Halage au treuil dans un passage boueux.

DÉBARDAGE ET CONSTRUCTION DES ROUTES
AU « D. 7 » CATERPILLAR
A LA SOCIÉTÉ CORRE FRÈRES

par C. LÉPITRE,
Ingénieur de recherches au C. T. F. T.

LOGGING AND ROAD BUILDING BY MEANS OF D. 7 CATERPILLAR

SUMMARY

During a mission in the Ivory Coast, the Author has carried out a detailed study about the transportation of timber and the opening of roads in a forest exploitation. This study has only been made from a particular case and from a limited number of observations. Nevertheless, it exposes a working method and the results indicated can, eventually, be compared with further observations. Some indications are in particular given as regards the time required for the various operations, e.g. logging alone has kept the traction busy during 47% of working hours and storage site 33%. Such indications are of high value when examining the possibility of improving the machines performances. As regards road building, the figures mentioned refer to the time required for the energy out this work.

Revue Bois et Forêts des Tropiques, n° 54, Juillet-Août 1957

27
TRANSPORTE DE TROZAS Y CONSTRUCCION DE CAMINOS MEDIANTE EL CATERPILLAR D.7

RESUMEN

Durante una misión en la Costa de Marfil, el Autor a llevado a cabo un estudio detallado sobre el transporte de las trozas y la construcción de caminos en una explotación forestal.

El estudio se refiere a un caso particular incluido solo un número limitado de observaciones. Expone pero un método de trabajo, y, los resultados indicados pueden ser confiados con las observaciones anteriores. Ya, algunas indicaciones, referente al tiempo pasado para llevar a cabo las varias operaciones, son expresadas: el transporte de la lona madera derribada ha tomado 47% del tiempo de trabajo del total y 32% para almacenar las trozas.

Tales indicaciones tienen un mayor interés cuando se trata de examinar las posibilidades de mejorar el rendimiento de las máquinas.

A continuación, se encuentran también precisiones relativas al tiempo requerido para la construcción de caminos.

Au cours d'une mission effectuée en Côte d'Ivoire en 1956, nous avons eu l'occasion de suivre en détail le travail d'un tracteur « D.7 » Caterpillar au débardage et en construction de route forestière. Nous avons pu effectuer des chronométrages détaillés, de cubages de chargement et quelques mesures des consommations. De tout cela, nous avons pu tirer des moyennes propres à se faire une idée du rendement de l'engin. C'est le résultat de cette étude qui est exposé dans les pages qui suivent.

Bien entendu, comme on le verra, le nombre d'heures de travail observé n'est pas très élevé et ce qui va suivre devra plutôt être considéré comme l'exposé d'une méthode d'étude que comme une étude générale du problème. Néanmoins, nous souhaitons que certaines chiffres mentionnés ci-dessous puissent intéresser quelques lecteurs, mais nous leur demandons de ne pas généraliser les résultats et de toujours se rappeler que notre exposé n'est que la description d'un cas particulier. Des études ultérieures pourront confirmer les résultats exprimés ci-dessous, comme elles pourront faire apparaître des aspects différents.

Le chantier de Rubinou est situé à 20 km environ de la gare de Rubinou, elle-même située à 25 km d'Agboville. La Société Conac Frères possède actuellement à cet endroit 7 chantiers de 2.500 ha. La zone située entre les chantiers actuels et la voie ferrée a déjà été exploitée dans les années passées par la Société Conac. Les chantiers qui s'y trouvaient ont été abandonnés.

La région est couverte de forêt de type « Semi-decidue » riche en Samba, Ilomba, Kotôô... où les cultures progressent rapidement.

Le chantier en cours d'exploitation début 1956 est déjà fortement entaillé par les plantations;

étant d'autre part traversé par un marigot important, la Gorké, les bas-fonds inondables y sont nombreux. Ces bas-fonds sont assez pauvres. Si en y ajoute quelques taches de savane, on comprendra qu'au total une partie assez importante du chantier est sans grand intérêt.

