NOTE
SUR UNE
NOUVELLE SCIE FORESTIÈRE

DU 3 décembre 1948 au 18 janvier 1949, une scie forestière à ruban horizontal, d'un modèle nouveau, a été expérimentée à la Section technique forestière de Nogent-sur-Marne.

Ces essais ont permis d'apprécier la valeur de ce matériel dans le sciage des bois africains de diverses duretés. Ils ont permis, en outre, de conseiller au fabricant certaines modifications pour l'adapter aux conditions variées de ces sciages.

Il nous paraît intéressant de communiquer aux lecteurs de cette revue les résultats de ces observations.

DESCRIPTION SOMMAIRE DE CETTE SCIE

La scie à grumes C.D. 2, construite par les Etablissements C.D., 36, rue Anatole-France, à Puteaux (Seine), est un ruban horizontal à volant de 1 m. de diamètre. Mais, tandis que dans la presque totalité des rubans à grumes la scie est fixe et la grume se déplace, griffée sur un chariot, dans la scie C.D. 2, la grume est fixe, simplement calée sur deux chantiers, et l'ensemble scie et moteur se déplace sur deux rails. Cette disposition présente de grands avantages : le chariot, organe toujours lourd dans les scies à grumes, est supprimé. Les rails n'ont qu'une longueur réduite, égale environ à la longueur maximum des grumes à scier, plus 2 m. (pour le dégagement de la scie à l'entrée et à la sortie du trait).

Le moteur et les volants sont fixés sur une charpente en fers profilés soudés à l'autogène qui nous a paru très rigide, quoique légère. Cet ensemble est porté par deux colonnes verticales qui roulent sur les rails par quatre galets à roulement à aiguilles très doux. Moteur, volants et lames peuvent monter ou descendre le long des colonnes, à l'aide d'un volant à main, d'engrenages et de crémaillères. Ce mécanisme est très précis : il permet de fixer facilement la hauteur de la lame, et par conséquent l'épaisseur de sciage, à 1 mm. près. (Un tour de volant équivaut à 16 mm.)

La rigidité de cet ensemble dans le sens perpendiculaire au rail paraît très suffisante.

Le moteur est un moteur Citroën 11 CV fiscaux développant une puissance d'environ 40 à 45 CV réels, largement suffisant pour entraîner cette scie. C'est un moteur classique, conçu de tels, assez léger (200 kgs environ), facile à réparer (cyindres chevaux), muni de tous les perfectionnements (allumage par Delco, démarrage électrique). Le refroidissement se fait par eau. Le moteur est fixé au bâti par quatre boulons, et par conséquent très facile à enlever.
Un moteur électrique de 15 à 20 CV peut également équiper cette scie.

La transmission du moteur au volant se fait par deux courroies trapézoidales « Texroupe ». Le choix de diamètre des poulies moteur et volant permet de donner à la lame la vitesse désirée, le moteur tournant toujours à son régime.

Les volants sont en tôle d’acier nervurée, avec jante en acier. Ils sont légers, très rigides et parfaitement équilibrés statiquement et dynamiquement. Ils tournent sur de robustes roulements à rouleaux.

Ils coulissent tous deux sur des glissières horizontales qui permettent de tendre, d’une part, les courroies du moteur, et, d’autre part, la lame elle-même. La lame appuie d’ailleurs par son brin supérieur (brin libre) sur un guilet à ressort qui donne une certaine élasticité à la tension. Ce système permet de simplifier beaucoup le montage des volants qui n’a plus besoin d’être élastique, comme dans les scies classiques (élasticité obtenue par rondelle Belleville, ressort ou contre-poids). La tension nous a paru considérable et bien suffisante pour assurer une bonne rigidité à la lame.

Quatre vis-pointeaux permettent de régler l’alignement des volants et d’assurer une bonne position à la lame sur les jantes.

Les rails sont constitués par deux fers à cornière de 60 mm., fixés par des tire-fonds sur des poutres de bois ; leur écartement doit être de 112 cm. Ils doivent, de plus, être bien rectilignes, toute irrégularité dans les rails se traduisant par la même irrégularité sur le trait. De la bonne stabilité des rails dépend la qualité du sciage.

Le démontage de tout cet ensemble est très simple : le moteur est fixé par quatre boulons seulement, chaque volant par deux boulons. Une fois la scie démontée, la pièce la plus lourde est le moteur (150 à 200 kgs). La scie complète, avec rails de 5 m. et moteur, pèse environ 500 kgs et peut se transporter sur une petite caisonnette. C’est ainsi que nous l’avons vue arriver à la Section technique forestière à Nogent.

