et en assurant des conditions convenables à la survie des jeunes mais en veillant en même temps à ce que le peuplement n'absorbe pas plus que la part strictement indispensable de l'activité productrice du complexe organique. Il est important de ne pas élever plus de jeunes qu'il n'est nécessaire.

Il est rare qu'un peuplement animal disparaisse complètement ou que l'espèce domine certaines conditions catastrophiques. Il existe donc un mécanisme régulateur variable suivant le type biologique mais il y a toujours corrélation entre le taux de reproduction ou de survie et la densité du peuplement. Dans la plupart des cas le mécanisme régulateur n'a pu être observé, on observe néanmoins des preuves abondantes de son existence. Aucune entreprise de pêche capturant une espèce importante de peuplement n'était suffisante à sa sauvegarde. Il serait de la responsabilité des personnes qui se préoccupe de la production et qui se soucie de la conservation de la pêche et de la survie des espèces. Il est nécessaire d'étudier des travaux de recherches sur la dynamique des populations, le recrutement des jeunes et leur contrôle artificiel dans le but d'aboutir à une reproduction suffisante, mais limitée au nécessaire, la production pouvant être diminuée par une reproduction excessive.
Les possibilités d’application à l’exploitation rationnelle des pêches, des processus biologiques de la production et de la récolte du poisson varient suivant les types d’eaux intérieures. Dans les étangs, l’obtention du rendement maximum peut résulter d’une action sur la plupart des éléments du cycle de production. Les recherches sont tout spécialement à pousser du côté du taux de production de base des eaux et du taux de conversion de la nourriture naturelle. Dans les grands lacs ou les cours d’eau, les possibilités d’action sont beaucoup plus limitées mais la population de poisson peut être contrôlée et régulée dans une certaine mesure. On peut régulariser la densité des peuplements en variant l’intensité de la pêche. On peut également contrôler dans une certaine mesure la reproduction des espèces importantes en épuisant le nombre voulu de reproducteurs, en régulant l’accès des lieux de ponte, en protégeant les jeunes des prédateurs, etc…

Sur tout cela, la recherche fondamentale ne peut fournir que des principes directeurs. L’aménagement piscicole devra tenir compte, dans l’application de ces principes, de toutes les données particulières à un plan d’eau déterminé. En théorie, l’établissement d’une documentation complète sur une seule pièce d’eau pourrait occuper une grande station biologique pendant un demi-siècle. Dans la pratique, heureusement, les données recueillies dans un plan d’eau sont applicables avec de légères modifications, à un grand nombre d’autres. Dans la plupart des cas, les principes d’exploitation doivent être soumis à l’appréciation de l’expérience et les méthodes sont à réviser compte tenu des résultats. L’aménagement doit aussi naturellement prendre en considération les aspects économiques, sociaux et politiques des pêches.

La pêche n’est qu’une des formes d’exploitation des bassins intérieurs et les autres activités humaines qui s’y exercent soulèvent des problèmes particuliers pour la recherche le concernant. Parmi ces activités, il faut citer l’agriculture, la construction des barrages, la navigation, la pollution industrielle, l’hygiène publique, le tourisme et les loisirs.

L’agriculture et la pêche visent toutes deux à utiliser le terrain pour obtenir des aliments et autres produits naturels et dans un grand nombre de régions la plus efficace consiste à combiner l’agriculture et la pisciculture. Dans certains pays, cela-ci permet d’obtenir une plus grande quantité d’aliments protéiques de valeur que celle-là. Il semblerait donc logique dans bien des cas, de transformer en exploitations piscicoles les terres marécageuses et humides au lieu de chercher à les assécher.

Le ruissellement rapide, les inondations brutes et l’entraînement des produits d’érosion sont nuisibles à la production de poisson et les ouvrages destinés à lutter contre le ruissellement peuvent la favoriser. Les lacs et étangs se comportent un peu comme des puitsards où les éléments nutritifs entrainés par le lavage des sols s’accumulent et peuvent être réutilisés pour la production de matières organiques.
D’une façon générale, la plupart des utilisations des eaux intérieures ne sont pas forcément en opposition entre elles ou avec la pêche, mais il faut faire appel à la science pour résoudre des problèmes si variés et un gros effort de planification reste à entreprendre pour les harmoniser à leur mutuel avantage.