Il est probable que la région a été exploitée anciennement, vers 1930, pour les Acajous, Diébou-tous (et Iroko). Ceci expliquerait la relative rareté de ces espèces. L'essence dominante est le Samba dont on peut trouver facilement plus d'un pied par hectare. Sa qualité est malheureusement fort variable. Il s'ajoute du Onaléf (Ilomba), pas exploité au début de 1956, du Kotôô, puis un peu d'Aboûdkro, de Tiana, de Franrié, de Badi et de Fraké.

Au total, en dépôt du petit nombre d'espèces de valeur, la richesse de la forêt en Sambas (et en bois divers), fait que l'exploitation des chantiers de Rubinou est intéressante, à condition, bien entendu, que le commerce du Samba marche bien.

En mars, relativement peu de Sambas ont été coupés, les cours de cette essence étant trop bas. L'exploitation a donc porté sur l'Iroko, le Franrié, le Badi, les « Bois rouges » et divers. On se contente d'assurer en Samba quelques contrats scierie et exportation. Ceci explique que presque tout le réseau de routes soit établi (à cause pratiquement de l'exploitation de l'Iroko), et que la distance de débardage moyenne soit faible : en effet quand il faut produire du Samba, on se contente d'aller chercher à proximité des parcs, laissant pour plus tard l'exploitation systématique qui exigera des déplacements plus longs.

Le chantier ne marche donc pas à plein rendement : on prépare l'exploitation future, c'est-à-dire les routes, tout en « tirant » les bois vendables dès maintenant. Cette marche au ralenti expliquera certains aspects de l'utilisation du tracteur, comme nous le verrons plus loin. En mars, la production fut de 900 à 1.000 m³ de bois marchand.

Nature du terrain

Le relief est peu accidenté : une dénivellation d'une vingtaine de mètres sépare le plateau des bas-fonds formés par les vallées des marigots. Cette différence de niveau suffit cependant à créer par endroits des pentes de 10%, si un chemin de tirage se trouve orienté selon la ligne de plus grande pente.

Les plateaux sont recouverts de terre rouge gravillonnoise argilo-siliceuse, le sol est sain. Sur
les pentes la proportion de gravillons augmente. Le tracteur patine relativement facilement à la montée sur ces pentes de terre rouge dès que le lacs de racines a disparu sous l'action repêtée des chenilles.

Les bas-fonds sont constitués d’un sol sablonneux léger. En saison sèche ce sol est saïn ; il est au contraire recouvert d’eau en saison des pluies et par conséquent inaccessible au débardage. La circulation du tracteur sur les chemins de tirage y est très facile en bonne saison surtout quand le sol est recouvert par les facis des branchages et des racines qui améliorent fortement l’adhérence.

Dans les bas-fonds la forêt est basse, broussailleuse et les lînes y abondent, les gros arbres sont peu abondants. La hauteur moyenne du peuplement est plus grande sur les plateaux de terre rouge. Notons que la Gorké est, sur les chantiers, un marigot temporaire totalement à sec en saison sèche.

Pluviométrie

La saison sèche 1956 a été particulièrement favorable par son peu de précipitations. Il n’y a pas eu de pluie en janvier et février, quelques tornades sont tombées du 1er au 15 mars. Le 10 mars le chantier a reçu une bonne pluie : le sol a été humi-
difié mais est resté excellent pour le travail du trac-teur ; quatre jours après, d’ailleurs, la terre était à nouveau sèche. Une autre pluie est tombée le 9 avril : elle n’a fait que mouiller légèrement le sol.

Durée des observations

Les observations ont eu lieu du 20 mars au 12 avril, avec des interruptions parce que le trac-teur n’effectuait pas certains jours d’opérations intéressantes à relever. J’ai déjà indiqué plus haut que le chantier ne travaillait pas à plein rendement : certains jours, le “D.7” n’effectuait que de petits travaux sur parc, débordant peu et restant de longs moments inoccupé.

Le tracteur est conduit par un chauffeur afri-caîn ancien dans la Maison Comm. Ce conduc-teur est sérieux, adroit et assez doux pour le maté-riel.