Le montage est extrêmement rapide : trois heures après son arrivée, la scie était en place et sciait sa première bille.

Fonctionnement

La scie se déplace le long des rails, la bille étant fixe. Cette avance est quasi automatique : les rails ont, en effet, une inclinaison de 5 ° qui provoque une poussée de la scie sur le bois d’environ 20 kgs, suffisante en général pour assurer l’avance. Le scieur peut d’ailleurs diminuer ou augmenter cette poussée en agissant directement à la main sur le bâti de la scie. Il réglera ainsi la vitesse d’avance d’après la nature du bois.

Il pourra également régler dans une certaine mesure la vitesse de la lame en agissant sur l’accélération du moteur. Ces variations de vitesse ne peuvent cependant pas être très considérables, le moteur devant toujours tourner régulièrement à sa vitesse de régime. Elles ne peuvent guère dépasser 2 m.50 par seconde en plus ou en moins de la vitesse moyenne.

Au début des essais, le volant tournait à 700 t./minute environ, ce qui donnait une vitesse de lame de 35 à 36 m./sec. Cette vitesse était excessive pour les bois durs ou chantreux que nous voulions débiter. J’ai alors demandé au constructeur d’augmenter le diamètre des poulies du volant, ce qui fut fait sans difficulté. Nous avons adopté la vitesse moyenne de 22 m./sec., soit vitesses extrêmes de 19 à 25 m./sec. satisfaisantes pour tous les bois essayés.

Quelques observations sur les sciages

Les premiers essais ont permis la mise au point de la scie : La vitesse de lame a été réduite ; les rails posés sur un sol trop mou, ont été stabilisés. Les lames ont été choisies avec une denture adaptée au bois (1).

(1) Pour le choix de la vitesse de lame et de la denture, nous nous sommes reportés autant que possible à l’ouvrage de M. Poliake, « L’usinage des bois coloniaux »,

185
Tous les sciages ont alors été excellents :

Rectitude parfaite, avance régulière de la seie, sans coups et sans vibrations. Moteur tournant sans fatigue.

Voici les vitesses observées :

ANGUEUCK (Ongokea Khaineana) : Rondin de 3 m, 45 de long et 0 m, 78 de diamètre.
Vitesse de lame : 22 m/sec.
Denture : Pas de 20 mm, avoyée par torsion.
Vitesse d’avance : 1 m, 40 à 1 m, 60 par minute suivant la largeur du trait, soit 0 m² 65 à 0 m² 80 par minute.

Excellent sciage, très régulier. La sciure dégagée bien et n’encrasse pas la lame. Une lame peut faire 8 à 10 traits sans être désaffûtée.

ONOT Soor (Ochrocarpus Africanus) : Rondin de 3 m, 90 de long sur 0 m, 61 de diamètre.
Vitesse de lame : 24 m/sec.
Denture : Pas de 20 mm, avoyée par torsion.
Vitesse d’avance : A varié de 2 m, 50 à 5 m, 70 par minute, suivant la largeur du trait, soit environ 1 m² 50 par minute.

Sciage très facile et très régulier. Ne désaffûtée nullement la lame, qui débita la bille entière, soit 10 traits.

A titre expérimental, un feuillet de 12 mm d’épaisseur, sur 0,60 de largeur est scié sans difficulté.

ANDONO (Berlinia sp.) : Rondin de 4 m, 10 de long sur 0 m, 70 de diamètre moyen.
Vitesse de la lame 22 m/sec.
Denture : Pas de 40 mm.
Vitesse d’avance : 2 m, 50 par minute en moyenne, soit 1 m² 50 à 1 m² 70 par minute.
Sciage facile, régulier, bien plan.
La lame débita la bille entière, soit 8 traits, sans être désaffûtée.

BELLA (Mytragyna cilata) : Rondin de 4 m, 33 sur 0 m, 82 de diamètre moyen. Bois fortement échauffé, et très humide.
Vitesse de lame : 24 m/sec.
Denture : Pas de 50 mm.
Vitesse d’avance : A varié de 1 m, 35 à 3 m, 70 à la minute, soit, en surface, 1 m² 20 à 1 m² 60 en moyenne.
Très bon sciage.