En conclusion, de toutes ces considérations, E. D. Le Caux termine son étude en rappelant le rôle que la science a joué dans l’exploitation des pêches intérieures et en indiquant l’orientation future à donner à la recherche dans ce domaine.

Dans le passé, la limnologie, qui peut être considérée comme la base fondamentale de la recherche dans les pêches intérieures, s’est surtout consacrée à l’étude biologique générale des organismes aquatiques et à la classification des eaux mais elle s’est peu intéressée à la biologie des pêches. Celle-ci s’est consacrée aux recherches écologiques sur les principales espèces, aux études générales sur les eaux douces, à des problèmes particuliers tels que la technologie des procédés d’exploitation rationnelle. La recherche fondamentale sur l’écologie des principales espèces a abouti à des résultats de grande valeur mais s’est surtout portée sur la nourriture et la croissance en négligeant la dynamique des populations. Les études générales sur les eaux douces, par l’emploi des méthodes limnologiques, ont rassemblé de nombreux renseignements mais dont l’aménagement rationnel s’est relativement peu servi. Certains problèmes spéciaux s’intégrant à d’autres activités humaines, telles que la pollution, ont fait l’objet de recherches ponctuées. D’une façon générale, il semble que la biologie des poissons en eau douce ait fait une place insuffisante aux idées directrices et aux principes généraux basés sur la recherche fondamentale tout en accordant une place trop grande à la tradition et aux idées conventionnelles.

À l’avenir, la recherche fondamentale devrait se concentrer sur les problèmes de la production en y comprenant l’écologie et la physiologie des algues, l’étude écologique des populations des principaux organismes de la chaîne nutritive, la dynamique des populations et l’étude physiologique des poissons. La biologie des poissons devrait faire un plus large emploi de la théorie et des mathématiques et soumettre ses principes et ses conventions à de fréquents examens critiques. Il y aurait lieu de faire place à un grand nombre d’expériences pilotes sur les bases scientifiques des diverses applications de la science et à une disposition d’esprit plus scientifique dans l’exploitation rationnelle et l’administration des pêches. La recherche en matière de pêche nécessite une grande variété de scientifiques comprenant aussi bien des biologistes, des statisticiens et des économistes que des ingénieurs, des techniciens et des sociologues. Il serait bon que les divers chercheurs soient groupés dans des instituts de recherches des pêches où ils pourraient travailler en contact les uns et les autres en liaison avec les universités d’une part, les administrations des pêches et les pêcheurs d’autre part.

Telles sont les idées exprimées par E. D. Le Caux dans son étude dont il m’a paru utile pour tous ceux qui, à un titre quelconque, s’intéressent à la production des eaux intérieures, de faire un résumé détaillé.

Elles méritent réflexion, spécialement dans les cas des eaux intérieures tropicales africaines compte tenu du volume que ces eaux représentent et des possibilités qu’elles offrent pour la production de matières animales particulièrement nécessaire ; compte tenu aussi de la pauvreté et de l’état d’inorganisation des moyens de recherche dont elles ont disposé jusqu’à ce jour. On peut espérer, cependant, voir apporter bientôt un remède à cette situation.

Le Colloque sur la Recherche Scientifique et Technique et le Développement des pays africains qui s’est tenu à Dakar et à Abidjan en décembre dernier a constaté le retard des recherches relatives à la production animale des eaux douces et saumâtres par rapport à celles concernant les autres productions animales et végétales. Il a émis le vœu qu’elles soient dotées d’une organisation d’ensemble susceptible de les intensifier et d’assurer leur exécution dans les conditions les meilleures. Souhaitons que ce vœu soit rapidement réalisé.