Type du tracteur

Le “D.7” utilisé à Rubino est arrivé neuf sur le chantier le 16 novembre 1955. Il développe 125 ch. au volant et est équipé d’un trouil “Hyster D7D”.

Il débarde au moyen d’une arche “Hyster” à chenilles. Le câble de tirage est équipé d’un simple crochet. Des élingues sont rarement utilisées.

Temps de travail

Sauf avis contraire, tous les temps indiqués ci-dessous sont relevés au chronomètre (ou à la montre bracelet). Quand il sera question de temps relevés à l’horomètre du tracteur, mention spéciale en sera faite.

En moyenne le tracteur était au travail pendant 7 h 20 mn. (1) par jour (temps calculé sur 20 jours), déduction faite de l’arrêt de midi, qui est en moyenne de 1 h 05 mn. Ce temps peut paraitre élevé compte tenu de ce que le chauffeur reste en brousse. En réalité, parce que le chantier marche au ralenti, il attendait souvent après le travail. En cas de besoin, 30 mn. seulement d’arrêt suffisent à midi.

DÉBARDAGE

Les chiffres ci-dessous sont des moyennes éta-blies sur une soixantaine de voyages de débardage. Les voyages trop aberrants n’ont pas été comptés car ils auraient faussé les indications : il en sera question plus loin.

(1) Nous incluons dans ce chiffre le temps pendant lequel le tracteur arrêté, mais muezet en marche, attendait en cours de journée après le travail : ces arrêts représen-tent de l’ordre de 7 h de 7 h 20.

30
débardage de 703 m³ brut (avant tronçonnage et, pour les Irokos, désaubréage) solent :

- Iroko 93 m³
- Frambé 4 m³
- Kotché 10 m³
- Fraké 15 m³
- Samba 576 m³

On peut estimer le poids de ces 703 m³ à 539 T. (en prenant pour densités : Samba fras 0,8 ; Iroko fras sous écorce 1,1).

Par voyage de tracteur, cela représente une charge de 10,8 mètres cubes ou 8,3 tonnes (moyenne de 85 voyages), qui donneront 7,3 m³ de bois marchand. Les arbres abattus, au nombre de 70, cubaient en moyenne 10 m³ (1). Ce chiffre peut paraître faible, en réalité le débardage a porté sur une forte proportion de Samba sciée, d’un volume par pied relativement faible. Les grumes à tirer avaient un volume moyen de 9,8 m³. La distance moyenne de débardage a été de 290 m variant de quelques dizaines de mètres dans le cas d’arbres abattus à côté des parcs, à 1,100 m (Irokos). Cette distance moyenne est faible ; comme il a été dit plus haut, la marche au raïenti des chantiers en est cause : quand il fallait exploiter du Samba pour faire face à un contrat, on se contentait de le prendre à proximité des routes.

La moyenne du temps passé par voyage (correspondant à un tirage sur 290 m), a été de 24 minutes et demi.

On peut décomposer chaque voyage de débardage de la façon suivante :

1o aller à vide ;
2o demi-tour du tracteur et arche à l’extrémité du chemin de tirage ;
3o accrochage de la bille et chargement sous l’arche (débusquage) ;
4o retour en charge ;
5o sur parc, déchargement de la grume et rangement.

Examinons à part chacune de ces opérations :

1o Voyage aller

S’effectue en troisième vitesse sauf si parfois le terrain difficile exige une marche plus lente (2). Pendant ce trajet, le tracteur avec son bulldozer débarrasse le chemin de tirage des obstacles qui l’encombrent, en particulier les arbres abattus. La vitesse du tracteur en 3o est voisine de 5 km/h.

(1) Les dimensions moyennes des grumes étaient : longueur 18 m variant de 5 à 28 m, diamètre 85 cm (variant de 60 à 135 cm).

(2) Dans le cas d’arbres situés tout contre les parcs le tracteur se rend en marche arrière jusqu’à la grume.
La moyenne des observations donne quatre minutes et demies pour le voyage aller (correspondant à 200 m) soit une vitesse apparente de 3,9 km/h environ ; cette vitesse englobe le temps de déplacement du tracteur et le temps passé au cours du trajet à déblayer les pistes de débardage.