LIMBO (Terminalia superba) :
Huit bûches de Limbo ont été sciées, d’un diamètre variant de 0 m, 57 à 0 m, 83, et de 3 m, 50 à 4 m, 74 de longueur.
Ce lot s’est révélé d’un sciage difficile. Le bois enrasse fortement les dents, mais ne con-
d'ailleurs difficile que le châssis puisse encaisser de violents à-coups, même avec incidents de sciage, lorsque la lame rencontre une zone de bois beaucoup plus dure, ou une concrétion pierreuse par exemple. La poussée étant en effet constante et assez faible (20 à 50 kg.), l'avance de la scie se ralentit instantanément jusqu'à presque s'arrêter. Le scieur, d'ailleurs, sent très bien ces incidents de sciage. Si la lame, ni le châssis ne risquent de recevoir des efforts considérables. Je crois qu'on pourrait comparer le travail de cette scie à celui d'une scie de long manœuvre à bras, où un châssis ultra-léger et parissant fragile supporte cependant sans déformation la tension de la lame et les efforts de sciage des bois les plus durs.

Lames

Ce sont des lames ordinaires de scie à ruban de 100 m. de largeur maximum. On choisira autant que possible des lames en acier dur, résistant au désaffûtage. (Acier suédois, acier au nickel-chrome.)

Comme je l'ai dit ci-dessus, ces lames n'auront pas à supporter de très grands efforts, et se déformeront peu. Leur entretien en sera facilité. Il faudra les affûter et les avoyer fréquemment, opérations faciles avec les appareils automatiques ; mais ce n'est que rarement qu'il sera nécessaire de les planer ou de les tasser. Cet avantage est sérieux.

Protections

Dans le modèle qui a été essayé, la protection est assurée par une garde en bois qui entoure les deux volants et le brin supérieur de la lame. En cas de rupture, le ruban n'est pas projeté au loin et risque moins de blesser les ouvriers. Les Établissements C.D. étudient d'ailleurs pour les modèles futurs une protection plus complète. Tous les organes en mouvement seront enfermés dans un grillage amovible qui éliminera presque tous les risques d'accident.

Moteur

Le moteur Citroën 11 cv. est connu de tous, et son choix est le choix particulièrement heureux. Tout autre moteur peut d'ailleurs être monté, pourvu qu'il soit d'une puissance suffisante (15 à 20 cv.) et assez léger (250 kg. maximum).

Quelques remarques de détails sont toutefois nécessaires : les accumulateurs, parfois en France, paraissent bien fragiles pour la forêt tropicale. Il y aurait peut-être lieu de les supprimer, et de remplacer le Delco par une magneto plus robuste. Mais alors le démarrage électrique sera aussi supprimé, obligeant à un démarrage par la manivelle à main parfois difficile.

De plus, le moteur travaille dans la poussière de la sciure. Il serait sans doute utile de monter de bons filtres à air, et de défendre les appareils électriques, comme cela se fait pour les moteurs agricoles.

Rendement et consommations

Ces deux points importants n'ont pu être bien précisés au cours de ces essais : Les conditions ne s'y prêttaient guère la main-d'œuvre faisant défaut. Les mêmes hommes devaient conduire la scie, enlever les plateaux sciés, et aider à la mise en place des grumes avec des moyens assez primitifs. D'où perte de temps souvent considérable. De plus les observations relatissaient les diverses opérations.

Cependant quelques temps de débitage de grumes ont été mesurés qui permettent de donner quelques précisions.

Le rondin d'oboto d'un volume de 1 m3 a été débité en 35 minutes environ en planches et madriers de 55 mm. et 55 mm.

Un rondin de Limbo, bois assez difficile à scier, d'un volume de 2 m3 100 (long. 4,20, diam. 0 m. 80) a nécessité 1 heure pour être débité en madriers de 55 mm. d'épaisseur.

Enfin, entre 14 h. et 17 h., c'est-à-dire en 3 heures environ, il a pu être débité deux billes de Limbo, d'un volume total de 3 m3 400. Trois lames ont été nécessaires. Dans ce temps on a
compté le transport et la mise en place d'une grume.

On peut donc affirmer que dans un bois difficile, exigeant une lame fraîche d'affût tous les 8 à 10 traits avec des grumes de 1 à 3 m³, la seie C.D. pourra débiter normalement 6 à 7 m³ par jour, en épaissir de 27 à 60 mm.

En bois facile, ce rendement sera plus fort.

On peut d'ailleurs supprimer le temps mort nécessaire à la mise en place des grumes en doublant simplement la longueur des rails. Pendant que la seie travaille en avant, une équipe d'ouvriers installe une grume en aval et inversement. Par ce procédé, la seie peut avoir une marche à peu près continue et son rendement en sera augmenté.

Nous n'avons pu contrôler d'une façon précise la consommation d'essence. Le constructeur nous a assuré qu'elle était au maximum de 3,5 litre par heure.

Entretien des lames

Il est le même que pour toutes les scies à ruban. La lame doit être refaitée dès qu'elle commence à ne plus couper. L'avouage se fera tous les 2 à 4 affûts par écrasement des dents. Ces deux opérations, affûtage et avouage, se feront mécaniquement par l'aide des appareils connus. Les opérations ayant pour but de rectifier les lames déformées (planage, tensionnage, braillage), demandent plus de doigté de la part de l'ouvrier. Mais il faut remarquer que dans la seie C.D. les volants sont légers, à faible inertie, l'avance se fait à poussée constante, et non à vitesse constante. Dans ces conditions les lames ne subissent pas d'efforts excessifs et ne sont pas déformées. Les opérations de planage et de tensionnage seront donc réduites au minimum.

Quoiqu'il en soit l'entretien des lames ne pourra être fait correctement que dans un atelier bien équipé et par des spécialistes. En France, la solution est simple : les lames sont envoyées dans une scierie voisine où elles sont affûtées, avoymes et rectifiées à forfait. Dans les territoires d'outre-mer des ateliers d'affûtage seront souvent à créer, un atelier pouvant alimenter 4 à 5 scies. Chaque seie devra posséder le nombre de lames suffisant pour avoir un jour en scelage, et un jeûn à l'affûtage.

Les Établissements C.D. ont à l'étude un camion atelier équipé de tout le matériel d'entretien des lames. Il permettra l'installation facile de cet atelier au centre d'un groupe de scies.

Utilisation en forêt tropicale

La seie C D se caractérise par sa simplicité, sa légèreté, son extrême facilité de transport, sa rapidité d'installation. Elle nous parait être vraiment une "seie forestière" pouvant s'installer avec le minimum de frais et le maximum de rapidité aussi près de la coupe que cela est désirable.

C'est en cela qu'elle doit intéresser particulièrement l'exploitation des forêts tropicales. Il n'est pas douteux que dans beaucoup de cas l'exportation de grumes n'est pas économique. Chacun sait en effet que le prix du bois est surtout fonction des frais de transport et de débardage. On a donc, dans la plupart des cas, intérêt à laisser en forêt tous les déchets obtenus au débit : sciure, croûte, abîme, etc., pour n'exporter que du bois de valeur. Ces déchets représentent en général 40 à 50 % du volume total de la grume.

Cela est si vrai que malgré un travail considérable, beaucoup de grumes sont égarrassées, ou désauberisées à la hache sur le parterre de la coupe.

La seie C.D. doit rendre dans ces cas de très grands services.

Installée en quelques heures à proximité immédiate des coupes sous un abri sommaire, elle permettra d'effectuer d'une façon simple ce débit primaire des grumes et de n'évaurer de la forêt que des bois de valeur, sous forme de plateaux et d'égarris.

Cette façon de procéder a été comprise par certains exploitants du Congo belge. Dix scies
C.D. y fonctionnent. Elles sont utilisées pour débiter les billes en plateaux de plein quartier qui seront seuls exportés. Le cœur et les dosses, sans grande valeur, sont éliminés ou utilisés sur place. Nous donnons ci-dessous le type de débit le plus couramment utilisé dans ce territoire : il nous paraît présenter un grand intérêt.

Dans une première opération, la bille est ouverte par 4 traits délimitant deux dosses, sans valeur, et trois plateaux de largeur normalisée, celui du centre contenant largement le cœur.

Dans une deuxième opération, les deux plateaux A et A' sont repris, accolés l’un à l’autre par des serre-joints et débités suivant le schéma II, en 6 plateaux dont deux sur plein quartier. Enfin dans une troisième opération, le plateau du centre B est griffé sur les chantiers de la scie et débité suivant le schéma III en deux plateaux sur plein quartier (B et B') et une poutrelle de cœur.

Sur les huit plateaux A et B, quatre sont sur plein quartier et quatre sur faux quartier. Ils représentent la totalité du bois de valeur de la grume et seront seuls exportés, pour être débités en madriers ou planches par des scieries installées dans des centres.

Les dosses et la poutrelle de cœur sont en général utilisées sur place : Leur valeur est trop faible pour supporter le transport.

Nous sommes persuadés qu’utilisée de cette manière, en débutant près de la coupe les billes en plateaux épais qui seront seuls exportés, la scie C.D. peut rendre de très grands services dans nos forêts tropicales, en facilitant les problèmes de débardage. Nous serions heureux que les résultats que nous avons obtenus à la Section technique forestière se confirment en forêt.

P. SALENAVE,
Conservateur des Eaux et Forêts des colonies.