Notons à ce sujet tout l'intérêt qu'il y a à laisser en débardage, le tracteur muni de la pelle de son bulldozer, bien que cette pelle augmente son encombrement. Sans pelle, il est bien difficile de débarrasser le chemin de tirage des objets qui l'encombrent : le tracteur doit alors passer sur les obstacles, aux dépens bien entendu de ses chenilles. De plus la pelle du bul, par son poids, augmente l'adhérence du tracteur.

2° Demi-tour, et mise en place du tracteur et de l'arbre pour chargement de la grume

En moyenne l'opération a demandé deux minutes. Le chauffeur profite en général d'un endroit un peu dégagé pour y reculer son arbre, puis approche en marche arrière à distance convenable de la grume à débarrasser.

3° Débusquage

Sous ce titre sont comptées des manœuvres variées :

1° Coupes de pelle, si nécessaires, sur la bille à charger pour la mettre dans une position commodе (opération effectuée avant de faire demi-tour).

Si le tracteur a chargé deux billes dans un voyage (avec ou sans flingues) les temps de débusquage des deux billes sont additionnés (le nombre de voyages où deux billes ont été débarrassées à la fois est d'ailleurs assez faible).

En moyenne le débusquage, à chaque voyage, a demandé 6 minutes et demi.

Si on déduit un voyage aberrant le 4 avril, où le débusquage a demandé 48 minutes (par suite d'une grume très mal placée), la moyenne passe à 5 minutes et demie.

Nous adopterons d'ailleurs de préférence cette seconde mesure dans les considérations qui suivront.

En pratique, le temps nécessaire au débusquage varie énormément soit de 1 minute dans les cas faciles à plus d'une vingtaine de minutes.

4° Voyage retour en charge

En moyenne, il a demandé 7 minutes, ce qui pour 290 m de parcours correspond à une vitesse apparente de 3,5 km/h.

Là encore le temps nécessaire en pratique est très variable puisqu'il est passé de quelques minutes (dans le cas d'arbre situé au bord du parc) à plus d'une demi-heure pour des Irokos situés à 1.100 m.

Le retour s'effectue en 3°, 2° ou 1° vitesse selon la charge, ou même au train quand le tracteur patine trop. La longueur de l'arbre, les contreforts plantés sur le sol intervient aussi sur la vitesse utilisée car ils favorisent le coincement de la grume contre souches, arbres ou buttes de terre.
La 2e vitessa est la plus utilisée, la 3e n’est pas possible que pour des charges égales ou inférieures à 7 ou 8 m³.

5e Déchargement sur parc
rangement des grumes

Ceci englobe toutes les manœuvres effectuées entre l’arrivée sur le parc en charge et le départ à vide pour un nouveau voyage : déchargement, enroulement du câble, coup de bulldozer pour ranger la grume déchargée (ou d’autres voisines), attente pour un nouveau départ, etc...

En moyenne, cela représente 4 minutes et demi avec une variation pratique de 1 à 15 minutes.

Récapitulation de ces opérations

<table>
<thead>
<tr>
<th>Étape</th>
<th>Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aller à vide</td>
<td>4,5</td>
</tr>
<tr>
<td>Demi-tour</td>
<td>2</td>
</tr>
<tr>
<td>Débusquage</td>
<td>5,5 ou 6,5</td>
</tr>
<tr>
<td>Retour</td>
<td>7</td>
</tr>
<tr>
<td>Sur parc</td>
<td>4,5</td>
</tr>
</tbody>
</table>

24,5 minutes

On peut tirer des considérations ci-dessus une relation entre la distance de débardage et le temps T passé par le tracteur pour chaque voyage.

T apparaît comme la somme de deux termes :

1° une constante K qui est elle-même la somme du temps passé au demi-tour, au débusquage et au déchargement sur parc (2e, 3e et 5e ci-dessus). Ces opérations sont en effet indépendantes de la distance de débardage.

2° un temps proportionnel à la distance D de débardage : appelons D la distance de débardage en mètres. A et R le temps (en minutes) mis respectivement à l’aller et au retour pour parcourir un mètre, on peut l’écrire D (A + R).

T est donné par la relation :

T (minutes) = K (minutes) x D (A + R).

Pratiquement :

K = 2 + 5,5 = 4,5 = 12 minutes
en prenant 5,5 minutes pour le débusquage.

A = 0,0154 si la vitesse est de 3,9 km/h.
R = 0,024 x 2,5

T = 12 + 0,024 D.

Le graphique n° 2 donne la courbe temps par voyage sur distance de débardage. Les observations relevées sur le chantier y sont figurées par des points.

On constatera que pour une distance de débardage de 900 m, admise comme moyenne à ne pas
dépasser, le temps par voyage serait de 36 minutes environ.
Il est possible également d'établir une relation entre le temps utilisé chaque jour à débarder, le nombre de séjours possibles en moyenne et la distance de tirage. Cette relation s'écrirait :

\[N \text{ voyages} = \frac{E \times 60}{T \text{ minutes}} \]

\(H \) est le nombre d'heures utilisées par jour au débardage.
\(T \) est donné par la relation vue plus haut.
On peut écrire :

\[N = \frac{H 	imes 60}{12 + 0.0394D} \]

\(D \) est la distance de tirage en mètres.
Cette relation donne la famille de courbes du graphique n° 3.

Rendement général du tracteur au débardage
Les considérations ci-dessus ne s'appliquent

qu'à l'opération débardage proprement dite. En réalité, quand le tracteur débordé il n'est pas occupé qu'à ce type de travail ; voici la répartition de son temps :

- Débardage proprement dit (c'est-à-dire les cinq opérations mentionnées plus haut) 47 %
- Travail sur parc : nettoyage des parcs, préparations de chargements de camions, etc... 32 %
- Déplacement sur route pour se rendre d'un parc à l'autre 4,5 %
- Arrêts en cours de travail pour incidents mécaniques (rupture de câbles de treuil et de boul) 0,8 %
- Arrêts en cours de journée faute de travail 7,5 %
- Divers, en particulier : temps passé à essayer de tirer des arbres trop gros... 8,2 % 100 %

RELATION ENTRE LA DISTANCE DE DÉBARDAGE ET LE TEMPS NÉCESSAIRE À CHAQUE VOYAGE

Point aberrant non retenu pour (* : l'établissement de la courbe débusquage difficile le 4/4 -

minutes

Temps par voyage

Graphique 2
TRAVAIL SUR PARC

Le D7, muni de son arche, était fréquemment utilisé pour déplacer les billes, préparer les chargements de camions et, bien entendu, nettoyer le parc des éboulis, billes au rebut, etc...

Un Latil était utilisé conjointement avec le D7. Mais il n’effectuait qu’une faible partie du travail.

Sur parc le D7 travaillait à la pelle de bulldozer (garbage des chargements) aussi bien qu’au travail avec l’arche pour haler les billes.

Au cours d’une matinée, un chronométrage a été fait alors que le tracteur préparait toute une série de chargements de camion.

Voici les résultats de ces observations :

— temps de travail : 3 heures 46 minutes ;
— nombre de billes manutentionnées : 35 ;
— nombre de mètres cubes : 100 (dont 20 m³ pour deux grosses billes) en Iroko et en Samba.

Il est évident que dans semblable opération, c’est le nombre de billes et non le nombre de mètres cubes qui commande la durée du travail. Chaque bille cubait en effet une moyenne de 2,9 m³ : le D7, vu sa puissance passa pratiquement le même temps à manier 2 ou 8 m³ (et plus).

Cette opération de préparation de chargement demandait donc une moyenne de 6 minutes et demie par bille (ou, en l’occurrence, 2 minutes 15 secondes par mètre cube).

Si on rapproche ce chiffre des temps de débardage, on constatera qu’un voyage de débardage sur 600 m, demandant 36 minutes (avec transport de 7,3 m³ 3 marchands) représente en temps la manutention de 5 billes et demi sur parc, soit dans le cas qui nous intéresse 16 m³. C’est-à-dire qu’à chaque minute employée à débander un m³ correspondent 27 secondes employées à le manier sur parc. En d’autres termes, en temps de tracteur et arche, la manutention sur parc représente environ 46 % du débardage.

ESSAI DE TIRAGE D’ARBRES TROP GROS

Il s’agit là de tentatives de débardage d’arbres entiers qui n’avaient pas été tronqués à la souche. Ces arbres dépassaient la capacité du tracteur équipé de son arche. Voici le détail des opérations :

1° Samba de 24 mètres cubes
longueur 29 m 5, diamètre 102 cm.

Le débardage était effectué à plat, sur sol de plateau dans un chemin de tirage où restait un lacis abondant de racines et de branchements. Le tirage a été abandonné à la suite d’une rupture du câble. L’arbre a été sorti après tronçonnage.

C’est plus sa longueur que son volume qui a été responsable de la difficulté de tirage de ce samba : l’arbre accrochait toutes sortes d’obstacles.
2° Kolisé de 23 mètres cubes
longueur 26 m 5, diamètre 105 cm.

Débardage en remontant une pente moyenne de
2 à 3 %, également sur sol de plateau couvert de
racines.

Dès que la moindre difficulté (augmentation de
la pente, accrochage par la bille d'un obstacle
arbre ou autre) se présentait, le tracteur patinait.
Le poids excessif de la grume (25 tonnes environ)
avait provoqué le cisaillement du câble par son
crochet.

3° Samba de 27 mètres cubes
longueur 19 m, diamètre 135 cm.

Débardage à plat sur sol de plateau. Cet arbre
a pu être améné jusqu'au parc en 1h 45 (pour une
distance de 280 m). Le tirage s'effectuant par le
fin bout, les contreforts accrochaient souvent les
arbres et arbustes sur le bord du chemin de tirage
et à ce moment le tracteur patinait.

Notons à ce sujet que l'abattage des samba est
effectué en général chez M. Corre dans les contre-
forts. L'arbre étant accroché au câble par l'extré-
mité la plus facilement accessible, il se trouve en
moyenne une fois sur deux où les contreforts
trahissent à terre : ils rendent le débardage toujours
plus pénible.

La capacité de débardage du tracteur n'est
jamais limitée par la puissance de son moteur :

mêmes pour les grumes
les plus lourdes, en 1°
vitesse le moteur n'est
pas surchargé. C'est
uniquement l'adhé-
rence des chevilles
sur le sol qui dicte
la charge à ne pas
dépasser (donc le
poids du tracteur et
les caractéristiques
des chevilles).

Quand le tracteur
patine, le chauffeur
laisse retomber la
grume sur le sol,
avance et essaye de
la haire au treuil. Bien
souvent, si ses dimen-
sions sont impor-
tantes, la bille bouge à
peine et c'est le trac-
teur toutes chevilles
bloquées qui recule.
C'est que, dans ce cas,
l'arbre, dont le rou-
leau horizontal est en
porte-à-faux par rap-
port à l'axe du balan-
cier, soulève, complètement parfois, l'arrière du trac-
teur. Lorsque l'arbre, suffisamment rapproché de
l'arche, commence à être soulevé, l'équilibre de cette
dernière devient meilleur et le tracteur cesse de
glisser au bénéfice de l'arbre qui avance quelque
peu.

Il arrive ainsi souvent de voir un gros arbre ne
bouger que d'un ou deux mètres à chaque ma-
nœuvre, à moins que le chauffeur ne trouve à caler
arche ou tracteur contre un obstacle.

Une étude de l'arche de débardage montrerait
que l'équilibre de celle-ci n'est correct que lorsque
la grume à tirer est mise en place sous le rouleau
support du câble.

Au halage d'une bille éloignée, la réaction de
l'arche sur le tracteur est déplorable pour non
adhérence. Même une fois la grume en position de
transport, câble de tirage et arche réagissent sur le
tracteur de façon à le soulever d'une fraction du
poids de la grume, mais cette réaction verticale est
mieux répartie sur toute la longueur de tracteur
au lieu d'être localisée à l'arrière comme dans le cas
du halage au treuil.

Les grumes très lourdes arrivent à provoquer le
cisaillement du câble par le crochet. Si on utilise
une élingue, des torons se cassent à l'endroit où le
câble est soudé dans les mandrins.

Au total, le débardage des grumes trop lourdes
s'accompagne de perles de temps importantes.

Le poids n'est pas le seul en cause : les grumes
très longues, ou présentant des moignons de branches, des contreforts traînant sur le sol ou autres irrégularités, sont plus difficiles à tirer à pold égal que des grumes courtes. Elles accrochent tous les obstacles qui se trouvent le long du chemin de tirage.

NOTE

Ouverture des pistes de débardage

Elle est effectuée entièrement à la main sur une largeur égale à celle de la pelle du bulldozer.

Les arbres abattus sur la piste sont tronçonnés de façon à pouvoir être facilement repoussés par le bulldozer à son passage.

Le chef de chantier attache beaucoup d’importance à la qualité des chemins de tirage et à la coupe des souches terre-terre de façon à éviter les efforts que subissent les chevaux en passant dessus.

Chaque manœuvre ouvre, en moyenne, 15 à 25 m de piste de débardage par jour (soit environ 8 h/j pour 100 h) pour un travail soigné.

dant généralement par coups de pelle distincts pour abattage des arbres, enlèvement de la broussée (tous deux exécutés en principe en 1ᵉʳ vitesse) et découpage de la couche végétale du sol (exécuté en 2ᵉ et en 1ᵉʳ vitesse).

Le travail au bulldozer est pour le tracteur plus pénible que le débardage : presque tous les coups de pelle utilisent la totalité de la puissance du moteur.

Après cette ouverture de la route au tracteur, une équipe d’abatteurs coupe tous les arbres qui bordent la route et risquent de provoquer de l’ombre. Après l’abattage, le tracteur repasse pour

Ouverture d’une route principale

Les observations ont porté sur un parcours en terrain très peu accidenté et ne présentant pas de rampe dépassant 4 à 5 %. Nous avons vu le tracteur y travailler 6 jours pendant lesquels 1,360 m ont été ouverts dans la forêt.

Le tracteur attaquait directement la forêt, abattant les arbres sans autre travail préalable que l’ouverture d’un layon piqué qui matérialisait le tracé. Cette manière de procéder se justifie par l’habileté du conducteur du tracteur et la constitution de la forêt.

Grâce à sa connaissance de la broussée, le chauffeur sait éviter les accidents qui pourraient survenir par suite de chute de lanières, esses de fûts fragiles comme ceux du Oualélé, etc... Il sait attaquer la végétation par le côté le moins difficile. Deux apprentis accompagnent le tracteur coupant lames et tiges gênantes.

Comme il a été dit plus haut, la forêt contient beaucoup de broussailles et relativement peu d’arbres, surtout dans les bas-fonds. Il est facile de placer la route de façon à éviter les gros arbres dont le dessouchage n’est ainsi plus nécessaire (on reste obligé de les abattre pour éclaircir la route). En fait, le tracteur n’a eu que très rarement à dessoucher des arbres de 40 et plus de diamètre.

En sol de bas-fond, sablonneux, léger, le travail du tracteur est facile, un peu plus pénible sur terre rouge de plateau où la forêt est plus haute. De toute façon, la rareté des pluies permet de travailler le sol dans les meilleures conditions.

La largeur dessouchée du bulldozer est de 10 m environ avec variation pratique de 8 à 12 m. Le tracteur ouvre les 10 m en une seule fois procé-
repousser tous les troncs qui encombrent la route, en même temps il procède à un nivellement aussi correct que possible.

Enfin chaque déplacement un peu long est effectué en marche arrière en laissant trainer la pelle du bulldozer de façon à lisser la route.

Il reste ensuite à procéder, à la main, à l’ouverture des fossés (uniquement dans les bas-fonds), à effectuer ponts et remblais au tracteur là où cela est nécessaire (1).

La répartition des temps de travaux fut la suivante :

--- Ouverture de route proprement dite dans la forêt 28 h 40
--- Nettoyage de la route après abattage des arbres volants et nivellement 6 h 20
--- Déplacement en marche arrière avec lame du buil trahant sur le sol 2 h 20
--- Arrêts en cours de travail pour causes diverses 3 h

40 h 20

(1) Le chantier ne dispose pas de motograder.

Nous avons su que le travail observé d’ouverture proprement dite correspondait à 1.360 m. Cela représente environ 21 heures de travail au kilomètre.

Pour achever ces 1.360 m, en plus des 6 h 20 (représentant environ une journée) consacrées au nettoyage et au nivellement, deux autres journées, après le 12 avril, ont été nécessaires (soit au total : 2,2 journées au kilomètre).

Si on estime que 28 h 40 représentent l’équivalent de 4 journées et demi de tracteur, on constatera que 1.360 m l’ont immobilisé 7 jours de demi, soit environ 5 jours et demi au kilomètre. Ce chiffre correspond à l’établissement de la chaussée à l’exclusion de tous travaux de terrassement. Le temps passé à remuer éventuellement de la terre viendrait s’ajouter au chiffre indiqué ci-dessus.

C’est ainsi que pour effectuer un remblai sur 200 m et un pont dans un bas-fond, il a fallu près de trois nouvelles journées de tracteur.

Sur les 1.360 m, l’abattage des arbres bordant la route a demandé 189 hommes/jour.

Horomètre

La comparaison entre les heures horomètre et
Les heures chronomètre n’ont pu être faites que sur cinq jours (au partant, par suite d’une erreur d’observation, il semblait que l’horomètre ne fonctionnait pas). Pendant ce temps, le tracteur a travaillé les trois quarts du temps en ouverture de route.

À l’heure d’horomètre a correspondu 1 heure 8 minutes (soit 113%) au chronomètre.

Le 12 avril, l’horomètre du tracteur marquait 653 heures.

Consommation

Les relevés de consommation ont été difficiles à exécuter, aucun instrument de mesure n’étant utilisé pour faire le plein.

Des relevés faits quand le tracteur travaillait en ouverture de route, il résulte que la consommation à l’heure d’horomètre a été de 11,8 litres de gas-oil.

À 190 gr au CV/heure, cela correspondrait à une demande de puissance continue et moyenne au moteur de l’ordre de 50 CV.

Entretien

Le temps passé à l’entretien périodique représente 10 % environ du temps de travail du tracteur (c’est-à-dire du temps passé aux travaux décrits aux chapitres débardage et routes).

Si on ajoute à ce chiffre le temps passé aux graissages (tous les deux jours) on arrive à 15 % du temps d’utilisation de l’engin. C’est-à-dire que chaque fois que le tracteur travaille 10 h, on passera 1 h 1/2 à l’entretien.
CONCLUSION

Bien que cette étude ne concerne qu'un cas particulier, quelques conclusions peuvent être formulées :

- le temps d'immobilisation du tracteur pour travaux qui ne sont pas du débardage proprement dit — ou de l'ouverture de routes — est énorme : ainsi, le temps passé sur parc représente 32 % du temps passé au débardage.

- dans le même ordre d'idée, le tirage de billes trop grosses est coûteux puisque quelques essais de ce genre ont abouti à perdre 8 % du temps de débardage.

- Il est fort difficile de maintenir le chargement du tracteur dans des limites qui assurent son plein emploi. Sur des distances de tirage faibles, il n'est pas toujours possible de prendre plusieurs arbres à la fois et on voit des voyages effectués pour 4 ou 5 m³. Le tirage, grâce à des élingues, de plusieurs billes à la fois doit être recherché chaque fois que le volume des arbres est faible. Par contre, les trop grosses billes constituent une surexpense qui fatigue inutilement le matériel ; il est alors préférable d'effectuer le tronçonnage à la souche.

D'autres conclusions plus détaillées pourront être formulées quand nous procéderons à d'autres études du même genre sur l'utilisation du tracteur. Cette simple étude n'est, comme nous l'avons dit, que l'exposé d'un cas particulier dont il n'est pas permis de tirer beaucoup d'indications générales.